General:

VENTURI EFFECT

- Static pressure maximum value
- Relative velocity = 0
- AOA
 - Decrease: Stagnation point moves forward /up, lowest pressure(CP) moves aft, COP moves aft
 - Increase: Stagnation point moves down, lowest pressure(CP) moves forward, COP moves forward until crit AOA
- Aerodynamic centre of an aerofoil:
 - Approx 25% chord irrespective/independent of AOA
 - Assume no flow separation, pitching moment coefficient does not change with carying angle of attack

POF

- Moves aft then turns down
- Increase wing area & camber
- 3. Slotted flaps:
- Increasing camber & re-energize flow through slots
- Krueger leading edge flap:
- Part of the lower surface of the leading edge, hinged at its forward edge _
- Slat:
 - Critical AOA increases when slat is deployed
 - Increases $C_{\mbox{\tiny LMAX}}$ more than it causes yawing moment
 - Large decrease in stall speed with relatively less drag
 - Slats are installed outboard (Near tips)
 - Higher contribuition to CLMAX than flaps at any position, greater effect on stall speed than flaps
 - Increase boundary layer energy at the suction peak (fixed point), postponing stall to higher AOA using venturi effect
 - An auxiliary leading edge device cambered aerofoil positioned forward of the main aerofoil so as to form a slot
 - Automatically operated by aerodynamic forces acting on the leading edge, when a certain AOA is reached
- Vortex generators:
 - Delays stall by reducing boundary layer separation, installed near wing leading edge -
 - Re-energize boundary layer
 - Transfer energy from the free airflow into the boundary layer
- Tailplane:
 - Increased downwash at tailplane = Increased negative lift (Downward lift of tailplane), producing a pitch up moment (Which opposes wing pitch down moment at wings upon flap deployment), and increasing effectiveness of the tailplane (More airflow over the tailplane & control surfaces)
- Asymmetric flaps:
 - Flap asymmetry causes rolling, slat asymmetry causes difference in CLMAX or yawing moment
 - Slightly asymmetric flaps: Causes a steady rate of roll which may be correctable with ailerons
- Spoilers:
 - Roll spoilers: Reduces lift on a part of wing, generating the desired rolling moment. There is local ase in drag which supresses adverse yaw
 - Spoiler extension increases the stall speed, the min rate of descent (PED) angle of descent
 - Symmetrically deflected spoilers: Decelerate aeroplane/decrease (a) may be used as speed brakes during flight Speed brakes increase drag in order to maintain a stee by government of descent, spoilers may be used as speed brakes

 - AOA constant, spoilers deployed: Crinereases & C. decreases
 - Flight level & speed constant: for incleases & C_L unaffected (Mor
 - Air brakes reduce min tresp
 - ecrease in lift Wing show nex casion causes an incr
- Boundary layers:
 - Laminar:
 - Less change in velocity close to surface
 - Lesser mean speed
 - Friction drag lower
 - Thinner
 - More tendency to separate from the surface
 - Less kinetic energy than turbulent layer
 - No velocity components exist normal to surface
 - Turbulent:
 - More change in velocity close to surface
 - More mean speed
 - Friction drag higher
 - Thicker
 - Less tendency to separate from the surface
 - More kinetic energy than laminer layer
 - Compared with laminar layer, a turbulent boundary layer is better able to resist a positive pressure gradient before it separates
 - Skin friction drag:
 - Increases with age
 - Ageing causes the transition point to move forward & larger part is turbulent
- Icing:
 - Frost: Decrease in lift & an increase in drag
 - Increases landing distance up to 40 50%
 - Most critical during rotation
 - Ice accretion causes reduction in C_{LMAX}, increase of drag

Coffin corner: Stall speed = critical mach number, speed is too low & too high at the same time

M_{CRIT} influence

- Sweepback:
 - Appearance of shockwaves: Decreased velocity of air perpendicular to the leading edge
 - M_{CRIT} Increases with sweepback
 - M_{CDR}(Drag divergence mach number) increases with sweepback
 - Straight wing vs sweepback: 1.154 times increase of M_{CRIT} theoretically but half that value practically
 - Slower onset of transonic drag rise
 - Higher C_D in-flight
 - Lesser effectiveness of high life devices (Flaps etc.) as sweepback is increased
- Thickness/chord ratio:
 - **Reduced**: Delays onset of shock wave, reduces transonic variations in lift & drag coeffcients C_L/C_D
 - Thin aerofoils increases M_{CRIT}
 - Thick aerofoil & high AOA decreases/lowers M_{CRIT}
- Area ruling:
 - Gives aircraft smooth cross-sectional area distribuition -
 - Decreases wave drag
 - Gives "waist" or "coke bottle" shape
 - Camber: Larger camber gives lower M_{CRIT}
- Supercritical aerofoil:
 - Larger nose radius, flatter upper surface & with negative as well as positive camber
 - Allows a wing of relative thickness to be used for approximately the same cruise Mach number
 - Shows no noticeable shockwaves when flying just above M_{CRIT}
- Vortex generators
 - Decrease wave drag
 - Decrease shockwave induced separation

Stability:

- For a plane to have dynamic stability it needs static stability & suffic
- Tends to return: Positive static stability, initial tendency to o equilibriu
- Returns: Positive dynamic stability
- Less stability = more manoeuvrability & v
- Sum of moments about or e a bis
- An angular at ce Clatton about that ax se Aeroplate starts to rotate about its centre of gravity

Longitudinal stability(Around lateral axis):

- Transport aircraft load factor limit: 2.5G
- Positive static longitudinal stability: Nose down moment occurs after an upgust
- Phugoid:
 - Slow changes in speed & altitude
 - Dynamic longitudinal stability
 - Altitude varies significantly
 - Speed varies significantly
 - Can be easily controlled by the pilot
 - Long period of weak damping
- Short period oscillation:
 - Altitude remains approximately constant
 - Speed remains approximately constant
 - Should always be heavily dampened
- Directly influenced by centre of gravity (CG):
 - Aft CG limit: Determined by minimum acceptable static longitudinal stability, minimum value of the stick force per G
 - Fwd CG limit: Limited by insufficient flare capability & insufficient in-flight manouevrability, minimum control response
 - Neutral point: Aircraft become longitudinally unstable when CG is shifted beyond this point
 - CG static margin: Distance between CG datum & CG neutral point
 - Magnitude of stick force determined by distance the CG is forward of the neutral point
- Contribuitions to static longitudinal stability :
 - Engine nacelles aft of CG have positive contribution to static longitudinal stability
 - Wing contribuition depends on CG location relative to the wing aerodynamic centre May be negative, also with flaps

ping

