Endocrine glands

• The principal endocrine glands in the human body are the hypothalamus, pituitary, thyroid, parathyroids, adrenals, pancreatic islets, gonads, and pineal.

• Some organs have an endocrine function in addition to their main function, e.g. the heart, lungs, kidneys, liver, gastrointestinal tract, and placenta.
1) **hormones** synthesized from cholesterol eg adrenal cortex hormones like aldosterone and cortisol

2) **Polypeptide / Protein hormones** eg anterior and posterior pituitary gland hormones, pancreas, parathyroid

3) **Derivatives of amino acid tyrosine** eg thyroid hormone (thyroxine and triiodothyroxine) and adrenal medullae (epinephrine and norepinephrine)
MECHANISM OF ACTION OF HORMONES

• Hormones of the same class have similar mechanism of actions. They can be divided into classes of hormones:

 – Lipid soluble hormones (Lipophilic)

 Steroid + thyroid hormones

 Hydrophobic
 Membrane permeable

 – Polar/ non lipid soluble Hormones

 All other hormones

 Hydrophilic
 Membrane-impermeable
Second messengers

• Some actions of hydrophilic hormones are carried out and completed on binding of the hormone to its receptor without the need to another chemical mediator, activation or inhibition of ion channels.

• Most of hydrophilic hormones, however, exert their actions on target cells by inducing the production of another, chemical mediator inside the cell.
EFFECTS ON cAMP LEVELS

ACTIVATION OF ADENYLATE CYCLASE
- Hormone
- Protein receptor
- G protein (activated)
- Adenylyl cyclase
- cAMP
- Acts as second messenger
 - Activates enzymes
 - Open ion channels

INHIBITION OF ADENYLATE CYCLASE; ACTIVATION OF PDE
- Hormone
- Protein receptor
- G protein (activated)
- PDE
- cAMP
- Reduction in cAMP leads to enzyme inhibition

Examples:
- Epinephrine and norepinephrine (β receptors)
- Calcitonin
- Parathyroid hormone
- ADH, ACTH, FSH, LH, TSH
- Glucagon

EFFECTS ON Ca²⁺ LEVELS

EXTRACELLULAR FLUID
- Hormone
- Protein receptor
- G protein (activated)
- PLC
- Opening of Ca²⁺ channels
- Entry of Ca²⁺
- Activates enzymes

Cytoplasm
- Calcium
- Acts as second messenger
- Calmodulin

Activation of Phospholipase C
- PLC
- via DAG
- via IP₃
- Release of stored Ca²⁺

Examples:
- Epinephrine and norepinephrine (α and β receptors)
- Oxytocin
- Regulatory hormones of hypothalamus
- Several eicosanoids

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings