Stability of oxides

Descending the group IV:
- The +2 oxidation state becomes more stable
- The +4 oxidation state becomes less stable

Tetrachloride

<table>
<thead>
<tr>
<th>Formula</th>
<th>XCl₄</th>
</tr>
</thead>
</table>
| **Structure** | • Molecular structure
• All XCl₄ molecules held together in liquid state by weak Van der Waal’s forces
• Low boiling points and liquid at room conditions |
| **Boiling points** | • Increases down the group
• Molecules get larger, electron cloud is relatively easier to distort
• Stronger Van der Waal’s forces
• More energy required to overcome this force in order to boil |
| **Shape** | Tetrahedral shape with bond angle of 109.5° |
| **Thermal stabilities** | Down the group:
• Thermal stabilities decrease
• Covalent bond becomes weaker as the atoms get larger
• Inert pair effect makes the +IV oxidation less stable down the group

- **CCl₄** is stable to heat
- **PbCl₄** is a yellow liquid which slowly decomposes at room temperature to lead (II) chloride and chlorine gas
 \[\text{PbCl}_4 \rightarrow \text{PbCl}_2 + \text{Cl}_2 \]
 Yellow solid
 White solid |
| **Hydrolysis with water** | 1. **CCl₄** does not react with water because a water molecule cannot form dative bond with the carbon atom as it does not have any vacant 3d orbitals.
2. **SiCl₄** + **2H₂O** → **Si(OH)₄** + **4HCl**
3. **GeCl₄** + **2H₂O** → **GeO₂ + 4HCl**
4. **SnCl₄** + **4H₂O** → **Sn(OH)₄ + 4HCl**
5. **PbCl₄** + **4H₂O** → **Pb(OH)₄ + 4HCl** |