

x. This would overwrite the earlier value 3, since a memory

location can hold only one value at a time. This is shown in Figure

1.3.

Chapter 1: Getting Started 7
x = 3 x = 5

Figure 1.3

x 3 x 5

Since the location whose name is x can hold different values at

different times x is known as a variable. As against this, 3 or 5 do

not change, hence are known as constants.

Types of C Constants
C constants can be divided into two major categories:

(a)

(b)

Primary Constants

Secondary Constants

These constants are further categorized as shown in Figure 1.4.

8 Complete Guide To C
Figure 1.4

C Constants

Primary Constants Secondary Constants

Integer Constant

Real Constant

Character Constant

Array

Pointer

Structure

Union

Enum, etc.

At this stage we would restrict our discussion to only Primary

Constants, namely, Integer, Real and Character constants. Let us

see the details of each of these constants. For constructing these

different types of constants certain rules have been laid down.

These rules are as under:

Rules for Constructing Integer Constants
(a) An integer constant must have at least one digit.

(b)

(c)

(d)

(e)

(f)

It must not have a decimal point.

It can be either positive or negative.

If no sign precedes an integer constant it is assumed to be

positive.

No commas or blanks are allowed within an integer constant.

The allowable range for integer constants is -32768 to 32767.

Truly speaking the range of an Integer constant depends upon the

compiler. For a 16-bit compiler like Turbo C or Turbo C++ the

Preview from Notesale.co.uk

Page 12 of 431

float r, si ;

printf ("Enter values of p, n, r") ;

scanf ("%d %d %f", &p, &n, &r) ;

si = p * n * r / 100 ;

printf ("%f" , si) ;

}

22 Complete Guide To C
The first printf() outputs the message ‘Enter values of p, n, r’ on

the screen. Here we have not used any expression in printf()

which means that using expressions in printf() is optional.

Note that the ampersand (&) before the variables in the scanf()

function is a must. & is an ‘Address of’ operator. It gives the

location number used by the variable in memory. When we say

&a, we are telling scanf() at which memory location should it

store the value supplied by the user from the keyboard. The

detailed working of the & operator would be taken up in Chapter

5.

Note that a blank, a tab or a new line must separate the values

supplied to scanf(). Note that a blank is creating using a spacebar,

tab using the Tab key and new line using the Enter key. This is

shown below:

Ex.: The three values separated by blank

1000 5 15.5

Ex.: The three values separated by tab.

1000 5 15.5

Ex.: The three values separated by newline.

1000

5

15.5

So much for the tips. How about another program to give you a

feel of things...

/* Just for fun. Author: Bozo */

main()

{

int num ;

printf ("Enter a number") ;

Chapter 1: Getting Started 23
scanf ("%d", &num) ;

printf ("Now I am letting you on a secret...") ;

printf ("You have just entered the number %d", num) ;

}

C Instructions
Now that we have written a few programs let us look at the

instructions that we used in these programs. There are basically

three types of instructions in C:

(a)

(b)

(c)

(a)

(b)

Preview from Notesale.co.uk

Page 21 of 431

a = 3 / 2 * 5 ;

Here there is a tie between operators of same priority, that is

between / and *. This tie is settled using the associativity of / and

*. But both enjoy Left to Right associativity. Figure 1.10 shows for

each operator which operand is unambiguous and which is not.

Operator Left Right Remark

/ 3 2 or 2 *

5

Left operand is

unambiguous, Right is not

* 3 / 2 or 2 5 Right operand is

unambiguous, Left is not

Figure 1.10

Since both / and * have L to R associativity and only / has

unambiguous left operand (necessary condition for L to R

associativity) it is performed earlier.

Consider one more expression

a = b = 3 ;

Here both assignment operators have the same priority and same

associativity (Right to Left). Figure 1.11 shows for each operator

which operand is unambiguous and which is not.

36 Complete Guide To C
Operator Left Right Remark

= a b or b =

3

Left operand is

unambiguous, Right is

not

= b or a = b 3 Right operand is

unambiguous, Left is not

Figure 1.11

Since both = have R to L associativity and only the second = has

unambiguous right operand (necessary condition for R to L

associativity) the second = is performed earlier.

Consider yet another expression

z = a * b + c / d ;

Here * and / enjoys same priority and same associativity (Left to

Right). Figure 1.12 shows for each operator which operand is

unambiguous and which is not.

Operator Left Right Remark

* a b Both operands are unambiguous

/ c d Both operands are unambiguous

Figure 1.12

Here since left operands for both operators are unambiguous

Compiler is free to perform * or / operation as per its convenience

Chapter 1: Getting Started 37
since no matter which is performed earlier the result would be

same.

Appendix A gives the associativity of all the operators available in

C.

Preview from Notesale.co.uk

Page 29 of 431

Now let us learn each of these and their variations in turn.

The if Statement
Like most languages, C uses the keyword if to implement the

decision control instruction. The general form of if statement looks

like this:

if (this condition is true)

execute this statement ;

The keyword if tells the compiler that what follows is a decision

control instruction. The condition following the keyword if is

always enclosed within a pair of parentheses. If the condition,

whatever it is, is true, then the statement is executed. If the

condition is not true then the statement is not executed; instead the

program skips past it. But how do we express the condition itself

in C? And how do we evaluate its truth or falsity? As a general

rule, we express a condition using C’s ‘relational’ operators. The

relational operators allow us to compare two values to see whether

they are equal to each other, unequal, or whether one is greater

than the other. Here’s how they look and how they are evaluated in

C.

this expression is true if

x == y x is equal to y

x != y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

Figure 2.1

52 Complete Guide To C
The relational operators should be familiar to you except for the

equality operator == and the inequality operator !=. Note that = is

used for assignment, whereas, == is used for comparison of two

quantities. Here is a simple program, which demonstrates the use

of if and the relational operators.

/* Demonstration of if statement */

main()

{

int num ;

printf ("Enter a number less than 10 ") ;

scanf ("%d", &num) ;

if (num <= 10)

printf ("What an obedient servant you are !") ;

}

On execution of this program, if you type a number less than or

equal to 10, you get a message on the screen through printf(). If

you type some other number the program doesn’t do anything. The

following flowchart would help you understand the flow of control

in the program.

Chapter 2: The Decision Control Structure 53
INPUT num

is

Preview from Notesale.co.uk

Page 38 of 431

int i ;

printf ("Enter value of i ") ;

scanf ("%d", &i) ;

if (i = 5)

printf ("You entered 5") ;

else

printf ("You entered something other than 5") ;

}

And here is the output of two runs of this program...

Enter value of i 200

You entered 5

Enter value of i 9999

You entered 5

Surprising? You have entered 200 and 9999, and still you find in

either case the output is ‘You entered 5’. This is because we have

written the condition wrongly. We have used the assignment

operator = instead of the relational operator ==. As a result, the

condition gets reduced to if (5), irrespective of what you supply

as the value of i. And remember that in C ‘truth’ is always nonzero, whereas ‘falsity’ is always zero.

Therefore, if (5) always

evaluates to true and hence the result.

Another common mistake while using the if statement is to write a

semicolon (;) after the condition, as shown below:

main()

{

int i ;

printf ("Enter value of i ") ;

scanf ("%d", &i) ;

Chapter 2: The Decision Control Structure 75
if (i == 5) ;

printf ("You entered 5") ;

}

The ; makes the compiler to interpret the statement as if you have

written it in following manner:

if (i == 5)

;

printf ("You entered 5") ;

Here, if the condition evaluates to true the ; (null statement, which

does nothing on execution) gets executed, following which the

printf() gets executed. If the condition fails then straightaway the

printf() gets executed. Thus, irrespective of whether the condition

evaluates to true or false the printf() is bound to get executed.

Remember that the compiler would not point out this as an error,

since as far as the syntax is concerned nothing has gone wrong, but

the logic has certainly gone awry. Moral is, beware of such

pitfalls.

The following figure summarizes the working of all the three

logical operators.

Operands Results

x y !x !y x && y x || y

Preview from Notesale.co.uk

Page 51 of 431

Any character is entered through the keyboard, write a

program to determine whether the character entered is a

capital letter, a small case letter, a digit or a special symbol.

The following table shows the range of ASCII values for

various characters.

Characters ASCII Values

A – Z

a – z

0 – 9

special symbols

65 – 90

97 – 122

48 – 57

0 - 47, 58 - 64, 91 - 96, 123 - 127

(c) An Insurance company follows following rules to calculate

premium.

(1) If a person’s health is excellent and the person is between

25 and 35 years of age and lives in a city and is a male

then the premium is Rs. 4 per thousand and his policy

amount cannot exceed Rs. 2 lakhs.

(2) If a person satisfies all the above conditions except that

the sex is female then the premium is Rs. 3 per thousand

and her policy amount cannot exceed Rs. 1 lakh.

(3) If a person’s health is poor and the person is between 25

and 35 years of age and lives in a village and is a male

90 Complete Guide To C
then the premium is Rs. 6 per thousand and his policy

cannot exceed Rs. 10,000.

(4) In all other cases the person is not insured.

Write a program to output whether the person should be

insured or not, his/her premium rate and maximum amount

for which he/she can be insured.

(d)

(e)

A certain grade of steel is graded according to the following

conditions:

(i) Hardness must be greater than 50

(ii) Carbon content must be less than 0.7

(iii) Tensile strength must be greater than 5600

The grades are as follows:

Grade is 10 if all three conditions are met

Grade is 9 if conditions (i) and (ii) are met

Grade is 8 if conditions (ii) and (iii) are met

Grade is 7 if conditions (i) and (iii) are met

Grade is 6 if only one condition is met

Grade is 5 if none of the conditions are met

Write a program, which will require the user to give values of

hardness, carbon content and tensile strength of the steel

under consideration and output the grade of the steel.

A library charges a fine for every book returned late. For first

5 days the fine is 50 paise, for 6-10 days fine is one rupee and

Preview from Notesale.co.uk

Page 61 of 431

example,

while (i <= 10)

i = i + 1

is same as

while (i <= 10

{

i = i + 1 ;

}

indefinitely.

main()

{

int i = 1 ;

while (

printf ("

}

Chapter 3: The Loop Control Structure 103
p, since i remains equal to 1 forever.

e correct form would be as under:

int i = 1 ;

i <= 10)

{

"%d\n", i) ;

− enting a loop counter, we can even decrement

manage to get the body of the loop executed

repeatedly. This is shown below:

i >= 1)

{

"\nMake the computer literate!") ;

− that a loop counter must only be an int. It

a float.

a <= 10.5)

{

indrops on roses...") ;

skers on kittens") ;

This is an indefinite loo

Th

main()

{

while (

printf (

i = i + 1 ;

}

}

Instead of increm

it and still

main()

{

int i = 5 ;

while (

printf (

Preview from Notesale.co.uk

Page 69 of 431

i = i + 1 ;

}

}

Chapter 3: The Loop Control Structure 105
another indefinite loop, and it doesn’t give any output

all. The reason is, we have carelessly given a ; after the

while. This would make the loop work like this...

{

", i) ;

1 ;

in alue of i is not getting incremented the control

ould keep rotating within the loop, eternally. Note that

enclosing printf() and i = i +1 within a pair of braces is not

Mo
h are frequently used with

ir usage Complete Guide To Consider a problem wherein

numbers from 1 to 10 are to be printed on the screen. The program

int i = 1 ;

i <= 10)

{

"%d\n", i) ;

This is

at

while (i <= 10)

;

printf ("%d\n

i = i +

}

S ce the v

w

an error. In fact we can put a pair of braces around any

individual statement or set of statements without affecting the

execution of the program.

re Operators
There are variety of operators whic

while. To illustrate the

for performing this task can be written using while in the

following different ways:

(a) main()

{

while (

printf (

i = i + 1 ;

}

}

106 Complete Guide To C
(b)

int i = 1 ;

i <= 10)

Preview from Notesale.co.uk

Page 71 of 431

{

"%d\n", i) ;

at the increment operator ++ increments the value of i

1, every time the statement i++ gets executed. Similarly, to

reduce the value of a variable by 1 a decrement operator -- is

+++.

(c)

int i = 1 ;

i <= 10)

{

"%d\n", i) ;

hat += is a compound assignment operator. It

crements the value of i by 1. Similarly, j = j + 10 can also

be written as j += 10. Other compound assignment operators

(d)

int i = 0 ;

(i++ < 10)

main()

{

while (

printf (

i++ ;

}

}

Note th

by

also available.

However, never use n+++ to increment the value of n by 2,

since C doesn’t recognize the operator

main()

{

while (

printf (

i += 1 ;

}

}

Note t

in

are -=, *=, / = and %=.

main()

{

while

Chapter 3: The Loop Control Structure 107
printf ("%d\n", i) ;

i++ < 10), firstly the comparison of

lue of i with 10 is performed, and then the incrementation

of i takes place. Since the incrementation of i happens after its

(e)

int i = 0 ;

(++i <= 10)

Preview from Notesale.co.uk

Page 72 of 431

In this program the moment num % i turns out to be zero, (i.e.

num is exactly divisible by i) the message “Not a prime number”

is printed and the control breaks out of the while loop. Why does

the program require the if statement after the while loop at all?

Well, there are two ways the control could have reached outside

the while loop:

(a)

(b)

It jumped out because the number proved to be not a prime.

The loop came to an end because the value of i became equal

to num.

When the loop terminates in the second case, it means that there

was no number between 2 to num - 1 that could exactly divide

num. That is, num is indeed a prime. If this is true, the program

should print out the message “Prime number”.

The keyword break, breaks the control only from the while in

which it is placed. Consider the following program, which

illustrates this fact.

main()

{

int i = 1 , j = 1 ;

while (i++ <= 100)

{

while (j++ <= 200)

{

if (j == 150)

break ;

else

printf ("%d %d\n", i, j) ;

}

120 Complete Guide To C
}

}

In this program when j equals 150, break takes the control outside

the inner while only, since it is placed inside the inner while.

The continue Statement
In some programming situations we want to take the control to the

beginning of the loop, bypassing the statements inside the loop,

which have not yet been executed. The keyword continue allows

us to do this. When continue is encountered inside any loop,

control automatically passes to the beginning of the loop.

A continue is usually associated with an if. As an example, let's

consider the following program.

main()

{

int i, j ;

for (i = 1 ; i <= 2 ; i++)

{

for (j = 1 ; j <= 2 ; j++)

{

Preview from Notesale.co.uk

Page 80 of 431

required to make a choice between a number of alternatives

rather than only one or two. For example, which school to join

or which hotel to visit or still harder which girl to marry (you

almost always end up making a wrong decision is a different

matter altogether!). Serious C programming is same; the choice we

are asked to make is more complicated than merely selecting

between two alternatives. C provides a special control statement

that allows us to handle such cases effectively; rather than using a

series of if statements. This control instruction is in fact the topic

of this chapter. Towards the end of the chapter we would also

study a keyword called goto, and understand why we should avoid

its usage in C programming.

I
Decisions Using switch
The control statement that allows us to make a decision from the

number of choices is called a switch, or more correctly a switchcase-default, since these three

keywords go together to make up

the control statement. They most often appear as follows:

switch (integer expression)

{

case constant 1 :

do this ;

case constant 2 :

do this ;

case constant 3 :

do this ;

default :

do this ;

}

The integer expression following the keyword switch is any C

expression that will yield an integer value. It could be an integer

constant like 1, 2 or 3, or an expression that evaluates to an

Chapter 4: The Case Control Structure 137
integer. The keyword case is followed by an integer or a character

constant. Each constant in each case must be different from all the

others. The “do this” lines in the above form of switch represent

any valid C statement.

What happens when we run a program containing a switch? First,

the integer expression following the keyword switch is evaluated.

The value it gives is then matched, one by one, against the

constant values that follow the case statements. When a match is

found, the program executes the statements following that case,

and all subsequent case and default statements as well. If no

match is found with any of the case statements, only the

statements following the default are executed. A few examples

will show how this control structure works.

Preview from Notesale.co.uk

Page 90 of 431

Cases can never have variable expressions (for example it is

wrong to say case a +3 :)

Multiple cases cannot use same expressions. Thus the

following switch is illegal:

Chapter 4: The Case Control Structure 145
switch (a)

{

case 3 :

...

case 1 + 2 :

...

}

(a), (b) and (c) above may lead you to believe that these are

obvious disadvantages with a switch, especially since there

weren’t any such limitations with if-else. Then why use a switch at

all? For speed—switch works faster than an equivalent if-else

ladder. How come? This is because the compiler generates a jump

table for a switch during compilation. As a result, during

execution it simply refers the jump table to decide which case

should be executed, rather than actually checking which case is

satisfied. As against this, if-elses are slower because they are

evaluated at execution time. A switch with 10 cases would work

faster than an equivalent if-else ladder. Also, a switch with 2 cases

would work slower than if-else ladder. Why? If the 10th case is

satisfied then jump table would be referred and statements for the

10th case would be executed. As against this, in an if-else ladder 10

conditions would be evaluated at execution time, which makes it

slow. Note that a lookup in the jump table is faster than evaluation

of a condition, especially if the condition is complex.

If on the other hand the conditions in the if-else were simple and

less in number then if-else would work out faster than the lookup

mechanism of a switch. Hence a switch with two cases would

work slower than an equivalent if-else. Thus, you as a programmer

should take a decision which of the two should be used when.

The goto Keyword
Avoid goto keyword! They make a C programmer’s life miserable.

There is seldom a legitimate reason for using goto, and its use is

146 Complete Guide To C
one of the reasons that programs become unreliable, unreadable,

and hard to debug. And yet many programmers find goto

seductive.

In a difficult programming situation it seems so easy to use a goto

to take the control where you want. However, almost always, there

is a more elegant way of writing the same program using if, for,

while and switch. These constructs are far more logical and easy

to understand.

The big problem with gotos is that when we do use them we can

never be sure how we got to a certain point in our code. They

obscure the flow of control. So as far as possible skip them. You

Preview from Notesale.co.uk

Page 96 of 431

can always get the job done without them. Trust me, with good

programming skills goto can always be avoided. This is the first

and last time that we are going to use goto in this book. However,

for sake of completeness of the book, the following program

shows how to use goto.

main()

{

int goals ;

printf ("Enter the number of goals scored against India") ;

scanf ("%d", &goals) ;

if (goals <= 5)

goto sos ;

else

{

printf ("About time soccer players learnt C\n") ;

printf ("and said goodbye! adieu! to soccer") ;

exit() ; /* terminates program execution */

}

sos :

printf ("To err is human!") ;

Chapter 4: The Case Control Structure 147
}

And here are two sample runs of the program...

Enter the number of goals scored against India 3

To err is human!

Enter the number of goals scored against India 7

About time soccer players learnt C

and said goodbye! adieu! to soccer

A few remarks about the program would make the things clearer.

− If the condition is satisfied the goto statement transfers control

to the label ‘sos’, causing printf() following sos to be

executed.

− The label can be on a separate line or on the same line as the

statement following it, as in,

sos : printf ("To err is human!") ;

− Any number of gotos can take the control to the same label.

− The exit() function is a standard library function which

terminates the execution of the program. It is necessary to use

this function since we don't want the statement

printf ("To err is human!")

to get executed after execution of the else block.

− The only programming situation in favour of using goto is

when we want to take the control out of the loop that is

contained in several other loops. The following program

illustrates this.

148 Complete Guide To C
main()

{

int i, j, k ;

for (i = 1 ; i <= 3 ; i++)

Preview from Notesale.co.uk

Page 97 of 431

}

(b) main()

{

int c = 3 ;

switch (c)

{

case 'v' :

printf ("I am in case v \n") ;

break ;

case 3 :

printf ("I am in case 3 \n") ;

break ;

case 12 :

printf ("I am in case 12 \n") ;

break ;

default :

printf ("I am in default \n") ;

}

150 Complete Guide To C
}

(c) main()

{

int k, j = 2 ;

switch (k = j + 1)

{

case 0 :

printf ("\nTailor") ;

case 1 :

printf ("\nTutor") ;

case 2 :

printf ("\nTramp") ;

default :

printf ("\nPure Simple Egghead!") ;

}

}

(d) main()

{

int i = 0 ;

switch (i)

{

case 0 :

printf ("\nCustomers are dicey") ;

case 1 :

printf ("\nMarkets are pricey") ;

case 2 :

printf ("\nInvestors are moody") ;

case 3 :

printf ("\nAt least employees are good") ;

}

}

Preview from Notesale.co.uk

Page 99 of 431

statement 2 ;

statement 3 ;

}

Chapter 5: Functions & Pointers 163
(d)

(e)

(f)

Any function can be called from any other function. Even

main() can be called from other functions. For example,

main()

{

message() ;

}

message()

{

printf ("\nCan't imagine life without C") ;

main() ;

}

A function can be called any number of times. For example,

main()

{

message() ;

message() ;

}

message()

{

printf ("\nJewel Thief!!") ;

}

The order in which the functions are defined in a program and

the order in which they get called need not necessarily be

same. For example,

main()

{

message1() ;

message2() ;

}

message2()

{

printf ("\nBut the butter was bitter") ;

164 Complete Guide To C
}

message1()

{

printf ("\nMary bought some butter") ;

}

Here, even though message1() is getting called before

message2(), still, message1() has been defined after

message2(). However, it is advisable to define the functions

in the same order in which they are called. This makes the

program easier to understand.

Preview from Notesale.co.uk

Page 107 of 431

(g)

(h)

(i)

A function can call itself. Such a process is called ‘recursion’.

We would discuss this aspect of C functions later in this

chapter.

A function can be called from other function, but a function

cannot be defined in another function. Thus, the following

program code would be wrong, since argentina() is being

defined inside another function, main().

main()

{

printf ("\nI am in main") ;

argentina()

{

printf ("\nI am in argentina") ;

}

}

There are basically two types of functions:

Library functions Ex. printf(), scanf() etc.

User-defined functions Ex. argentina(), brazil() etc.

As the name suggests, library functions are nothing but

commonly required functions grouped together and stored in

Chapter 5: Functions & Pointers 165
what is called a Library. This library of functions is present on

the disk and is written for us by people who write compilers

for us. Almost always a compiler comes with a library of

standard functions. The procedure of calling both types of

functions is exactly same.

Why Use Functions
Why write separate functions at all? Why not squeeze the entire

logic into one function, main()? Two reasons:

(a) Writing functions avoids rewriting the same code over and

over. Suppose you have a section of code in your program

that calculates area of a triangle. If later in the program you

want to calculate the area of a different triangle, you won’t

like it if you are required to write the same instructions all

over again. Instead, you would prefer to jump to a ‘section of

code’ that calculates area and then jump back to the place

from where you left off. This section of code is nothing but a

function.

(b) Using functions it becomes easier to write programs and keep

track of what they are doing. If the operation of a program can

be divided into separate activities, and each activity placed in

a different function, then each could be written and checked

more or less independently. Separating the code into modular

functions also makes the program easier to design and

understand.

What is the moral of the story? Don’t try to cram the entire logic in

one function. It is a very bad style of programming. Instead, break

Preview from Notesale.co.uk

Page 108 of 431

(a) In this program, from the function main() the values of a, b

and c are passed on to the function calsum(), by making a

call to the function calsum() and mentioning a, b and c in the

parentheses:

sum = calsum (a, b, c) ;

In the calsum() function these values get collected in three

variables x, y and z:

calsum (x, y, z)

int x, y, z ;

(b) The variables a, b and c are called ‘actual arguments’,

whereas the variables x, y and z are called ‘formal

arguments’. Any number of arguments can be passed to a

function being called. However, the type, order and number of

the actual and formal arguments must always be same.

168 Complete Guide To C
Instead of using different variable names x, y and z, we could

have used the same variable names a, b and c. But the

compiler would still treat them as different variables since

they are in different functions.

(c) There are two methods of declaring the formal arguments.

The one that we have used in our program is known as

Kernighan and Ritchie (or just K & R) method.

calsum (x, y, z)

int x, y, z ;

Another method is,

calsum (int x, int y, int z)

This method is called ANSI method and is more commonly

used these days.

(d) In the earlier programs the moment closing brace (}) of the

called function was encountered the control returned to the

calling function. No separate return statement was necessary

to send back the control.

This approach is fine if the called function is not going to

return any meaningful value to the calling function. In the

above program, however, we want to return the sum of x, y

and z. Therefore, it is necessary to use the return statement.

The return statement serves two purposes:

(1) On executing the return statement it immediately

transfers the control back to the calling program.

(2) It returns the value present in the parentheses after

return, to th3e calling program. In the above program

the value of sum of three numbers is being returned.

Chapter 5: Functions & Pointers 169
(e) There is no restriction on the number of return statements

that may be present in a function. Also, the return statement

need not always be present at the end of the called function.

The following program illustrates these facts.

fun()

{

char ch ;

Preview from Notesale.co.uk

Page 110 of 431

The above functions get successfully compiled even though there

is a mismatch in the format specifiers and the variables in the list.

This is because printf() accepts variable number of arguments

(sometimes 2 arguments, sometimes 3 arguments, etc.), and even

with the mismatch above the call still matches with the prototype

of printf() present in ‘stdio.h’. At run-time when the first printf()

is executed, since there is no variable matching with the last

specifier %d, a garbage integer gets printed. Similarly, in the

second printf() since the format specifier for j has not been

mentioned its value does not get printed.

Advanced Features of Functions
With a sound basis of the preliminaries of C functions, let us now

get into their intricacies. Following advanced topics would be

considered here.

(a) Function Declaration and Prototypes

(b) Calling functions by value or by reference

(c) Recursion

Let us understand these features one by one.

Chapter 5: Functions & Pointers 175
Function Declaration and Prototypes
Any C function by default returns an int value. More specifically,

whenever a call is made to a function, the compiler assumes that

this function would return a value of the type int. If we desire that a

function should return a value other than an int, then it is necessary

to explicitly mention so in the calling function as well as in the

called function. Suppose we want to find out square of a number

using a function. This is how this simple program would look like:

main()

{

float a, b ;

printf ("\nEnter any number ") ;

scanf ("%f", &a) ;

b = square (a) ;

printf ("\nSquare of %f is %f", a, b) ;

}

square (float x)

{

float y ;

y = x * x ;

return (y) ;

}

And here are three sample runs of this program...

Enter any number 3

Square of 3 is 9.000000

Enter any number 1.5

Square of 1.5 is 2.000000

Enter any number 2.5

Square of 2.5 is 6.000000

176 Complete Guide To C

Preview from Notesale.co.uk

Page 114 of 431

want to do is explain the rationale of C’s pointer notation.

Pointer Notation
Consider the declaration,

int i = 3 ;

This declaration tells the C compiler to:

(a) Reserve space in memory to hold the integer value.

(b) Associate the name i with this memory location.

(c) Store the value 3 at this location.

We may represent i’s location in memory by the following

memory map.

location name

3

i

location number

value at location

65524

Figure 5.1

180 Complete Guide To C
We see that the computer has selected memory location 65524 as

the place to store the value 3. The location number 65524 is not a

number to be relied upon, because some other time the computer

may choose a different location for storing the value 3. The

important point is, i’s address in memory is a number.

We can print this address number through the following program:

main()

{

int i = 3 ;

printf ("\nAddress of i = %u", &i) ;

printf ("\nValue of i = %d", i) ;

}

The output of the above program would be:

Address of i = 65524

Value of i = 3

Look at the first printf() statement carefully. ‘&’ used in this

statement is C’s ‘address of’ operator. The expression &i returns

the address of the variable i, which in this case happens to be

65524. Since 65524 represents an address, there is no question of a

sign being associated with it. Hence it is printed out using %u,

which is a format specifier for printing an unsigned integer. We

have been using the ‘&’ operator all the time in the scanf()

statement.

The other pointer operator available in C is ‘*’, called ‘value at

address’ operator. It gives the value stored at a particular address.

The ‘value at address’ operator is also called ‘indirection’

operator.

Observe carefully the output of the following program:

Chapter 5: Functions & Pointers 181
main()

{

int i = 3 ;

Preview from Notesale.co.uk

Page 117 of 431

printf ("\nEnter any number ") ;

scanf ("%d", &a) ;

fact = rec (a) ;

printf ("Factorial value = %d", fact) ;

}

rec (int x)

{

int f ;

if (x == 1)

return (1) ;

else

f = x * rec (x - 1) ;

return (f) ;

}

And here is the output for four runs of the program

Enter any number 1

Factorial value = 1

Enter any number 2

Factorial value = 2

Enter any number 3

192 Complete Guide To C
Factorial value = 6

Enter any number 5

Factorial value = 120

Let us understand this recursive factorial function thoroughly. In

the first run when the number entered through scanf() is 1, let us

see what action does rec() take. The value of a (i.e. 1) is copied

into x. Since x turns out to be 1 the condition if (x == 1) is

satisfied and hence 1 (which indeed is the value of 1 factorial) is

returned through the return statement.

When the number entered through scanf() is 2, the (x == 1) test

fails, so we reach the statement,

f = x * rec (x - 1) ;

And here is where we meet recursion. How do we handle the

expression x * rec (x - 1)? We multiply x by rec (x - 1). Since

the current value of x is 2, it is same as saying that we must

calculate the value (2 * rec (1)). We know that the value returned

by rec (1) is 1, so the expression reduces to (2 * 1), or simply 2.

Thus the statement,

x * rec (x - 1) ;

evaluates to 2, which is stored in the variable f, and is returned to

main(), where it is duly printed as

Factorial value = 2

Now perhaps you can see what would happen if the value of a is 3,

4, 5 and so on.

In case the value of a is 5, main() would call rec() with 5 as its

actual argument, and rec() will send back the computed value. But

before sending the computed value, rec() calls rec() and waits for

a value to be returned. It is possible for the rec() that has just been

Chapter 5: Functions & Pointers 193

Preview from Notesale.co.uk

Page 124 of 431

function to return without recursive call being executed. If you

don’t do this and you call the function, you will fall in an

indefinite loop, and the stack will keep on getting filled with

parameters and the return address each time there is a call. Soon

the stack would become full and you would get a run-time error

indicating that the stack has become full. This is a very common

error while writing recursive functions. My advice is to use

printf() statement liberally during the development of recursive

function, so that you can watch what is going on and can abort

execution if you see that you have made a mistake.

Adding Functions to the Library
Most of the times we either use the functions present in the

standard library or we define our own functions and use them. Can

we not add our functions to the standard library? And would it

make any sense in doing so? We can add user-defined functions to

the library. It makes sense in doing so as the functions that are to

be added to the library are first compiled and then added. When we

use these functions (by calling them) we save on their compilation

time as they are available in the library in the compiled form.

Let us now see how to add user-defined functions to the library.

Different compilers provide different utilities to add/delete/modify

functions in the standard library. For example, Turbo C/C++

198 Complete Guide To C
compilers provide a utility called ‘tlib.exe’ (Turbo Librarian). Let

us use this utility to add a function factorial() to the library.

Given below are the steps to do so:

(a)

(b)

(c)

(d)

(e)

Write the function definition of factorial() in some file, say

‘fact.c’.

int factorial (int num)

{

int i, f = 1 ;

for (i = 1 ; i <= num ; i++)

f = f * i ;

return (f) ;

}

Compile the ‘fact.c’ file using Alt F9. A new file called

‘fact.obj’ would get created containing the compiled code in

machine language.

Add the function to the library by issuing the command

C:\>tlib math.lib + c:\fact.obj

Here, ‘math.lib’ is a library filename, + is a switch, which

means we want to add new function to library and ‘c:\fact.obj’

is the path of the ‘.obj’ file.

Declare the prototype of the factorial() function in the header

file, say ‘fact.h’. This file should be included while calling the

Preview from Notesale.co.uk

Page 128 of 431

message(message ()) ;

}

void message()

{

printf ("\nPraise worthy and C worthy are synonyms") ;

}

[C] Answer the following:

(a) Is this a correctly written function:

sqr (a) ;

int a ;

{

return (a * a) ;

}

(b) State whether the following statements are True or False:

Chapter 5: Functions & Pointers 205
1. The variables commonly used in C functions are available

to all the functions in a program.

2. To return the control back to the calling function we must

use the keyword return.

3. The same variable names can be used in different

functions without any conflict.

4. Every called function must contain a return statement.

5. A function may contain more than one return statements.

6. Each return statement in a function may return a different

value.

7. A function can still be useful even if you don’t pass any

arguments to it and the function doesn’t return any value

back.

8. Same names can be used for different functions without

any conflict.

9. A function may be called more than once from any other

function.

10. It is necessary for a function to return some value.

[D] Answer the following:

(a) Write a function to calculate the factorial value of any integer

entered through the keyboard.

(b) Write a function power (a, b), to calculate the value of a

raised to b.

206 Complete Guide To C
(c) Write a general-purpose function to convert any given year

into its roman equivalent. The following table shows the

roman equivalents of decimal numbers:

Decimal Roman Decimal Roman

1 i 100 c

5 v 500 d

10 x 1000 m

50 l

Example:

Roman equivalent of 1988 is mdcccclxxxviii

Roman equivalent of 1525 is mdxxv

Preview from Notesale.co.uk

Page 133 of 431

To fully define a variable one needs to mention not only its type

but also its storage class. In this chapter we would be exploring the

different storage classes and their relevance in C programming.

Integers, long and short
We had seen earlier that the range of an Integer constant depends

upon the compiler. For a 16-bit compiler like Turbo C or Turbo

C++ the range is –32768 to 32767. For a 32-bit compiler the range

would be –2147483648 to +2147483647. Here a 16-bit compiler

means that when it compiles a C program it generates machine

language code that is targeted towards working on a 16-bit

microprocessor like Intel 8086/8088. As against this, a 32-bit

compiler like VC++ generates machine language code that is

targeted towards a 32-bit microprocessor like Intel Pentium. Note

that this does not mean that a program compiled using Turbo C

would not work on 32-bit processor. It would run successfully but

at that time the 32-bit processor would work as if it were a 16-bit

processor. This happens because a 32-bit processor provides

support for programs compiled using 16-bit compilers. If this

backward compatibility support is not provided the 16-bit program

Chapter 6: Data Types Revisited 215
would not run on it. This is precisely what happens on the new

Intel Itanium processors, which have withdrawn support for 16-bit

code.

Remember that out of the two/four bytes used to store an integer,

the highest bit (16th/32nd bit) is used to store the sign of the integer.

This bit is 1 if the number is negative, and 0 if the number is

positive.

C offers a variation of the integer data type that provides what are

called short and long integer values. The intention of providing

these variations is to provide integers with different ranges

wherever possible. Though not a rule, short and long integers

would usually occupy two and four bytes respectively. Each

compiler can decide appropriate sizes depending on the operating

system and hardware for which it is being written, subject to the

following rules:

(a)

(b)

(c)

(d)

shorts are at least 2 bytes big

longs are at least 4 bytes big

shorts are never bigger than ints

ints are never bigger than longs

Figure 6.1 shows the sizes of different integers based upon the OS

used.

Compiler short int long

16-bit (Turbo C/C++) 2 2 4

32-bit (Visual C++) 2 4 4

Figure 6.1

long variables which hold long integers are declared using the

Preview from Notesale.co.uk

Page 139 of 431

number of bytes it occupies in memory.

By default all the variables are signed. We can declare a

variable as unsigned to accommodate greater value without

increasing the bytes occupied.

Chapter 6: Data Types Revisited 235
(d) We can make use of proper storage classes like auto,

register, static and extern to control four properties of the

variable—storage, default initial value, scope and life.

Exercise
[A] What would be the output of the following programs:

(a) main()

{

int i ;

for (i = 0 ; i <= 50000 ; i++)

printf ("\n%d", i) ;

}

(b) main()

{

float a = 13.5 ;

double b = 13.5 ;

printf ("\n%f %lf", a, b) ;

}

(c) int i = 0 ;

main()

{

printf ("\nmain's i = %d", i) ;

i++ ;

val() ;

printf ("\nmain's i = %d", i) ;

val() ;

}

val()

{

i = 100 ;

printf ("\nval's i = %d", i) ;

i++ ;

}

236 Complete Guide To C
(d) main()

{

int x, y, s = 2 ;

s *= 3 ;

y = f (s) ;

x = g (s) ;

printf ("\n%d %d %d", s, y, x) ;

}

int t = 8 ;

f (int a)

{

Preview from Notesale.co.uk

Page 152 of 431

a += -5 ;

t -= 4 ;

return (a + t) ;

}

g (int a)

{

a = 1 ;

t += a ;

return (a + t) ;

}

(e) main()

{

static int count = 5 ;

printf ("\ncount = %d", count--) ;

if (count != 0)

main() ;

}

(f) main()

{

int i, j ;

for (i = 1 ; i < 5 ; i++)

{

j = g (i) ;

printf ("\n%d", j) ;

}

Chapter 6: Data Types Revisited 237
}

g (int x)

{

static int v = 1 ;

int b = 3 ;

v += x ;

return (v + x + b) ;

}

(g) float x = 4.5 ;

main()

{

float y, float f (float) ;

x *= 2.0 ;

y = f (x) ;

printf ("\n%f %f", x, y) ;

}

float f (float a)

{

a += 1.3 ;

x -= 4.5 ;

return (a + x) ;

}

(h) main()

{

Preview from Notesale.co.uk

Page 153 of 431

for (i = 1 ; i <= UPPER ; i++)

printf ("\n%d", i) ;

}

In this program instead of writing 25 in the for loop we are writing

it in the form of UPPER, which has already been defined before

main() through the statement,

#define UPPER 25

This statement is called ‘macro definition’ or more commonly, just

a ‘macro’. What purpose does it serve? During preprocessing, the

preprocessor replaces every occurrence of UPPER in the program

with 25. Here is another example of macro definition.

#define PI 3.1415

main()

{

float r = 6.25 ;

float area ;

area = PI * r * r ;

printf ("\nArea of circle = %f", area) ;

}

Chapter 7: The C Preprocessor 245
UPPER and PI in the above programs are often called ‘macro

templates’, whereas, 25 and 3.1415 are called their corresponding

‘macro expansions’.

When we compile the program, before the source code passes to

the compiler it is examined by the C preprocessor for any macro

definitions. When it sees the #define directive, it goes through the

entire program in search of the macro templates; wherever it finds

one, it replaces the macro template with the appropriate macro

expansion. Only after this procedure has been completed is the

program handed over to the compiler.

In C programming it is customary to use capital letters for macro

template. This makes it easy for programmers to pick out all the

macro templates when reading through the program.

Note that a macro template and its macro expansion are separated

by blanks or tabs. A space between # and define is optional.

Remember that a macro definition is never to be terminated by a

semicolon.

And now a million dollar question... why use #define in the above

programs? What have we gained by substituting PI for 3.1415 in

our program? Probably, we have made the program easier to read.

Even though 3.1415 is such a common constant that it is easily

recognizable, there are many instances where a constant doesn’t

reveal its purpose so readily. For example, if the phrase “\x1B[2J”

causes the screen to clear. But which would you find easier to

understand in the middle of your program “\x1B[2J” or

“CLEARSCREEN”? Thus, we would use the macro definition

#define CLEARSCREEN "\x1B[2J"

Then wherever CLEARSCREEN appears in the program it would

automatically be replaced by “\x1B[2J” before compilation begins.

246 Complete Guide To C

Preview from Notesale.co.uk

Page 158 of 431

One solution in such a situation is to put the old code within a

pair of /* */ combination. But we might have already

written a comment in the code that we are about to “comment

out”. This would mean we end up with nested comments.

Obviously, this solution won’t work since we can’t nest

comments in C.

Therefore the solution is to use conditional compilation as

shown below.

main()

{

#ifdef OKAY

statement 1 ;

statement 2 ; /* detects virus */

statement 3 ;

statement 4 ; /* specific to stone virus */

#endif

statement 5 ;

statement 6 ;

statement 7 ;

}

Here, statements 1, 2, 3 and 4 would get compiled only if the

macro OKAY has been defined, and we have purposefully

omitted the definition of the macro OKAY. At a later date, if

we want that these statements should also get compiled all

that we are required to do is to delete the #ifdef and #endif

statements.

(b) A more sophisticated use of #ifdef has to do with making the

programs portable, i.e. to make them work on two totally

different computers. Suppose an organization has two

Chapter 7: The C Preprocessor 257
different types of computers and you are expected to write a

program that works on both the machines. You can do so by

isolating the lines of code that must be different for each

machine by marking them off with #ifdef. For example:

main()

{

#ifdef INTEL

code suitable for a Intel PC

#else

code suitable for a Motorola PC

#endif

code common to both the computers

}

When you compile this program it would compile only the

code suitable for a Intel PC and the common code. This is

because the macro INTEL has not been defined. Note that the

working of #ifdef - #else - #endif is similar to the ordinary if -

else control instruction of C.

If you want to run your program on a Motorola PC, just add a

statement at the top saying,

Preview from Notesale.co.uk

Page 165 of 431

Value of j = 1.500000

Value of k = c

Original address in x = 65524

Original address in y = 65520

Original address in z = 65519

New address in x = 65526

New address in y = 65524

New address in z = 65520

Observe the last three lines of the output. 65526 is original value in

x plus 2, 65524 is original value in y plus 4, and 65520 is original

value in z plus 1. This so happens because every time a pointer is

incremented it points to the immediately next location of its type.

That is why, when the integer pointer x is incremented, it points to

an address two locations after the current location, since an int is

always 2 bytes long (under Windows/Linux since int is 4 bytes

long, new value of x would be 65528). Similarly, y points to an

address 4 locations after the current location and z points 1

location after the current location. This is a very important result

and can be effectively used while passing the entire array to a

function.

The way a pointer can be incremented, it can be decremented as

well, to point to earlier locations. Thus, the following operations

can be performed on a pointer:

(a) Addition of a number to a pointer. For example,

int i = 4, *j, *k ;

j = &i ;

j = j + 1 ;

j = j + 9 ;

k = j + 3 ;

(b) Subtraction of a number from a pointer. For example,

Chapter 8: Arrays 281
int i = 4, *j, *k ;

j = &i ;

j = j - 2 ;

j = j - 5 ;

k = j - 6 ;

(c) Subtraction of one pointer from another.

One pointer variable can be subtracted from another provided

both variables point to elements of the same array. The

resulting value indicates the number of bytes separating the

corresponding array elements. This is illustrated in the

following program.

main()

{

int arr[] = { 10, 20, 30, 45, 67, 56, 74 } ;

int *i, *j ;

i = &arr[1] ;

j = &arr[5] ;

printf ("%d %d", j - i, *j - *i) ;

}

Preview from Notesale.co.uk

Page 179 of 431

for (j = 0 ; j <= 1 ; j++)

printf ("%d ", *(*(s + i) + j)) ;

}

}

And here is the output...

1234 56

1212 33

1434 80

1312 78

Pointer to an Array
If we can have a pointer to an integer, a pointer to a float, a pointer

to a char, then can we not have a pointer to an array? We certainly

can. The following program shows how to build and use it.

296 Complete Guide To C
/* Usage of pointer to an array */

main()

{

int s[5][2] = {

{ 1234, 56 },

{ 1212, 33 },

{ 1434, 80 },

{ 1312, 78 }

} ;

int (*p)[2] ;

int i, j, *pint ;

for (i = 0 ; i <= 3 ; i++)

{

p = &s[i] ;

pint = p ;

printf ("\n") ;

for (j = 0 ; j <= 1 ; j++)

printf ("%d ", *(pint + j)) ;

}

}

And here is the output...

1234 56

1212 33

1434 80

1312 78

Here p is a pointer to an array of two integers. Note that the

parentheses in the declaration of p are necessary. Absence of them

would make p an array of 2 integer pointers. Array of pointers is

covered in a later section in this chapter. In the outer for loop each

time we store the address of a new one-dimensional array. Thus

first time through this loop p would contain the address of the

zeroth 1-D array. This address is then assigned to an integer

pointer pint. Lastly, in the inner for loop using the pointer pint we

Chapter 8: Arrays 297
have printed the individual elements of the 1-D array to which p is

Preview from Notesale.co.uk

Page 188 of 431

pointing.

But why should we use a pointer to an array to print elements of a

2-D array. Is there any situation where we can appreciate its usage

better? The entity pointer to an array is immensely useful when we

need to pass a 2-D array to a function. This is discussed in the next

section.

Passing 2-D Array to a Function
There are three ways in which we can pass a 2-D array to a

function. These are illustrated in the following program.

/* Three ways of accessing a 2-D array */

main()

{

int a[3][4] = {

1, 2, 3, 4,

5, 6, 7, 8,

9, 0, 1, 6

} ;

clrscr() ;

display (a, 3, 4) ;

show (a, 3, 4) ;

print (a, 3, 4) ;

}

display (int *q, int row, int col)

{

int i, j ;

for (i = 0 ; i < row ; i++)

{

for (j = 0 ; j < col ; j++)

printf ("%d ", * (q + i * col + j)) ;

298 Complete Guide To C
printf ("\n") ;

}

printf ("\n") ;

}

show (int (*q)[4], int row, int col)

{

int i, j ;

int *p ;

for (i = 0 ; i < row ; i++)

{

p = q + i ;

for (j = 0 ; j < col ; j++)

printf ("%d ", * (p + j)) ;

printf ("\n") ;

}

printf ("\n") ;

}

print (int q[][4], int row, int col)

{

int i, j ;

Preview from Notesale.co.uk

Page 189 of 431

[E] What would be the output of the following programs:

(a) main()

{

int b[] = { 10, 20, 30, 40, 50 } ;

int i ;

for (i = 0 ; i <= 4 ; i++)

printf ("\n%d" *(b + i)) ;

}

(b) main()

{

int b[] = { 0, 20, 0, 40, 5 } ;

int i, *k ;

k = b ;

for (i = 0 ; i <= 4 ; i++)

{

printf ("\n%d" *k) ;

Chapter 8: Arrays 311
k++ ;

}

}

(c) main()

{

int a[] = { 2, 4, 6, 8, 10 } ;

int i ;

change (a, 5) ;

for (i = 0 ; i <= 4 ; i++)

printf("\n%d", a[i]) ;

}

change (int *b, int n)

{

int i ;

for (i = 0 ; i < n ; i++)

*(b + i) = *(b + i) + 5 ;

}

(d) main()

{

int a[5], i, b = 16 ;

for (i = 0 ; i < 5 ; i++)

a[i] = 2 * i ;

f (a, b) ;

for (i = 0 ; i < 5 ; i++)

printf ("\n%d", a[i]) ;

printf("\n%d", b) ;

}

f (int *x, int y)

{

int i ;

for (i = 0 ; i < 5 ; i++)

*(x + i) += 2 ;

y += 2 ;

Preview from Notesale.co.uk

Page 197 of 431

{

char name[] = "Klinsman" ;

int i = 0 ;

while (i <= 7)

{

printf ("%c", name[i]) ;

i++ ;

}

330 Complete Guide To C
}

And here is the output...

Klinsman

No big deal. We have initialized a character array, and then printed

out the elements of this array within a while loop. Can we write

the while loop without using the final value 7? We can; because

we know that each character array always ends with a ‘\0’.

Following program illustrates this.

main()

{

char name[] = "Klinsman" ;

int i = 0 ;

while (name[i] != `\0')

{

printf ("%c", name[i]) ;

i++ ;

}

}

And here is the output...

Klinsman

This program doesn’t rely on the length of the string (number of

characters in it) to print out its contents and hence is definitely

more general than the earlier one. Here is another version of the

same program; this one uses a pointer to access the array elements.

main()

{

char name[] = "Klinsman" ;

char *ptr ;

Chapter 9: Puppetting On Strings 331
ptr = name ; /* store base address of string */

while (*ptr != `\0')

{

printf ("%c", *ptr) ;

ptr++ ;

}

}

As with the integer array, by mentioning the name of the array we

get the base address (address of the zeroth element) of the array.

This base address is stored in the variable ptr using,

ptr = name ;

Once the base address is obtained in ptr, *ptr would yield the

Preview from Notesale.co.uk

Page 209 of 431

The output of the program would be...

source string = Sayonara

target string = Sayonara

Note that having copied the entire source string into the target

string, it is necessary to place a ‘\0’ into the target string, to mark

its end.

If you look at the prototype of strcpy() standard library function,

it looks like this…

strcpy (char *t, const char *s) ;

We didn’t use the keyword const in our version of xstrcpy() and

still our function worked correctly. So what is the need of the

const qualifier?

What would happen if we add the following lines beyond the last

statement of xstrcpy()?.

s = s - 8 ;

*s = 'K' ;

This would change the source string to “Kayonara”. Can we not

ensure that the source string doesn’t change even accidentally in

xstrcpy()? We can, by changing the definition as follows:

void xstrcpy (char *t, const char *s)

{

while (*s != '\0')

{

Chapter 9: Puppetting On Strings 341
*t = *s ;

s++ ;

t++ ;

}

*t = '\0' ;

}

By declaring char *s as const we are declaring that the source

string should remain constant (should not change). Thus the const

qualifier ensures that your program does not inadvertently alter a

variable that you intended to be a constant. It also reminds

anybody reading the program listing that the variable is not

intended to change.

We can use const in several situations. The following code

fragment would help you to fix your ideas about const further.

char *p = "Hello" ; /* pointer is variable, so is string */

p = 'M' ; / works */

p = "Bye" ; /* works */

const char *q = "Hello" ; /* string is fixed pointer is not */

q = 'M' ; / error */

q = "Bye" ; /* works */

char const *s = "Hello" ; /* string is fixed pointer is not */

s = 'M' ; / error */

s = "Bye" ; /* works */

char * const t = "Hello" ; /* pointer is fixed string is not */

t = 'M' ; / works */

t = "Bye" ; /* error */

Preview from Notesale.co.uk

Page 215 of 431

const char * const u = "Hello" ; /* string is fixed so is pointer */

u = 'M' ; / error */

u = "Bye" ; /* error */

342 Complete Guide To C
The keyword const can be used in context of ordinary variables

like int, float, etc. The following program shows how this can be

done.

main()

{

float r, a ;

const float pi = 3.14 ;

printf ("\nEnter radius of circle ") ;

scanf ("%f", &r) ;

a = pi * r * r ;

printf ("\nArea of circle = %f", a) ;

}

strcat()
This function concatenates the source string at the end of the target

string. For example, “Bombay” and “Nagpur” on concatenation

would result into a string “BombayNagpur”. Here is an example of

strcat() at work.

main()

{

char source[] = "Folks!" ;

char target[30] = "Hello" ;

strcat (target, source) ;

printf ("\nsource string = %s", source) ;

printf ("\ntarget string = %s", target) ;

}

And here is the output...

source string = Folks!

target string = HelloFolks!

Chapter 9: Puppetting On Strings 343
Note that the target string has been made big enough to hold the

final string. I leave it to you to develop your own xstrcat() on

lines of xstrlen() and xstrcpy().

strcmp()
This is a function which compares two strings to find out whether

they are same or different. The two strings are compared character

by character until there is a mismatch or end of one of the strings

is reached, whichever occurs first. If the two strings are identical,

strcmp() returns a value zero. If they’re not, it returns the numeric

difference between the ASCII values of the first non-matching

pairs of characters. Here is a program which puts strcmp() in

action.

main()

{

char string1[] = "Jerry" ;

char string2[] = "Ferry" ;

Preview from Notesale.co.uk

Page 216 of 431

for (i = 0 ; i <= 5 ; i++)

{

a = strcmp (&masterlist[i][0], yourname) ;

if (a == 0)

{

printf ("Welcome, you can enter the palace") ;

flag = FOUND ;

break ;

}

}

if (flag == NOTFOUND)

printf ("Sorry, you are a trespasser") ;

}

And here is the output for two sample runs of this program...

Enter your name dinesh

Sorry, you are a trespasser

Enter your name raman

Welcome, you can enter the palace

Notice how the two-dimensional character array has been

initialized. The order of the subscripts in the array declaration is

important. The first subscript gives the number of names in the

array, while the second subscript gives the length of each item in

the array.

Instead of initializing names, had these names been supplied from

the keyboard, the program segment would have looked like this...

for (i = 0 ; i <= 5 ; i++)

scanf ("%s", &masterlist[i][0]) ;

346 Complete Guide To C
While comparing the strings through strcmp(), note that the

addresses of the strings are being passed to strcmp(). As seen in

the last section, if the two strings match, strcmp() would return a

value 0, otherwise it would return a non-zero value.

The variable flag is used to keep a record of whether the control

did reach inside the if or not. To begin with, we set flag to

NOTFOUND. Later through the loop if the names match, flag is

set to FOUND. When the control reaches beyond the for loop, if

flag is still set to NOTFOUND, it means none of the names in the

masterlist[][] matched with the one supplied from the keyboard.

The names would be stored in the memory as shown in Figure 9.3.

Note that each string ends with a ‘\0’. The arrangement as you can

appreciate is similar to that of a two-dimensional numeric array.

65454 a k s h a y \0

65464 p a r a g \0

65474 r a m a n \0

65484 s r i n i v a s \0

65494 g o p a l \0

65504 r a j e s h \0 65513

(last location)

Figure 9.3

Chapter 9: Puppetting On Strings 347

Preview from Notesale.co.uk

Page 218 of 431

obtain greater ease in manipulation of the strings. This is shown by

the following programs. The first one uses a two-dimensional

array of characters to store the names, whereas the second uses an

array of pointers to strings. The purpose of both the programs is

very simple. We want to exchange the position of the names

“raman” and “srinivas”.

/* Exchange names using 2-D array of characters */

main()

{

char names[][10] = {

Chapter 9: Puppetting On Strings 349
"akshay",

"parag",

"raman",

"srinivas",

"gopal",

"rajesh"

} ;

int i ;

char t ;

printf ("\nOriginal: %s %s", &names[2][0], &names[3][0]) ;

for (i = 0 ; i <= 9 ; i++)

{

t = names[2][i] ;

names[2][i] = names[3][i] ;

names[3][i] = t ;

}

printf ("\nNew: %s %s", &names[2][0], &names[3][0]) ;

}

And here is the output...

Original: raman srinivas

New: srinivas raman

Note that in this program to exchange the names we are required to

exchange corresponding characters of the two names. In effect, 10

exchanges are needed to interchange two names.

Let us see, if the number of exchanges can be reduced by using an

array of pointers to strings. Here is the program...

main()

{

char *names[] = {

350 Complete Guide To C
"akshay",

"parag",

"raman",

"srinivas",

"gopal",

"rajesh"

} ;

char *temp ;

printf ("Original: %s %s", names[2], names[3]) ;

Preview from Notesale.co.uk

Page 220 of 431

(d) main()

{

char s[] = "Churchgate: no church no gate" ;

char t[25] ;

char *ss, *tt ;

ss = s ;

while (*ss != '\0')

*ss++ = *tt++ ;

Chapter 9: Puppetting On Strings 355
printf ("\n%s", t) ;

}

(e) main()

{

char str1[] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ } ;

char str2[] = "Hello" ;

printf ("\n%s", str1) ;

printf ("\n%s", str2) ;

}

(f) main()

{

printf (5 + "Good Morning ") ;

}

(g) main()

{

printf ("%c", "abcdefgh"[4]) ;

}

(h) main()

{

printf ("\n%d%d", sizeof (‘3’), sizeof ("3"), sizeof (3)) ;

}

[B] Point out the errors, if any, in the following programs:

(a) main()

{

char *str1 = "United" ;

char *str2 = "Front" ;

char *str3 ;

str3 = strcat (str1, str2) ;

printf ("\n%s", str3) ;

}

(b) main()

{

356 Complete Guide To C
int arr[] = { ‘A’, ‘B’, ‘C’, ‘D’ } ;

int i ;

for (i = 0 ; i <= 3 ; i++)

printf ("\n%d", arr[i]) ;

}

(c) main()

{

char arr[8] = "Rhombus" ;

Preview from Notesale.co.uk

Page 224 of 431

September 2004

Mon Tue Wed Thu Fri Sat Sun

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

Note that according to the Gregorian calendar 01/01/1900 was

Monday. With this as the base the calendar should be

generated.

(e) Modify the above program suitably so that once the calendar

for a particular month and year has been displayed on the

360 Complete Guide To C
screen, then using arrow keys the user must be able to change

the calendar in the following manner:

Up arrow key : Next year, same month

Down arrow key : Previous year, same month

Right arrow key : Same year, next month

Left arrow key : Same year, previous month

If the escape key is hit then the procedure should stop.

Hint: Use the getkey() function discussed in Chapter 8,

problem number [L](c).

(f)

(g)

(h)

(i)

A factory has 3 division and stocks 4 categories of products.

An inventory table is updated for each division and for each

product as they are received. There are three independent

suppliers of products to the factory:

(a) Design a data format to represent each transaction.

(b) Write a program to take a transaction and update the

inventory.

(c) If the cost per item is also given write a program to

calculate the total inventory values.

A dequeue is an ordered set of elements in which elements

may be inserted or retrieved from either end. Using an array

simulate a dequeue of characters and the operations retrieve

left, retrieve right, insert left, insert right. Exceptional

conditions such as dequeue full or empty should be indicated.

Two pointers (namely, left and right) are needed in this

simulation.

Write a program to delete all vowels from a sentence. Assume

that the sentence is not more than 80 characters long.

Write a program that will read a line and delete from it all

occurrences of the word ‘the’.

Chapter 9: Puppetting On Strings 361
(j)

(k)

Write a program that takes a set of names of individuals and

Preview from Notesale.co.uk

Page 227 of 431

Actually the structure elements are stored in memory as shown in

the Figure 10.1.

65518 65519 65523

‘B’ 130.00 550

b1.name b1.price b1.pages

Figure 10.1

Array of Structures
Our sample program showing usage of structure is rather simple

minded. All it does is, it receives values into various structure

elements and output these values. But that’s all we intended to do

anyway... show how structure types are created, how structure

variables are declared and how individual elements of a structure

variable are referenced.

In our sample program, to store data of 100 books we would be

required to use 100 different structure variables from b1 to b100,

which is definitely not very convenient. A better approach would

be to use an array of structures. Following program shows how to

use an array of structures.

372 Complete Guide To C
/* Usage of an array of structures */

main()

{

struct book

{

char name ;

float price ;

int pages ;

} ;

struct book b[100] ;

int i ;

for (i = 0 ; i <= 99 ; i++)

{

printf ("\nEnter name, price and pages ") ;

scanf ("%c %f %d", &b[i].name, &b[i].price, &b[i].pages) ;

}

for (i = 0 ; i <= 99 ; i++)

printf ("\n%c %f %d", b[i].name, b[i].price, b[i].pages) ;

}

linkfloat()

{

float a = 0, *b ;

b = &a ; /* cause emulator to be linked */

a = *b ; /* suppress the warning - variable not used */

}

Now a few comments about the program:

(a) Notice how the array of structures is declared...

struct book b[100] ;

Chapter 10: Structures 373
This provides space in memory for 100 structures of the type

Preview from Notesale.co.uk

Page 233 of 431

int pin ;

} ;

struct emp

{

char name[25] ;

struct address a ;

} ;

struct emp e = { "jeru", "531046", "nagpur", 10 };

printf ("\nname = %s phone = %s", e.name, e.a.phone) ;

printf ("\ncity = %s pin = %d", e.a.city, e.a.pin) ;

}

And here is the output...

name = jeru phone = 531046

city = nagpur pin = 10

Notice the method used to access the element of a structure

that is part of another structure. For this the dot operator is

used twice, as in the expression,

e.a.pin or e.a.city

Of course, the nesting process need not stop at this level. We

can nest a structure within a structure, within another

structure, which is in still another structure and so on... till the

time we can comprehend the structure ourselves. Such

construction however gives rise to variable names that can be

surprisingly self descriptive, for example:

maruti.engine.bolt.large.qty

Chapter 10: Structures 377
This clearly signifies that we are referring to the quantity of

large sized bolts that fit on an engine of a maruti car.

(c) Like an ordinary variable, a structure variable can also be

passed to a function. We may either pass individual structure

elements or the entire structure variable at one go. Let us

examine both the approaches one by one using suitable

programs.

/* Passing individual structure elements */

main()

{

struct book

{

char name[25] ;

char author[25] ;

int callno ;

} ;

struct book b1 = { "Complete Guide To C", "YPK", 101 } ;

display (b1.name, b1.author, b1.callno) ;

}

display (char *s, char *t, int n)

{

printf ("\n%s %s %d", s, t, n) ;

}

And here is the output...

Preview from Notesale.co.uk

Page 236 of 431

int minutes ;

int seconds ;

} t ;

struct time *tt ;

tt = &t ;

Looking at the above declarations, which of the following

refers to seconds correctly:

1. tt.seconds

2. (*tt).seconds

3. time.t

4. tt -> seconds

[D] Attempt the following:

(a) Create a structure to specify data on students given below:

Roll number, Name, Department, Course, Year of joining

Assume that there are not more than 450 students in the

collage.

(a) Write a function to print names of all students who joined

in a particular year.

(b) Write a function to print the data of a student whose roll

number is given.

Chapter 10: Structures 389
(b) Create a structure to specify data of customers in a bank. The

data to be stored is: Account number, Name, Balance in

account. Assume maximum of 200 customers in the bank.

(a) Write a function to print the Account number and name

of each customer with balance below Rs. 100.

(b) If a customer request for withdrawal or deposit, it is

given in the form:

Acct. no, amount, code (1 for deposit, 0 for withdrawal)

Write a program to give a message, “The balance is

insufficient for the specified withdrawal”.

(c) An automobile company has serial number for engine parts

starting from AA0 to FF9. The other characteristics of parts to

be specified in a structure are: Year of manufacture, material

and quantity manufactured.

(a) Specify a structure to store information corresponding to

a part.

(b) Write a program to retrieve information on parts with

serial numbers between BB1 and CC6.

(d) A record contains name of cricketer, his age, number of test

matches that he has played and the average runs that he has

scored in each test match. Create an array of structure to hold

records of 20 such cricketer and then write a program to read

these records and arrange them in ascending order by average

runs. Use the qusort() standard library function.

(e) There is a structure called employee that holds information

like employee code, name, date of joining. Write a program to

create an array of the structure and enter some data into it.

Then ask the user to enter current date. Display the names of

those employees whose tenure is 3 or more than 3 years

Preview from Notesale.co.uk

Page 244 of 431

main()

{

printf ("You\tmust\tbe\tcrazy\nto\thate\tthis\tbook") ;

}

402 Complete Guide To C
And here’s the output...

1 2 3 4

01234567890123456789012345678901234567890

You must be crazy

to hate this book

The \n character causes a new line to begin following ‘crazy’. The

tab and newline are probably the most commonly used escape

sequences, but there are others as well. Figure 11.4 shows a

complete list of these escape sequences.

Esc. Seq. Purpose Esc. Seq. Purpose

\n New line \t Tab

\b Backspace \r Carriage return

\f Form feed \a Alert

\’ Single quote \” Double quote

\\ Backslash

Figure 11.4

The first few of these escape sequences are more or less selfexplanatory. \b moves the cursor one

position to the left of its

current position. \r takes the cursor to the beginning of the line in

which it is currently placed. \a alerts the user by sounding the

speaker inside the computer. Form feed advances the computer

stationery attached to the printer to the top of the next page.

Characters that are ordinarily used as delimiters... the single quote,

double quote, and the backslash can be printed by preceding them

with the backslash. Thus, the statement,

printf ("He said, \"Let's do it!\"") ;

Chapter 11: Console Input/Output 403
will print...

He said, "Let's do it!"

So far we have been describing printf()’s specification as if we

are forced to use only %d for an integer, only %c for a char, only

%s for a string and so on. This is not true at all. In fact, printf()

uses the specification that we mention and attempts to perform the

specified conversion, and does its best to produce a proper result.

Sometimes the result is nonsensical, as in case when we ask it to

print a string using %d. Sometimes the result is useful, as in the

case we ask printf() to print ASCII value of a character using

%d. Sometimes the result is disastrous and the entire program

blows up.

The following program shows a few of these conversions, some

sensible, some weird.

main()

{

char ch = 'z' ;

int i = 125 ;

Preview from Notesale.co.uk

Page 251 of 431

float a = 12.55 ;

char s[] = "hello there !" ;

printf ("\n%c %d %f", ch, ch, ch) ;

printf ("\n%s %d %f", s, s, s) ;

printf ("\n%c %d %f",i ,i, i) ;

printf ("\n%f %d\n", a, a) ;

}

And here’s the output ...

z 122 -9362831782501783000000000000000000000000000.000000

hello there ! 3280 -

9362831782501783000000000000000000000000000.000000

} 125 -9362831782501783000000000000000000000000000.000000

404 Complete Guide To C
12.550000 0

I would leave it to you to analyze the results by yourselves. Some

of the conversions you would find are quite sensible.

Let us now turn our attention to scanf(). scanf() allows us to

enter data from keyboard that will be formatted in a certain way.

The general form of scanf() statement is as follows:

scanf ("format string", list of addresses of variables) ;

For example:

scanf ("%d %f %c", &c, &a, &ch) ;

Note that we are sending addresses of variables (addresses are

obtained by using ‘&’ the ‘address of’ operator) to scanf()

function. This is necessary because the values received from

keyboard must be dropped into variables corresponding to these

addresses. The values that are supplied through the keyboard must

be separated by either blank(s), tab(s), or newline(s). Do not

include these escape sequences in the format string.

All the format specifications that we learnt in printf() function are

applicable to scanf() function as well.

sprintf() and sscanf() Functions
The sprintf() function works similar to the printf() function

except for one small difference. Instead of sending the output to

the screen as printf() does, this function writes the output to an

array of characters. The following program illustrates this.

main()

{

Chapter 11: Console Input/Output 405
int i = 10 ;

char ch = 'A' ;

float a = 3.14 ;

char str[20] ;

printf ("\n%d %c %f", i, ch, a) ;

sprintf (str, "%d %c %f", i, ch, a) ;

printf ("\n%s", str) ;

}

In this program the printf() prints out the values of i, ch and a on

the screen, whereas sprintf() stores these values in the character

Preview from Notesale.co.uk

Page 252 of 431

for (i = 0 ; i < 5 ; i++)

scanf ("%s", mess[i]) ;

}

(e) main()

{

int dd, mm, yy ;

printf ("\nEnter day, month and year\n") ;

scanf ("%d%*c%d%*c%d", &dd, &mm, &yy) ;

printf ("The date is: %d - %d - %d", dd, mm, yy) ;

}

(f) main()

{

char text ;

sprintf (text, "%4d\t%2.2f\n%s", 12, 3.452, "Merry Go Round") ;

printf ("\n%s", text) ;

}

(g) main()

{

char buffer[50] ;

412 Complete Guide To C
int no = 97;

double val = 2.34174 ;

char name[10] = "Shweta" ;

sprintf (buffer, "%d %lf %s", no, val, name) ;

printf ("\n%s", buffer) ;

sscanf (buffer, "%4d %2.2lf %s", &no, &val, name) ;

printf ("\n%s", buffer) ;

printf ("\n%d %lf %s", no, val, name) ;

}

[C] Answer the following:

(a)

(b)

(c)

To receive the string "We have got the guts, you get the

glory!!" in an array char str[100] which of the following

functions would you use?

1. scanf ("%s", str) ;

2. gets (str) ;

3. getche (str) ;

4. fgetchar (str) ;

Which function would you use if a single key were to be

received through the keyboard?

1. scanf()

2. gets()

3. getche()

4. getchar()

If an integer is to be entered through the keyboard, which

function would you use?

1. scanf()

2. gets()

Preview from Notesale.co.uk

Page 257 of 431

if (ch == '\n')

nol++ ;

if (ch == '\t')

not++ ;

}

fclose (fp) ;

printf ("\nNumber of characters = %d", noc) ;

printf ("\nNumber of blanks = %d", nob) ;

printf ("\nNumber of tabs = %d", not) ;

printf ("\nNumber of lines = %d", nol) ;

}

424 Complete Guide To C
Here is a sample run...

Number of characters = 125

Number of blanks = 25

Number of tabs = 13

Number of lines = 22

The above statistics are true for a file “PR1.C”, which I had on my

disk. You may give any other filename and obtain different results.

I believe the program is self-explanatory.

In this program too we have opened the file for reading and then

read it character by character. Let us now try a program that needs

to open a file for writing.

A File-copy Program
We have already used the function fgetc() which reads characters

from a file. Its counterpart is a function called fputc() which

writes characters to a file. As a practical use of these character I/O

functions we can copy the contents of one file into another, as

demonstrated in the following program. This program takes the

contents of a file and copies them into another file, character by

character.

#include "stdio.h"

main()

{

FILE *fs, *ft ;

char ch ;

fs = fopen ("pr1.c", "r") ;

if (fs == NULL)

{

puts ("Cannot open source file") ;

exit() ;

Chapter 12: File Input/Output 425
}

ft = fopen ("pr2.c", "w") ;

if (ft == NULL)

{

puts ("Cannot open target file") ;

fclose (fs) ;

exit() ;

Preview from Notesale.co.uk

Page 264 of 431

}

while (1)

{

ch = fgetc (fs) ;

if (ch == EOF)

break ;

else

fputc (ch, ft) ;

}

fclose (fs) ;

fclose (ft) ;

}

I hope most of the stuff in the program can be easily understood,

since it has already been dealt with in the earlier section. What is

new is only the function fputc(). Let us see how it works.

Writing to a File
The fputc() function is similar to the putch() function, in the

sense that both output characters. However, putch() function

always writes to the VDU, whereas, fputc() writes to the file.

Which file? The file signified by ft. The writing process continues

till all characters from the source file have been written to the

target file, following which the while loop terminates.

426 Complete Guide To C
Note that our sample file-copy program is capable of copying only

text files. To copy files with extension .EXE or .COM, we need to

open the files in binary mode, a topic that would be dealt with in

sufficient detail in a later section.

File Opening Modes
In our first program on disk I/O we have opened the file in read

(“r”) mode. However, “r” is but one of the several modes in which

we can open a file. Following is a list of all possible modes in

which a file can be opened. The tasks performed by fopen() when

a file is opened in each of these modes are also mentioned.

"r" Searches file. If the file is opened successfully fopen()

loads it into memory and sets up a pointer which points to

the first character in it. If the file cannot be opened fopen()

returns NULL.

Operations possible – reading from the file.

"w" Searches file. If the file exists, its contents are overwritten.

If the file doesn’t exist, a new file is created. Returns

NULL, if unable to open file.

Operations possible – writing to the file.

"a" Searches file. If the file is opened successfully fopen()

loads it into memory and sets up a pointer that points to the

last character in it. If the file doesn’t exist, a new file is

created. Returns NULL, if unable to open file.

Operations possible - adding new contents at the end of file.

"r+" Searches file. If is opened successfully fopen() loads it into

memory and sets up a pointer which points to the first

Preview from Notesale.co.uk

Page 265 of 431

reached. Hence we use the ! operator to negate this 0 to the truth

value. When the end of file is reached feof() returns a non-zero

470 Complete Guide To C
value, ! makes it 0 and since now the condition evaluates to false

the while loop gets terminated.

Note that in each one of them the following three methods for

opening a file are same, since in each one of them, essentially a

base address of the string (pointer to a string) is being passed to

fopen().

fs = fopen ("PR1.C" , "r") ;

fs = fopen (filename, "r") ;

fs = fopen (argv[1] , "r") ;

Detecting Errors in Reading/Writing
Not at all times when we perform a read or write operation on a

file are we successful in doing so. Naturally there must be a

provision to test whether our attempt to read/write was successful

or not.

The standard library function ferror() reports any error that might

have occurred during a read/write operation on a file. It returns a

zero if the read/write is successful and a non-zero value in case of

a failure. The following program illustrates the usage of ferror().

#include "stdio.h"

main()

{

FILE *fp ;

char ch ;

fp = fopen ("TRIAL", "w") ;

while (!feof (fp))

{

ch = fgetc (fp) ;

if (ferror())

{

Chapter 13: More Issues In Input/Output 471
printf ("Error in reading file") ;

break ;

}

else

printf ("%c", ch) ;

}

fclose (fp) ;

}

In this program the fgetc() function would obviously fail first time

around since the file has been opened for writing, whereas fgetc()

is attempting to read from the file. The moment the error occurs

ferror() returns a non-zero value and the if block gets executed.

Instead of printing the error message using printf() we can use the

standard library function perror() which prints the error message

specified by the compiler. Thus in the above program the perror()

function can be used as shown below.

Preview from Notesale.co.uk

Page 293 of 431

}

And here is the output...

Decimal 0 is same as binary 0000000000000000

Decimal 1 is same as binary 0000000000000001

Decimal 2 is same as binary 0000000000000010

Decimal 3 is same as binary 0000000000000011

Decimal 4 is same as binary 0000000000000100

Decimal 5 is same as binary 0000000000000101

Let us now explore the various bitwise operators one by one.

One’s Complement Operator
On taking one’s complement of a number, all 1’s present in the

number are changed to 0’s and all 0’s are changed to 1’s. For

example one’s complement of 1010 is 0101. Similarly, one’s

complement of 1111 is 0000. Note that here when we talk of a

number we are talking of binary equivalent of the number. Thus,

one’s complement of 65 means one’s complement of 0000 0000

0100 0001, which is binary equivalent of 65. One’s complement of

65 therefore would be, 1111 1111 1011 1110. One’s complement

operator is represented by the symbol ~. Following program shows

one’s complement operator in action.

main()

{

int j, k ;

for (j = 0 ; j <= 3 ; j++)

{

printf ("\nDecimal %d is same as binary ", j) ;

showbits (j) ;

k = ~j ;

printf ("\nOne’s complement of %d is ", j) ;

Chapter 14: Operations On Bits 485
showbits (k) ;

}

}

And here is the output of the above program...

Decimal 0 is same as binary 0000000000000000

One’s complement of 0 is 1111111111111111

Decimal 1 is same as binary 0000000000000001

One’s complement of 1 is 1111111111111110

Decimal 2 is same as binary 0000000000000010

One’s complement of 2 is 1111111111111101

Decimal 3 is same as binary 0000000000000011

One’s complement of 3 is 1111111111111100

In real-world situations where could the one’s complement

operator be useful? Since it changes the original number beyond

recognition, one potential place where it can be effectively used is

in development of a file encryption utility as shown below:

/* File encryption utility */

#include "stdio.h"

main()

{

Preview from Notesale.co.uk

Page 301 of 431

5225 left shift 0 gives 0001010001101001

5225 left shift 1 gives 0010100011010010

5225 left shift 2 gives 0101000110100100

5225 left shift 3 gives 1010001101001000

5225 left shift 4 gives 0100011010010000

Having acquainted ourselves with the left shift and right shift

operators, let us now find out the practical utility of these

operators.

In DOS/Windows the date on which a file is created (or modified)

is stored as a 2-byte entry in the 32 byte directory entry of that file.

Similarly, a 2-byte entry is made of the time of creation or

modification of the file. Remember that DOS/Windows doesn’t

store the date (day, month, and year) of file creation as a 8 byte

string, but as a codified 2 byte entry, thereby saving 6 bytes for

each file entry in the directory. The bitwise distribution of year,

month and date in the 2-byte entry is shown in Figure 14.3.

month

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y Y Y Y Y Y Y M M M M D D D D D

year day

Figure 14.3

DOS/Windows converts the actual date into a 2-byte value using

the following formula:

date = 512 * (year - 1980) + 32 * month + day

Suppose 09/03/1990 is the date, then on conversion the date will

be,

date = 512 * (1990 - 1980) + 32 * 3 + 9 = 5225

490 Complete Guide To C
The binary equivalent of 5225 is 0001 0100 0110 1001. This

binary value is placed in the date field in the directory entry of the

file as shown below.

Figure 14.4

0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

year month day

Just to verify this bit distribution, let us take the bits representing

the month,

month = 0011

= 1 * 2 + 1 * 1

= 3

Similarly, the year and the day can also be verified.

When we issue the command DIR or use Windows Explorer to list

the files, the file’s date is again presented on the screen in the

usual date format of mm/dd/yy. How does this integer to date

conversion take place? Obviously, using left shift and right shift

operators.

When we take a look at Figure 14.4 depicting the bit pattern of the

2- byte date field, we see that the year, month and day exist as a

bunch of bits in contiguous locations. Separating each of them is a

matter of applying the bitwise operators.

For example, to get year as a separate entity from the two bytes

Preview from Notesale.co.uk

Page 304 of 431

. 1 . . System

. . . . 1 . . . Volume label entry

. . . 1 Sub-directory entry

. . 1 Archive bit

. 1 Unused

1 Unused

Figure 14.10

Now, suppose we want to check whether a file is a hidden file or

not. A hidden file is one, which is never shown in the directory,

even though it exists on the disk. From the above bit classification

of attribute byte, we only need to check whether bit number 1 is

ON or OFF.

So, our first operand in this case becomes the attribute byte of the

file in question, whereas the second operand is the 1 * 21 = 2, as

discussed earlier. Similarly, it can be checked whether the file is a

system file or not, whether the file is read-only file or not, and so

on.

The second, and equally important use of the AND operator is in

changing the status of the bit, or more precisely to switch OFF a

particular bit.

498 Complete Guide To C
If the first operand happens to be 00000111, then to switch OFF

bit number 1, our AND mask bit pattern should be 11111101. On

applying this mask, we get,

00000111 Original bit pattern

11111101 AND mask

00000101 Resulting bit pattern

Here in the AND mask we keep the value of all other bits as 1

except the one which is to be switched OFF (which is purposefully

kept as 0). Therefore, irrespective of whether the first bit is ON or

OFF previously, it is switched OFF. At the same time the value 1

provided in all the other bits of the AND mask (second operand)

keeps the bit values of the other bits in the first operand unaltered.

Let’s summarize the uses of bitwise AND operator:

(a)

(b)

It is used to check whether a particular bit in a number is ON

or OFF.

It is used to turn OFF a particular bit in a number.

Bitwise OR Operator
Another important bitwise operator is the OR operator which is

represented as |. The rules that govern the value of the resulting bit

obtained after ORing of two bits is shown in the truth table below.

| 0 1

0 0 1

1 1 1

Figure 14.11

Chapter 14: Operations On Bits 499
Using the Truth table confirm the result obtained on ORing the

Preview from Notesale.co.uk

Page 308 of 431

Windows. So in the rest of this book whenever I refer to Windows

I mean Windows NT family, unless explicitly specified.

Before we start writing C programs under Windows let us first see

some of the changes that have happened under Windows

environment.

Integers
Under 16-bit environment the size of integer is of 2 bytes. As

against this, under 32-bit environment an integer is of 4 bytes.

Hence its range is -2147483648 to +2147483647. Thus there is no

difference between an int and a long int. But what if we wish to

store the age of a person in an integer? It would be improper to

sacrifice a 4-byte integer when we know that the number to be

stored in it is hardly going to exceed hundred. In such as case it

would be more sensible to use a short int since it is only 2 bytes

long.

The Use of typedef
Take a look at the following declarations:

COLORREF color ;

HANDLE h ;

WPARAM w ;

LPARAM l ;

BOOL b ;

538 Complete Guide To C
Are COLORREF, HANDLE, etc. new datatypes that have been

added in C under Windows compiler? Not at all. They are merely

typedef’s of the normal integer datatype.

A typical C under Windows program would contain several such

typedefs. There are two reasons why Windows-based C programs

heavily make use of typedefs. These are:

(a)

(b)

A typical Windows program is required to perform several

complex tasks. For example a program may print documents,

send mails, perform file I/O, manage multiple threads of

execution, draw in a window, play sound files, perform

operations over the network apart from normal data

processing tasks. Naturally a program that carries out so many

tasks would be very big in size. In such a program if we start

using the normal integer data type to represent variables that

hold different entities we would soon lose track of what that

integer value actually represents. This can be overcome by

suitably typedefining the integer as shown above.

At several places in Windows programming we are required

to gather and work with dissimilar but inter-related data. This

can be done using a structure. But when we define any

structure variable we are required to precede it with the

keyword struct. This can be avoided by using typedef as

shown below:

struct rect

Preview from Notesale.co.uk

Page 314 of 431

DOS programs are always required to bother about the details of

the hardware on which they are running. This is because for every

new piece of hardware introduced there are new interrupt numbers

and new register details. Hence DOS programmers are under the

constant fear that if the hardware on which the programs are

running changes then the program may crash.

Chapter 16: C Under Windows 547
Moreover the DOS programmer has to write lot of code to detect

the hardware on which his program is running and suitably make

use of the relevant interrupts and registers. Not only does this

make the program lengthy, the programmer has to understand a lot

of technical details of the hardware. As a result the programmer

has to spend more time in understanding the hardware than in the

actual application programming.

Windows Programming Model
From the perspective of the user the shift from MS-DOS to

Windows OS involves switching over to a Graphical User

Interface from the typical Text Interface that MS-DOS offers.

Another change that the user may feel and appreciate is the ability

of Windows OS to execute several programs simultaneously,

switching effortlessly from one to another by pointing at windows

and clicking them with the mouse. Mastering this new GUI

environment and getting comfortable with the multitasking feature

is at the most a matter of a week or so. However, from the

programmer’s point of view programming for Windows is a whole

new ball game!

Windows programming model is designed with a view to:

(a)

(b)

(c)

(d)

Eliminate the messy calling mechanism of DOS

Permit true reuse of commonly used functions

Provide consistent look and feel for all applications

Eliminate hardware dependency

Let us discuss how Windows programming model achieves this.

Better Calling Mechanism

Instead of calling functions using Interrupt numbers and registers

Windows provides functions within itself which can be called

using names. These functions are called API (Application

Programming Interface) functions. There are literally hundreds of

548 Complete Guide To C
API functions available. They help an application to perform

various tasks such as creating a window, drawing a line,

performing file input/output, etc.

True Reuse

A C under Windows program calls several API functions during

course of its execution. Imagine how much disk space would have

been wasted had each of these functions become part of the EXE

Preview from Notesale.co.uk

Page 320 of 431

interact with the user-interface elements of the program cannot be

predicted the order of occurrence of events, and hence the order of

messages, also becomes unpredictable. As a result, the order of

552 Complete Guide To C
calling the functions in the program (that react to different

messages) is dictated by the order of occurrence of events. Hence

this programming model is called ‘Event Driven Programming

Model’.

That’s really all that is there to event-driven programming. Your

job is to anticipate what users are likely to do with your

application’s user interface objects and have a function waiting,

ready to execute at the appropriate time. Just when that time is, no

one except the user can really say.

Windows Programming, a Closer Look
There can be hundreds of ways in which the user may interact with

an application. In addition to this some events may occur without

any user interaction. For example, events occur when we create a

window, when the window’s contents are to be drawn, etc. Not

only this, occurrence of one event may trigger a few more events.

Thus literally hundreds of messages may be sent to an application

thereby creating a chaos. Naturally, a question comes—in which

order would these messages get processed by the application.

Order is brought to this chaos by putting all the messages that

reach the application into a ‘Queue’. The messages in the queue

are processed in First In First Out (FIFO) order.

In fact the OS maintains several such queues. There is one queue,

which is common for all applications. This queue is known as

‘System Message Queue’. In addition there is one queue per

application. Such queues are called ‘Application Message

Queues’. Let us understand the need for maintaining so many

queues.

When we click a mouse and an event occurs the device driver

posts a message into the System Message Queue. The OS retrieves

this message finds out with regard to which application the

message has been sent. Next it posts a message into the

Chapter 16: C Under Windows 553
Application Message Queue of the application in which the mouse

was clicked. Refer Figure 16.5.
Application2 Application2

Msg. Queue

Application1

Msg. Queue

Application1

Event Event

Device Driver Device Driver

Other OS

Mess

Other

Messa

System Msg.

Preview from Notesale.co.uk

Page 323 of 431

17 Windows

Programming
• The Role of a Message Box

• Here comes the window…

• More Windows

• A Real-World Window

Creation and Displaying of Window

Interaction with Window

Reacting to Messages

• Program Instances

• Summary

• Exercise

561

562 Complete Guide To C
event driven programming requires a change in mind set. I

hope Chapter 16 has been able to bring about this change.

However this change would be bolstered by writing event

driven programs. This is what this chapter intends to do. I am

hopeful that by the time you reach the end of this chapter you

would be so comfortable with it as if you have been using it all

your life.

E
The Role of a Message Box
Often we are required to display certain results on the screen

during the course of execution of a program. We do this to

ascertain whether we are getting the results as per our

expectations. In a sequential DOS based program we can easily

achieve this using printf() statements. Under Windows screen is a

shared resource. So you can imagine what chaos would it create if

all running applications are permitted to write to the screen. You

would not be able to make out which output is of what application.

Hence no Windows program is permitted to write anything directly

to the screen. That’s where a message box enters the scene. Using

it we can display intermediate results during the course of

execution of a program. It can be dismissed either by clicking the

‘close button’ in its title bar or by clicking the OK button present

in it. There are numerous variations that you can try with the

MessageBox(). Some of these are given below

MessageBox (0, “Are you sure”, “Caption”, MB_YESNO) ;

MessageBox (0, “Print to the Printer”, “Caption”, MB_YESNO CANCEL) ;

MessageBox (0, “icon is all about style”, “Caption”, MB_OK |

Preview from Notesale.co.uk

Page 329 of 431

provide ‘device independence’. Device independence means that

the same program should be able to work using different screens,

keyboards and printers without modification to the program.

Windows takes care of the hardware, allowing the programmer to

concentrate on the program itself. If you have ever had to update

the code of an MS-DOS program for the latest printer, plotter,

video display, or keyboard, you will recognize device

independence as a huge advantage for the developer.

Windows programs do not send data directly to the screen or

printer. A Windows program knows where (screen/printer) its

output is being sent. However, it does not know how it would be

sent there, neither does it need to bother to know this. This is

because Windows uses a standard and consistent way to send the

output to screen/printer. This standard way uses an entity called

Device Context, or simply a DC. Different DC’s are associated

with different devices. For example, a screen DC is associated

with a screen, a printer DC is associated with a printer, etc. Any

drawing that we do using the screen DC is directed to the screen.

Similarly, any drawing done using the printer DC is directed to the

printer. Thus, the only thing that changes from drawing to screen

and drawing to printer is the DC that is used.

A windows program obtains a handle (ID value) for the screen or

printer’s DC. The output data is sent to the screen/printer using its

DC, and then Windows and the Device Driver for the device takes

care of sending it to the real hardware. The advantage of using the

DC is that the graphics and text commands that we send using the

DC are always the same, regardless of where the physical output is

showing up.

The part of Windows that converts the Windows graphics function

calls to the actual commands sent to the hardware is the GDI, or

Graphics Device Interface. The GDI is a program file called

GDI32.DLL and is stored in the Windows System directory. The

582 Complete Guide To C
Windows environment loads GDI32.DLL into memory when it is

needed for graphical output. Windows also loads a ‘device driver’

program if the hardware conversions are not part of GDI32.DLL.

Common examples are VGA.SYS for VGA video screen and

HPPLC.SYS for the HP LaserJet printer. Drivers are just programs

that assist the GDI in converting Windows graphics commands to

hardware commands.

Thus GDI provides all the basic drawing functionality for

Windows; the device context represents the device providing a

layer of abstraction that insulates your applications from the

trouble of drawing directly to the hardware. The GDI provides this

insulation by calling the appropriate device driver in response to

windows graphics function calls.

Hello Windows
We would begin our tryst with graphics programming under

windows by displaying a message “Hello Windows” in different

fonts. Note that though we are displaying text under Windows

Preview from Notesale.co.uk

Page 340 of 431

even text gets drawn graphically in the window. First take a look at

the program given below before we set out to understand it.

include <windows.h>

include "helper.h"

void OnPaint (HWND) ;

void OnDestroy (HWND) ;

int __stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpszCmdline, int nCmdShow)

{

MSG m ;

/* Perform application initialization */

InitInstance (hInstance, nCmdShow, "Text") ;

Chapter 18: Graphics Under Windows 583
/* Main message loop */

while (GetMessage (&m, NULL, 0, 0))

DispatchMessage(&m);

return 0 ;

}

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,

WPARAM wParam, LPARAM lParam)

{

switch (message)

{

case WM_DESTROY :

OnDestroy (hWnd) ;

break ;

case WM_PAINT :

OnPaint (hWnd) ;

break ;

default :

return DefWindowProc (hWnd, message, wParam, lParam) ;

}

return 0 ;

}

void OnDestroy (HWND hWnd)

{

PostQuitMessage (0) ;

}

void OnPaint (HWND hWnd)

{

HDC hdc ;

PAINTSTRUCT ps ;

HFONT hfont ;

LOGFONT f = { 0 } ;

HGDIOBJ holdfont ;

char *fonts[] = { "Arial", "Times New Roman", "Comic Sans MS" } ;

int i ;

584 Complete Guide To C
hdc = BeginPaint (hWnd, &ps) ;

for (i = 0 ; i < 3 ; i++)

Preview from Notesale.co.uk

Page 341 of 431

arc’s starting point and ending point respectively.

In Polygon (lpPoints, nCount), lpPoints points to an array of

points that specifies the vertices of the polygon. Each point in the

array is a POINT structure. nCount specifies the number of

vertices stored in the array. The system closes the polygon

automatically, if necessary, by drawing a line from the last vertex

to the first.

590 Complete Guide To C
Once we are through with drawing the shapes the old brush is

selected back in the DC and then the brush created by us is deleted

using DeleteObject() function.

Types of Pens
In the previous program we have used the default solid black pen

of thickness 1 pixel. We can create pens of different style, color

and thickness to do our drawing. The following OnPaint()

handler shows how this can be achieved.

void OnPaint (HWND hWnd)

{

HDC hdc ;

PAINTSTRUCT ps ;

HPEN hpen ;

HGDIOBJ holdpen ;

hdc = BeginPaint (hWnd, &ps) ;

hpen = CreatePen (PS_DASH, 1, RGB (255, 0, 0)) ;

holdpen = SelectObject (hdc, hpen) ;

MoveToEx (hdc, 10, 10, NULL) ;

LineTo (hdc, 500, 10) ;

SelectObject (hdc, holdpen) ;

DeleteObject (hpen) ;

hpen = CreatePen (PS_DOT, 1, RGB (255, 0, 0)) ;

holdpen = SelectObject (hdc, hpen) ;

MoveToEx (hdc, 10, 60, NULL) ;

LineTo (hdc, 500, 60) ;

SelectObject (hdc, holdpen) ;

DeleteObject (hpen) ;

Chapter 18: Graphics Under Windows 591
hpen = CreatePen (PS_DASHDOT, 1, RGB (255, 0, 0)) ;

holdpen = SelectObject (hdc, hpen) ;

MoveToEx (hdc, 10, 110, NULL) ;

LineTo (hdc, 500, 110) ;

SelectObject (hdc, holdpen) ;

DeleteObject (hpen) ;

hpen = CreatePen (PS_DASHDOTDOT, 1, RGB (255, 0, 0)) ;

holdpen = SelectObject (hdc, hpen) ;

MoveToEx (hdc, 10, 160, NULL) ;

LineTo (hdc, 500, 160) ;

SelectObject (hdc, holdpen) ;

DeleteObject (hpen) ;

hpen = CreatePen (PS_SOLID, 10, RGB (255, 0, 0)) ;

Preview from Notesale.co.uk

Page 345 of 431

we have created a memory device context and made its properties

compatible with that of the screen DC. To do this we have called

the API function CreateCompatibleDC(). Note that we have

passed the handle to the screen DC to this function. The function

in turn returns the handle to the memory DC. After this we have

selected the loaded bitmap into the memory DC. Lastly, we have

performed a bit block transfer (a bit by bit copy) from memory DC

to screen DC using the function BitBlt(). As a result of this the

vulture now appears in the window.

We have made the call to BitBlt() as shown below:

BitBlt (hdc, 10, 20, 190, 220, hmemdc, 0, 0, SRCCOPY) ;

Chapter 18: Graphics Under Windows 607
Let us now understand its parameters. These are as under:

hdc – Handle to target DC where the bitmap is to be blitted

10, 20 – Position where the bitmap is to be blitted

190, 220 – Width and height of bitmap being blitted

0, 0 – Top left corner of the source image. If we give 10, 20 then

the image from 10, 20 to bottom right corner of the bitmap would

get blitted.

SRCCOPY – Specifies one of the raster-operation codes. These

codes define how the color data for the source rectangle is to be

combined with the color data for the destination rectangle to

achieve the final color. SRCCOPY means that the pixel color of

source should be copied onto the destination pixel of the target.

Animation at Work
Speed is the essence of life. So having the ability to display a

bitmap in a window is fine, but if we can add movement and sound

to it then nothing like it. So let us now see how to achieve this

animation and sound effect.

If we are to animate an object in the window we need to carry out

the following steps:

(a)

(b)

(c)

(d)

Create an image that is to be animated as a resource.

Prepare the image for later display.

Repeatedly display this prepared image at suitable places in

the window taking care that when the next image is displayed

the previous image is erased.

Check for collisions while displaying the prepared image.

Let us now write a program that on execution makes a red colored

ball move in the window. As the ball strikes the walls of the

608 Complete Guide To C
window a noise occurs. Note that the width and height of the redcolored ball is 22 pixels. Given

below is the WndProc() function

and the various message handlers that help achieve animation and

sound effect.

HBITMAP hbmp ;

Preview from Notesale.co.uk

Page 355 of 431

Driven Programming model. Once you have understood it

thoroughly rest is just a matter of understanding and calling the

suitable API functions to get your job done. Windows API is truly

an endless world. It covers areas like Networking, Internet

programming, Telephony, Drawing and Printing, Device I/O,

Imaging, Messaging, Multimedia, Windowing, Database

programming, Shell programming, to name a few. The programs

that we have written have merely scratched the surface. No matter

how many programs that we write under Windows, several still

remain to be written. The intention of this chapter was to unveil

before you, to give you the first glimpse of what is possible under

Windows. The intention all along was not to catch fish for you but

to show you how to catch fish so that you can do fishing all your

life. Having made a sound beginning, rest is for you to explore.

Good luck and happy fishing!

Summary
(a) In DOS, programmers had to write separate graphics code for

every new video adapter. In Windows, the code once written

works on any video adapter.

(b) A Windows program cannot draw directly on an output device

like screen or printer. Instead, it draws to the logical display

surface using device context.

(c) When the window is displayed for the first time, or when it is

moved or resized OnPaint() handler gets called.

(d) It is necessary to obtain the device context before drawing

text or graphics in the client area.

(j) A device context is a structure containing information

required to draw on a display surface. The information

includes color of pen and brush, screen resolution, color

palettes, etc.

(e) To draw using a new pen or brush it is necessary to select

them into the device context.

Chapter 18: Graphics Under Windows 615
(f) If we don’t select any brush or pen into the device context

then the drawing drawn in the client area would be drawn

with the default pen (black pen) and default brush (white

brush).

(g) RGB is a macro representing the Red, Green and Blue

elements of a color. RGB (0, 0, 0) gives black color,

whereas, RGB (255, 255, 255) gives white color.

(h) Animation involves repeatedly drawing the same image at

successive positions.

Exercise
[A] State True or False:

(a) Device independence means the same program is able to work

using different screens, keyboards and printers without

modifications to the program.

(b) The WM_PAINT message is generated whenever the client

area of the window needs to be redrawn.

Preview from Notesale.co.uk

Page 360 of 431

• Hardware Interaction, Windows Perspective

• Communication with Storage Devices

The ReadSector() Function

• Accessing Other Storage Devices

• Communication with Keyboard

Dynamic Linking

Windows Hooks

• Caps Locked, Permanently

• Did You Press It TTwwiiccee….

• Mangling Keys

• KeyLogger

• Where is This Leading

• Summary

• Exercise

617

618 Complete Guide To C
here are two types of Windows programmers those who are

happy in knowing the things the way they are under

Windows and those who wish to know why the things are

the way they are. This chapter is for the second breed of

programmers. They are the real power users of Windows. Because

it is they who first understand the default working of different

mechanisms that Windows uses and then are able to make those

mechanisms work to their advantage. The focus here would be

restricted to mechanisms that are involved in interaction with the

hardware under the Windows world. Read on and I am sure you

would be on your path to become a powerful Windows

programmer.

T
Hardware Interaction
Primarily interaction with hardware suggests interaction with

peripheral devices. However, its reach is not limited to interaction

with peripherals. The interaction may also involve communicating

with chips present on the motherboard. Thus more correctly,

interaction with hardware would mean interaction with any chip

other than the microprocessor. During this interaction one or more

of the following activities may be performed:

(a)

(b)

(c)

Reacting to events that occur because of user’s interaction

with the hardware. For example, if the user presses a key or

clicks the mouse button then our program may do something.

Reacting to events that do not need explicit user’s interaction.

For example, on ticking of a timer our program may want to

do something.

Preview from Notesale.co.uk

Page 362 of 431

parallel function for every DOS/BIOS function. Hence at

some point of time one has to learn how to call DOS/BIOS

functions.

Directly interacting with the hardware

At times the programs are needed to directly interact with the

hardware. This has to be done because either there are no

library functions or DOS/BIOS functions to do this, or if they

are there their reach is limited. For example, while writing

good video games one is required to watch the status of

multiple keys simultaneously. The library functions as well as

the DOS/BIOS functions are unable to do this. At such times

we have to interact with the keyboard controller chip directly.

However, direct interaction with the hardware is difficult

because one has to have good knowledge of technical details

of the chip to be able to do so. Moreover, not every technical

detail about how the hardware from a particular manufacturer

works is well documented.

Chapter 19: Interaction With Hardware 623

Hardware Interaction, Windows Perspective
Like DOS, under Windows too a hardware interrupt gets generated

whenever an external event occurs. As a reaction to this signal a

table called Interrupt Descriptor Table (IDT) is looked up and a

corresponding routine for the interrupt gets called. Unlike DOS the

IDT contains addresses of various kernel routines (instead of BIOS

routines). These routines are part of the Windows OS itself. When

the kernel routine is called, it in turn calls the ISR present in the

appropriate device driver. This ISR interacts with the hardware.

Two questions may now occur to you:

(a)

(b)

Why the kernel routine does not interact with the hardware

directly?

Why the ISR of the device driver not registered directly in the

IDT?

Let us find answer to the first question. Every piece of hardware

works differently than the other. As new pieces of hardware come

into existence new code has to be written to be able to interact with

them. If this code is written in the kernel then the kernel would

have to be rewritten and recompiled every time a new hardware

comes into existence. This is practically impossible. Hence the

new code to interact with the device is written in a separate

program called device driver. With every new piece of hardware a

new device driver is provided. This device driver is an extension

of the OS itself.

Let us now answer the second question. Out of the several

components of Windows OS a component called kernel is tightly

integrated with the processor architecture. If the processor

architecture changes then the kernel is bound to change. One of

goals of Windows NT family was to keep the other components of

OS and the device drivers portable across different microprocessor

Preview from Notesale.co.uk

Page 365 of 431

parameter is the number of sectors that we wish to read. This

parameter is specified as 1 since the boot sector occupies only a

single sector. The last parameter is the address of a buffer/variable

that would collect the data that is read from the floppy. Here we

have passed the address of the boot structure variable b. As a

result, the structure variable would be setup with the contents of

the boot sector data at the end of the function call.

Chapter 19: Interaction With Hardware 631
Once the contents of the boot sector have been read into the

structure variable b we have displayed the first few of them on the

screen using printf(). If you wish you can print the rest of the

contents as well.

The ReadSector() Function
With the preliminaries over let us now concentrate on the real stuff

in this program, i.e. the ReadSector() function. This function

begins by making a call to the CreateFile() API function as

shown below:

h = CreateFile (src, GENERIC_READ,

FILE_SHARE_READ, 0, OPEN_EXISTING, 0, 0) ;

The CreateFile() API function is very versatile. Anytime we are

to communicate with a device we have to firstly call this API

function. The CreateFile() function opens the specified device as

a file. Windows treats all devices just like files on disk. Reading

from this file means reading from the device.

The CreateFile() API function takes several parameters. The first

parameter is the string specifying the device to be opened. The

second parameter is a set of flags that are used to specify the

desired access to the file (representing the device) about to be

opened. By specifying the GENERIC_READ flag we have

indicated that we just wish to read from the file (device). The third

parameter specifies the sharing access for the file (device). Since

floppy drive is a shared resource across all the running

applications we have specified the FILE_SHARE_READ flag. In

general while interacting with any hardware the sharing flag for

the file (device) must always be set to this value since every piece

of hardware is shared amongst all the running applications. The

fourth parameter indicates security access for the file (device).

Since we are not concerned with security here we have specified

the value as 0. The fifth parameter specifies what action to take if

632 Complete Guide To C
the file already exists. When using CreateFile() for device access

we must always specify this parameter as OPEN_EXISTING.

Since the floppy disk file was already opened by the OS a long

time back during the booting. The remaining two parameters are

not used when using CreateFile() API function for device access.

Hence we have passed a 0 value for them. If the call to

CreateFile() succeeds then we obtain a handle to the file (device).

The device file mechanism allows us to read from the file (device)

by setting the file pointer using the SetFilePointer() API function

Preview from Notesale.co.uk

Page 371 of 431

and then reading the file using the ReadFile() API function. Since

every sector is 512 bytes long, to read from the nth sector we need

to set the file pointer to the 512 * n bytes from the start of the file.

The first parameter to SetFilePointer() is the handle of the device

file that we obtained by calling the CreateFile() function. The

second parameter is the byte offset from where the reading is to

begin. This second parameter is relative to the third parameter. We

have specified the third parameter as FILE_BEGIN which means

the byte offset is relative to the start of the file.

To actually read from the device file we have made a call to the

ReadFile() API function. The ReadFile() function is very easy to

use. The first parameter is the handle of the file (device), the

second parameter is the address of a buffer where the read contents

should be dumped. The third parameter is the count of bytes that

have to be read. We have specified the value as 512 * num so as to

read num sectors. The fourth parameter to ReadFile() is the

address of an unsigned int variable which is set up with the count

of bytes that the function was successfully able to read. Lastly,

once our work with the device is over we should close the file

(device) using the CloseHandle() API function.

Though ReadSector() doesn’t need it, there does exist a

counterpart of the ReadFile() function. Its name is WriteFile().

This API function can be used to write to the file (device). The

parameters of WriteFile() are same as that of ReadFile(). Note

Chapter 19: Interaction With Hardware 633
that when WriteFile() is to be used we need to specify the

GENERIC_WRITE flag in the call to CreateFile() API

function. Given below is the code of WriteSector() function that

works exactly opposite to the ReadSector() function.

void WriteSector (char *src, int ss, int num, void* buff)

{

HANDLE h ;

unsigned int br ;

h = CreateFile (src, GENERIC_WRITE,

FILE_SHARE_WRITE, 0, OPEN_EXISTING, 0, 0) ;

SetFilePointer (h, (ss * 512), NULL, FILE_BEGIN) ;

WriteFile (h, buff, 512 * num, &br, NULL))

CloseHandle (h) ;

}

Accessing Other Storage Devices
Note that the mechanism of reading from or writing to any device

remains standard under Windows. We simply need to change the

string that specifies the device. Here are some sample calls for

reading/writing from/to various devices:

ReadSector ("\\\\.\\a:", 0, 1, &b) ; /* reading from 2nd floppy drive */

ReadSector ("\\\\.\\d:", 0, 1, buffer) ; /* reading from a CD-ROM drive */

WriteSector ("\\\\.\\c:", 0, 1, &b) ; /* writing to a hard disk */

ReadSector ("\\\\.\\physicaldrive0", 0, 1, &b) ; /* reading partition table */

Here are a few interesting points that you must note.

(a)

Preview from Notesale.co.uk

Page 372 of 431

hkb = SetWindowsHookEx (WH_KEYBOARD,

(HOOKPROC) KeyboardProc, (HINSTANCE) h, 0) ;

if (hkb == NULL)

return FALSE ;

return TRUE ;

}

LRESULT __declspec (dllexport) __stdcall KeyboardProc (int nCode,

WPARAM wParam, LPARAM lParam)

{

short int state ;

if (nCode < 0)

return CallNextHookEx (hkb, nCode, wParam, lParam) ;

if ((nCode == HC_ACTION) &&

((DWORD) lParam & 0x40000000))

{

state = GetKeyState (VK_CAPITAL) ;

if ((state & 1)== 0) /* if off */

Chapter 19: Interaction With Hardware 639
{

keybd_event (VK_CAPITAL , 0,

KEYEVENTF_EXTENDEDKEY, 0) ;

keybd_event (VK_CAPITAL , 0,

KEYEVENTF_EXTENDEDKEY | KEYEVENTF_KEYUP, 0) ;

}

}

return CallNextHookEx (hkb, nCode, wParam, lParam) ;

}

BOOL __declspec (dllexport) removehook()

{

return UnhookWindowsHookEx (hkb) ;

}

Follow the steps mentioned below to create this program:

(a)

(b)

(c)

(d)

(e)

(f)

Select ‘File | New’ option to start a new project in VC++.

From the ‘Project’ tab select ‘Win32 Dynamic-Link Library’

and click on the ‘Next’ button.

In the ‘Win32 Dynamic-link Library Step 1 of 1’ select “An

empty DLL project” and click on the ‘Finish’ button.

Select ‘File | New’ option.

From the ‘File’ tab select ‘C++ source file’ and give the file

name as ‘hook.c’. Type the code listed above in this file.

Compile the program to generate the .DLL file.

Note that this program doesn’t contain WinMain() since the

program on compilation should not execute on its own. It has been

replaced by a function called DllMain(). This function acts as

Preview from Notesale.co.uk

Page 376 of 431

Hardware interaction can happen in two ways: (1) When the

user interacts with the hardware and the program reacts to it.

(2) When the program interacts with the hardware without any

user intervention.

In DOS when the user interacts with the hardware an ISR gets

called which interacts with the hardware. In Windows the

same thing is done by the device driver’s ISR.

In DOS when the program has to interact with the hardware it

can do so by using library functions, DOS/BIOS routines or

by directly interacting with the hardware. In Windows the

same thing can be done by using API functions.

Under Windows to gain finer control over the hardware we

are required to write a device driver program.

Interaction with the any device can be done using API

functions like CreateFile(), ReadFile(), WriteFile() and

CloseHandle().

Different strings have to be passed to the CreateFile()

functions for interacting with different devices.

Windows provides a powerful mechanism called hooks that

can alter the flow of messages before they reach the

application.

Windows hook procedures should be written in a DLL since

they work on a system wide basis.

Windows hooks can be put to many good uses.

Exercise
[A] State True or False:

In MS-DOS on occurrence of an interrupt values from IDT

are used to call the appropriate kernel routine.

Under Windows on occurrence of an interrupt the kernel

routine calls the appropriate device driver’s ISR.

Under Windows an application can interact with the hardware

by directly calling its device driver’s routines.

648 Complete Guide To C
(d)

(e)

(f)

(g)

(h)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Under Windows we can write device drivers to extend the OS

itself.

ReadSector() and WriteSector() are API functions.

While reading a sector from the disk the CreateFile()

function creates a file on the disk.

Preview from Notesale.co.uk

Page 382 of 431

might be different under different OS. For example, a printf()

would work under all OSs, but the way it is defined is likely to be

different for different OSs. The programmer however doesn’t

suffer because of this since he can continue to call printf() the

same way no matter how it is implemented.

652 Complete Guide To C
But there the similarity ends. If we are to build programs that

utilize the features offered by the OS then things are bound to be

different across OSs. For example, if we are to write a C program

that would create a Window and display a message “hello” at the

point where the user clicks the left mouse button. The architecture

of this program would be very closely tied with the OS under

which it is being built. This is because the mechanisms for creating

a window, reporting a mouse click, handling a mouse click,

displaying the message, closing the window, etc. are very closely

tied with the OS for which the program is being built. In short the

programming architecture (better known as programming model)

for each OS is different. Hence naturally the program that achieves

the same task under different OS would have to be different.

The ‘Hello Linux’ Program
As with any new platform we would begin our journey in the

Linux world by creating a ‘hello world’ program. Here is the

source code....

int main()

{

printf ("Hello Linux\n") ;

return 0 ;

}

The program is exactly same as compared to a console program

under DOS/Windows. It begins with main() and uses printf()

standard library function to produce its output. So what is the

difference? The difference is in the way programs are typed,

compiled and executed. The steps for typing, compiling and

executing the program are discussed below.

The first hurdle to cross is the typing of this program. Though any

editor can be used to do so, we have preferred to use the editor

called ‘KWrite’. This is because it is a very simple yet elegant

Chapter 19: Interaction With Hardware 653
editor compared to other editors like ‘vi’ or ‘emacs’. Note that

KWrite is a text editor and is a part of K Desktop environment

(KDE). Installation of Linux and KDE is discussed in Appendix H.

Once KDE is started select the following command from the

desktop panel to start KWrite:

K Menu | Accessories | More Accessories | KWrite

If you face any difficulty in starting the KWrite editor please refer

Appendix H. Assuming that you have been able to start KWrite

successfully, carry out the following steps:

(a)

(b)

Preview from Notesale.co.uk

Page 385 of 431

child or parent) attempt to change the value of a variable it is no

longer shared. Instead a new copy of the variable is made for the

process that is attempting to change it. This not only ensures data

integrity but also saves precious memory.

664 Complete Guide To C

Summary
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(a)

(b)

(c)

Linux is a free OS whose kernel was built by Linus Trovalds

and friends.

A Linux distribution consists of the kernel with source code

along with a large collection of applications, libraries, scripts,

etc.

C programs under Linux can be compiled using the popular

gcc compiler.

Basic scheduling unit in Linux is a ‘Process’. Processes are

scheduled by a special program called ‘Scheduler’.

fork() library function can be used to create child processes.

Init process is the father of all processes.

execl() library function is used to execute another program

from within a running program,.

execl() function overwrites the image (code and data) of the

calling process.

execl() and fork() usually go hand in hand.

ps command can be used to get a list of all processes.

kill command can be used to terminate a process.

A ‘Zombie’ is a child process that has terminated but its

parent is running and has not called a function to get the exit

code of the child process.

An ‘Orphan’ is a child process whose parent has terminated.

Orphaned processes are adopted by init process

automatically.

A parent process can avoid creation of a Zombie and Orphan

processes using waitpid() function.

Preview from Notesale.co.uk

Page 393 of 431

by sending a signal to our program. Since we have done nothing to

handle this signal the default signal handler gets called. In this

Chapter 21: More Linux Programming 669
default signal handler there is code to terminate the program.

Hence on pressing Ctrl + C the program gets terminated.

But how on earth would the default signal handler get called. Well,

it is simple. There are several signals that can be sent to a program.

A unique number is associated with each signal. To avoid

remembering these numbers, they have been defined as macros

like SIGINT, SIGKILL, SIGCONT, etc. in the file ‘signal.h’.

Every process contains several ‘signal ID - function pointer’ pairs

indicating for which signal which function should be called. If we

do not decide to handle a signal then against that signal ID the

address of the default signal handler function is present. It is

precisely this default signal handler for SIGINT that got called

when we pressed Ctrl + C when the above program was executed.

INT in SIGINT stands for interrupt.

Let us know see how can we prevent the termination of our

program even after hitting Ctrl + C. This is shown in the following

program:

include <signal.h>

void sighandler (int signum)

{

printf ("SIGINT received. Inside sighandler\n") ;

}

int main()

{

signal (SIGINT, (void*) sighandler) ;

while (1)

printf ("Program Running\n") ;

return 0 ;

}

In this program we have registered a signal handler for the SIGINT

signal by using the signal() library function. The first parameter

670 Complete Guide To C
of this function specifies the ID of the signal that we wish to

register. The second parameter is the address of a function that

should get called whenever the signal is received by our program.

This address has to be typecasted to a void * before passing it to

the signal() function.

Now when we press Ctrl + C the registered handler, namely,

sighandler() would get called. This function would display the

message ‘SIGINT received. Inside sighandler’ and return the

control back to main(). Note that unlike the default handler, our

handler does not terminate the execution of our program. So only

way to terminate it is to kill the running process from a different

terminal. For this we need to open a new instance of command

prompt (terminal). How to start a new instace of command prompt

is discussed in Appendix H. Next do a ps –a to obtain the list of

processes running at all the command prompts that we have

Preview from Notesale.co.uk

Page 396 of 431

710 Complete Guide To C
{

struct emp

{

char name[35] ;

int age ;

} ;

struct emp e = { "Dubhashi", 40 } ;

struct emp *ee ;

printf ("\n%d", e.age) ;

ee = &e ;

printf ("\n%d", ee->>age) ;

}

[17] Forgetting to use the far keyword for referring memory locations

beyond the data segment.

main()

{

unsigned int *s ;

s = 0x413 ;

printf ("\n%d", *s) ;

}

Here, it is necessary to use the keyword far in the declaration

of variable s, since the address that we are storing in s (0x413)

is a address of location present in BIOS Data Area, which is

far away from the data segment. Thus, the correct declaration

would look like,

unsigned int far *s ;

The far pointers are 4-byte pointers and are specific to DOS.

Under Windows every pointer is 4-byte pointer.

[18] Exceeding the range of integers and chars.

Appendix C: Chasing The Bugs 711
main()

{

char ch ;

for (ch = 0 ; ch <= 255 ; ch++)

printf ("\n%c %d", ch, ch) ;

}

Can you believe that this is an indefinite loop? Probably, a

closer look would confirm it. Reason is, ch has been declared

as a char and the valid range of char constant is -128 to

+127. Hence, the moment ch tries to become 128 (through

ch++), the value of character range is exceeded, therefore the

first number from the negative side of the range, -128, gets

assigned to ch. Naturally the condition is satisfied and the

control remains within the loop externally.

712 Complete Guide To C

Preview from Notesale.co.uk

Page 417 of 431

╗
187

╦
203

╠204 ╬ ╣185

206

╚ ╩ ╝
199

╙
211

╟ ╫
215

╓
214

╜
189

╢182

╨
208

╥ ╖183

210

188

202

200

─917

┌ ─
218 129

┼
197

195├

192└ 193┴

┐
191

┤ 180

┘ 217

194┬
Figure E.2

722 Complete Guide To C
Value Char Value Char Value Char Value Char Value Char Value Char

0 22 ▬ 44 , 66 B 88 X 110 n

1 ☺ 23 ↕ 45 - 67 C 89 Y 111 o

2 ☻ 24 ↑ 46 . 68 D 90 Z 112 p

Preview from Notesale.co.uk

Page 424 of 431

PURPOSE: Saves instance handle and creates main window

COMMENTS: In this function, we save the instance handle in a global

variable and create and display the main program window.

*/

BOOL InitInstance (HINSTANCE hInstance, int nCmdShow, char* pTitle)

{

char classname[] = "MyWindowClass" ;

HWND hWnd ;

WNDCLASSEX wcex ;

wcex.cbSize = sizeof (WNDCLASSEX) ;

wcex.style = CS_HREDRAW | CS_VREDRAW ;

wcex.lpfnWndProc = (WNDPROC) WndProc ;

wcex.cbClsExtra = 0 ;

wcex.cbWndExtra = 0 ;

wcex.hInstance = hInstance ;

wcex.hIcon = NULL ;

wcex.hCursor = LoadCursor (NULL, IDC_ARROW) ;

wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1) ;

wcex.lpszMenuName = NULL ;

wcex.lpszClassName = classname ;

wcex.hIconSm = NULL ;

if (!RegisterClassEx (&wcex))

return FALSE ;

hInst = hInstance ; // Store instance handle in our global variable

hWnd = CreateWindow (classname, pTitle,

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL,

NULL, hInstance, NULL) ;

if (!hWnd)

Appendix F: Helper.h 727
return FALSE ;

ShowWindow (hWnd, nCmdShow) ;

UpdateWindow (hWnd) ;

return TRUE ;

}

728 Complete Guide To C

G Boot Parameters
729

730 Complete Guide To C
he disk drives in DOS and Windows are organized as zerobased drives. That is, drive A is drive

number 0, drive B is

drive number 1, drive C is drive number 2, etc. The hard

disk drive can be further partitioned into logical partitions. Each

drive consists of four logical parts—Boot Sector, File Allocation

Table (FAT), Directory and Data space. When a file/directory is

created on the disk, instead of allocating a sector for it, a group of

Preview from Notesale.co.uk

Page 426 of 431

