Heteroskedacity

1. **Definition**: Variance of residuals is not the same across all observations in the sample
 - **Unconditional heteroskedacity**: heteroskedacity is not related to the level of independent variables → cause no major problems with the regression
 - **Conditional heteroskedacity**: heteroskedacity is related to the level of independent variables → significant problems for statistical inference

2. **Effect on Regression Analysis**
 - Unreliable estimates of standard errors
 - No impact on coefficient estimates
 - If underestimate standard of errors → Overestimate t-statistics → null hypothesis is rejected too often
 - Unreliable f test

3. **Detection**
 - Method #1: Examine scatter plot of residuals
 - Method #2: Breusch-Pagan chi square test
 \[
 BP\, chi - square\, test = n \times R_{residual}^2
 \]
 \[
 df = k = number\, of\, variables\, to\, be\, tested
 \]

4. **Correction**
 - Use robust standard errors (White-corrected standard errors, or heteroskedacity-consistent standard errors) instead of normal standard errors (*)
 - Use generalized least squares → eliminate heteroskedacity by modifying original equation

(*) Recommended by CFA. White-corrected standard errors are used when only heteroskedacity appears

Serial Correlation

1. **Definition**: Residual terms are correlated with one another
 - **Positive serial correlation**: positive regression error in a period → higher probability of positive regression error for the next period
 - **Negative serial correlation**: positive regression error in a period → higher probability of negative regression error for the next period

2. **Effect on Regression Analysis**
 - Underestimate coefficient standard errors → Overestimate t-statistics → Type 1 error: rejection of null hypothesis when it is actually true
 - Underestimate MSE → unreliable F-test → Type 1 error

3. **Detection**
 - Method #1: Examine scatter plot of residuals
 - Method #2: Durbin-Watson statistic
 \[
 DW = \frac{\sum (e_t - \hat{e}_{t-1})}{\sum e_t^2}
 \]
 or
 \[
 DW = 2 \times (1 - r)
 \]

 \[
 DW < d_1 → error\, terms\, are\, positively\, serially\, correlated
 \]
 \[
 d_1 < DW < d_2 → inconclusive
 \]
 \[
 d_2 < DW → fail\, to\, reject\, the\, null\, of\, zero\, serial\, correlation
 \]

4. **Correcting serial correlation**
 - Adjust the coefficient standard errors (use White method recommended by CFA)
 - Use correctly transformed model by incorporating the time-series nature of the data

Multicollinearity

1. **Definition**: 2 or more independent variables → highly correlated

2. **Effect on Regression Analysis**
 - Unreliable slope coefficients
 - Artificially inflated standard errors → greater probability for incorrect conclusion that variable is significant

3. **Detection**: t-test indicate of each individual coefficient is not significantly different than zero, while F-test is significant and Coefficient of Determination is high

4. **Correction**: omit one or more of correlated independent variables

Model Misspecification

Categories of model misspecification

1. Misspecified functional form
 - Model misspecification #1: Omitted important variables
 - Model misspecification #2: Variables should be transformed
 - Model misspecification #3: Data is improperly pooled
2. Independent variables are correlated with error term in time series model
 - Model misspecification #4: Using lagged dependent variables as independent variable
 - Model misspecification #5: Forecasting the past
 - Model misspecification #6: Measuring independent variables with error
3. Other time-series misspecifications that result in nonstationarity

Effect of model misspecification

- Model misspecification → Biased and inconsistent regression coefficients → Unreliable hypothesis testing and inaccurate predictions

Misspecification #1: Omitting a Variable

1. **Definition**: fail to include an important variable in the regression
2. **Effect**
 - Biased and inconsistent regression coefficients → unreliable hypothesis tests and predictions

Misspecification #2: Variable should be transformed

- Dependent variable is not linearly related to independent variables → should transform the independent variable
- Fail to transform the independent variable → Misspecify the model

Misspecification #3: Incorrectly pooling data

- Relationship between returns and independent variables during Y1 to Y3 is different than Y4 to Y6
- If pooling the data and estimating regression of Y1 to Y3 over the entire period, rather than estimating separate regression → misspecify the model