Valuation approaches - Income approach

Valuation method #1: Direct capitalisation method

- Value = $V_0 = \frac{NOI}{cap\ rate}$
- Capitalisation rate = Cap rate = Discount rate – Growth rate
- All risk yield (ARY) = $\frac{Rent_1}{Rent_1 - Rent_2}$
- Net operating income (NOI) = Operating income – Depreciation

Valuation approaches - Cost approach

Valuation method #2: DCF

1. **Step 1: Estimate MV of land (sales comparison approach)**
2. **Step 2: Estimate building's replacement cost (based on current construction cost and standards + builder/developer's profit)**
3. **Step 3: Deduct physical deterioration (curable and non-curable) functional obsolescence, location obsolescence and economic obsolescence**
 - Physical deterioration: wear and tear of the building overtime
 - Functional obsolescence: loss in value from defects in design and impair building's facilities (estimated by capitalising the decline in NOI)
 - Location obsolescence: occur when location no longer optimal. Part of the loss might already be reflected in MV of land
 - Economic obsolescence: occur when new construction is not feasible under current economic conditions

Valuation approaches - Sale comparison approach

Value of subject property = sales prices of comparable properties ± adjustments for differences

- Highest and best use: the use that produces highest implied land value
- Due diligence in private equity real estate investment: to confirm the fact + condition, to lower the risk of unexpected legal and physical problems
- Appraisal-based indices: combine valuations of individual properties that can be used to measure market movements – could compare performance with other asset classes
- Transaction-based indices: constructed using repeat-sales index and hedonic index

Appraisal-based indices

- **MCREIF Property index (NPI):** popular index in US. NCREIF calculate return as follows:

 \[
 \text{Return} = \frac{\text{NOI} - \text{CAPEX} + (\text{End market value} - \text{ Beg. market value})}{\text{Beg. MV}} = \frac{\text{NOI}}{\text{Beg. MV}} + \frac{\text{End MV} - \text{Beg. MV} - \text{CAPEX}}{\text{Beg. MV}} = \text{current yield} + \text{capital return}
 \]

 Cons of appraisal-based indices:
 - Actual transactions occur before appraisals → appraisal-based indices tend to lag actual transaction → smooth the index
 - Appraisal lag → lowe correlation with other asset classes

Transaction-based indices

- **Repeat-sale index:** rely on repeat sale of same property → regression is developed to allocate change in value each quarter
- **Hedonic index:** require only 1 sale → regression is developed based on changes in property characteristics (age, location, etc.)

Due diligence

- Confirm OPEX by examining bills
- Review CF statements
- Obtain environment report → identify possible contamination
- Physical / Engineer inspection → identify structural issues + Check condition of the building system
- Inspect the title and other legal documents for deficiencies
- Survey the property → confirm the boundaries + identify easements
- Verify compliance with zoning laws, building codes and environment regulations
- Verify payment of taxes, insurance, special assessments and other expenditures

() Tentants are required to pay all expenses → ARY = cap rate

() Cost approach is considered the upper limit of value since an investor would never pay more than the cost to build a comparable building
Life cycle of commodities

Life cycle of crude oil
1. Drill well → 2. Extract crude → 3. Transport + storage for few months → 4. Refine into various fuels (gasoline, heating oil, diesel oil, jet fuel) → 5. Transport to customers

Life cycle of natural gas
1. Extract → 2. Transportation to consumer thru pipeline / or cooled to liquid form and transported by ship

Life cycle of industrial metals
1. Extract ore → 2. Smelted into the quality of metal required by end users
2. Economies of scale due to large, efficient mining and smelting operations → most efficient running near capacity → producers hesitant to decrease production when price falls

Life cycle of livestock
1. Raise → 2. Slaughter (chickens: after weeks; hogs: 6 months; cattle: few years) → 3. Freezing for storage and international trade

Life cycle of grain
1. Plant → 2. Harvest (5+ months after planting) → 3. Storage
2. Lag between investment in new capacity and increase in supply
3. Delivered futures contracts are available on dates to coincide with the harvest

Life cycle of softs
1. Plant → 2. Harvest (up to 4 years after plant for the 1st harvest) → 3. Transport + store in warehouse → 4. Roasted by local roaster → 5. Deliver to end-users / retail sales outlets

Commodity market analysts
- Informed investors, either produce or use the commodity
- Reduce risk by long / short futures contracts

Participants in commodity futures markets
1. **Hedgers:**
 - Invest in long / short futures contracts
 - Protect against price movements in underlying commodity

2. **Speculators:**
 - Reduce risk by long / short futures contracts
 - Informed investors, either produce or use the commodity

3. **Arbitrageurs:**
 - Buying, selling, storing the physical commodities when the difference between spot and futures price is too large / too small, due to the actual cost of storing the commodity

4. **Commodity exchange**
 - Futures price > Spot price + Storage cost → buy and store commodity + short futures
 - Futures price < Spot price + Storage cost → selling commodity + long futures

5. **Commodity market analysts:** non-market participants, use information to analyse for various entities
6. **Commodity regulators:** regulate the commodity market

Theories of commodity futures markets

1. **Insurance theory:** Commodity producers want to reduce price risk → drives down futures price
 - Producers’ hedging behaviour > Consumers’ hedging behaviour
 - Down pressure > Up pressure → Backwardation
 - Producers’ hedging behaviour < Consumers’ hedging behaviour → Up pressure > Down pressure → Contango
 - Disadvantages:
 - Producers typically face more concentrated price risk than consumers
 - Both producers and consumers may be speculators, not just hedgers

2. **Hedging Pressure theory:**
 - Commodity producers want to reduce price risk → drives down futures price
 - Producers’ hedging behaviour > Consumers’ hedging behaviour
 - Down pressure > Up pressure → Backwardation
 - Producers’ hedging behaviour < Consumers’ hedging behaviour → Up pressure > Down pressure → Contango
 - Disadvantages:
 - Hedging pressure is not observable → cannot directly test the hypothesis

3. **Theory of storage:**
 - Storage costs > Convenience yield → Contango
 - Storage costs < Convenience yield → Backwardation
 - Contango market: longer-dated futures are trading @ lower price → buy more contracts to hold the value of long position
 - Backwardation market: longer-dated futures are trading @ higher price → buy less contracts to hold the value of long position

Basis / Calendar spread / Contango / Backwardation

- **Basis** = spot price - futures price
- **Calendar spread** = Nearer futures price - Further futures price
- **Contango / Backwardation** = Nearer futures prices are lower @ dates further in the future (Basis & Calendar spread < 0)
- **Contango** / **Calendar spread** = Nearer futures prices are higher @ dates further in the future (Basis & Calendar spread > 0)

Theories of commodity futures markets

1. **Insurance theory:** Commodity producers want to reduce price risk → drives down futures price
 - Disadvantages:
 - Lack of empirical findings
 - Higher hedging costs → producers should reduce hedge size

2. **Hedging Pressure theory:**
 - Commodity consumers want to reduce price risk → drives up futures price
 - Differences between producers’ and consumers’ expectations / hedging behaviour
 - Producers’ expectations / hedging behaviour > Consumers’ expectations / hedging behaviour
 - Down market: Up pressure → Backwardation
 - Up market: Down pressure → Contango
 - Disadvantages:
 - Backwardation market: investors hedge with long futures → less futures contracts needed to hold the value of long position
 - Contango market: investors hedge with short futures → more futures contracts needed to hold the value of short position

Total return for a fully collateralised commodity futures contract

- To take position in futures, investor must post collateral
- Fully collateralised futures: Value of posted cash / accepted securities = notional value of futures contract

Total return = Collateral return + Price return + Roll return

Collateral return (Collateral yield): holding period yield on the T-bills, if T-bills are deposited as collateral

Price return (Spot yield): (Current return - Previous price) / Previous price

Roll return (Roll yield): gains / losses for rollover the position of the future when commodity derivative contract expires

- Backwardation market: longer-dated futures are trading @ lower price → buy more contracts to hold the value of long position
- Contango market: longer-dated futures are trading @ higher price → buy less contracts to hold the value of long position

Collateral return (Collateral yield): holding period yield on the T-bills, if T-bills are deposited as collateral

Price return (Spot yield): (Current return - Previous price) / Previous price

Roll return (Roll yield): gains / losses for rollover the position of the future when commodity derivative contract expires

- Backwardation market: longer-dated futures are trading @ lower price → buy more contracts to hold the value of long position
- Contango market: longer-dated futures are trading @ higher price → buy less contracts to hold the value of long position