Propulsion Systems, Lecture 1

Introduction

Classifications of propulsion systems:

- 1) Airbreathing: reciprocating, turbojet, turbofan, turboprop, turboshaft, ramjet, scramjet, pulsejet, pulse detonation engine
- 2) Non-airbreathing: chemical rockets (gas, liquid, solid, hybrid), electric, nuclear, solar, laser, biological

Overall goal of these systems:

- 1) Take mass from surroundings and throw it backwards
 - a. Take \dot{m} at V₀ (flight speed) and throw it out at V₀ + Δ V
- 2) Take mass onboard vehicle and throw it backwards

Physical concepts of importance used to understand propulsion systems

- Fluid mechanics (e.g., thrust, rotating machinery)
 Fluid mechanics: aerodynamics (e.g., blades), gas dynamics (e.g., inlet/mcz/ec, compressors/turbines)
 Thermodynamics (e.g., cycle analysis, liquid blace clange)
 Heat transfer (e.g., turbine blades entropy of the state of the st
- 1 of 6
- 4) Heat transfer (e.g., turbine blades and ket no-zie)
- 5) Chemistry (e.g., combuster)

Note of Dhrs and dimensions:

- 1) In this class all problems will be solved/given in SI units.
- 2) However, the text provides derivations/formulas for either SI or English.
- 3) $\sum \vec{F} = \frac{d(m\vec{V})}{dt}$ works fine in SI: N = (kg*m/s)/s
- 4) However, in English there is a problem: lbf = (lbm*ft/s)/s
- 5) Must include conversion from lbm to lbf, $g_c = 32.174$ ft*lbm/(lbf*s²): $\sum \vec{F} = \frac{1}{a_c} \frac{d(m\vec{V})}{dt}$
- 6) Don't get confused when you see g_c in book. In SI $g_c = 1$.