VLOF: Lift off speed
- Short runways **higher flaps** to take-off faster **lower VLOF** but lowers **climb performance**
- Distant obstacles **lower flaps** higher **VLOF**, higher **ground roll distance**
- **Higher with increased mass**

V_{MCG}:
- Min control speed on the ground
- **No nose-wheel steering & no crosswind** used for determination
- Determined by engine thrust & rudder deflection
- Determined by primary aerodynamic control only
- \(V_{MCG} < V_{EF} < V_{1} \)

V_1:
- Pilot decides to **abort take-off AT V_1** (At the last resort)
- Limited by \(V_{MCG}, V_{R} \) & \(V_{MBE} \)
- Min value \(V_{MCG} \), max value \(V_{R} \)
- Must not be exceeded by \(V_{MBE} \)
 - Can be **higher** than \(V_{MU} \)
 - Value exceeds correct \(V_1 \) value = ASD will exceed the ASDA
 - \(V_1 \) increase but \(V_R \) the same = Increased ASD
- Higher value used with constant mass: TODR decrease & ASDR increase
- Reduced by **inoperative anti-skid** (Because you are braking manually you need a lower decision speed)
- OEI obstacle clearance reduces because of **contaminated runway**, but **climb performance remains constant**
- **Increased with mass** (Because higher mass requires more lift = more speed)
- **Down slope decreases** \(V_1 \)

V_R:
- Speed at which pilot should start to rotate the aeroplane
- If aircraft rotates earlier: Stabilizer trim setting miscalculated, centre of gravity too far aft (If calculated \(V_R \) does not cause early rotation, it is just a calculated value)
- Speed to which rotation to the lift off angle is initiated
- Must not be less than 1.05\(V_{MCA} \) or \(V_1 \)

V_{EF}: 2 seconds are for recognition

V_{MBE} (Max brake energy):
- Must not be exceeded by \(V_{EF} \)
- If TOM is \(V_{MBE} \) limited, an uphill requires less brake energy thus allows an **increased mass** (A good thing)

V_2:
- Take-off safety speed/take off climb speed or speed at 35ft
- May not be less than 1.13 \(V_{SR} \) for turbojets
- May not be less than 1.08 \(V_{SR} \) for turboprops
- May not be less than 1.10 \(V_{MCA} \)
- **Limited by \(V_{MCA} \)**: Large flap angles, high air pressure & low aircraft weight (What is good for thrust also increases adverse yaw OEI)
- **Decreases with higher flaps**
- **Increased \(V_2 \)** procedure(Improved take-off climb/climb performance procedure):
 - Only possible when an **excess field length** is available (ASD is not limiting)
 - Further screen height along runway
 - Increases **TODR & climb gradient** for a given TOM
 - \(V_{2MIN} \):
 - Decrease with higher flaps if not limited by \(V_{MCA} \)
 - Uses \(V_{SR} \) & \(V_{MCA} \)

V speeds affected by:
- Mass: Lower mass, lower speeds
- Density altitude: Density altitude increase, thrust decrease, lower \(V_{MCA} \) to counteract yaw OEI
- Low field elevation = lower speeds
- Flap settings: Higher flaps = decreased stall speed