Chemistry (Tuesday)

Fuels

- Calorific Value
 - High: HCV (Grates) - includes latent heat of vap
 - Low: LCV (Net) = HCV

\[LCV = HCV - \frac{9 \times H \times 587 \text{ cal/g}}{100} \] (latent heat of vap)

- Properties of fuel - moderate ignition temp
 - Cheap - easily available - high CV - low CV

- Determination of C.V. of a fuel
 - Bomb Calorimeter - heat is measured

\[\text{Heat gained} = \text{Heat lost} \]

\[C \times \Delta T = (W + C_0) (T_2 - T_1) \]

- Corrections:
 1. Mg oxide correction (heat generated when MgO reacts with H_2O)
 2. Acid correction (cuten acid made by HCl and excess)
 3. Cooling effect (error in temp due to simultaneity)
So, \(C_x = (W + w)(T_2 - T_1 + \theta) - (\theta + 0) \)

Boyle's Calorimeter

- Combustion chamber
- Condensed water
- Heat gained: \(W = (T_2 - T_1) \)
- \(\text{mass of condensed H}_2\text{O} \)

Dulong's Formula - to measure theoretical \(CV \)

\[
HCV = \frac{1}{100} \left[8080C + 634500 \left(\frac{H - O}{8} \right) + 2240S \right] \text{cal/g}
\]

\(C = \) molality of \(H_2O \) as not all \(H \) and \(O \) contains \(H \) of \(H_2O \) so we subtract it.

In \(H_2O \):
- 16 g of O = 2 g H
- 18 g of O = \(\frac{18}{16} \) H
- 9 g of O = \(\frac{9}{16} \) H
Number of 3 phases in one complex (P, M) and each phase has its own phase, i.e.,

\[\beta_x = \beta_p \rightarrow \text{dem. total} = \beta_p \]
\[\beta_x = \beta_r \]

New no of eq. is possible at equilibrium:
\[C(P-1) \]

\[F = \frac{(P(C-1)+2)}{C-1} - (C-1) \]
\[F = C - P + 2 \]

Add. - simple method to classify eq. states
- explains behaviour of \(x \)

One Component System (Homogeneous system):

\[\uparrow \text{boiling curve} \]

\[P \text{ (atm)} \quad 1 \text{atm} \quad 4 \text{ atm} \quad 4 \text{ atm} \]

\[T \text{ (°C)} \quad 0 \quad 100 \quad 374 \]

\[F = 2, P = 1 \]

\[0.07 \text{ °C} \]

\[T \rightarrow \text{subsolidus} \quad \text{curve} \]

\[\text{Solid} \quad \text{Liquid} \quad \text{Vapour} \quad \text{Pressure} \quad \text{curve} \]

\[AOB = \text{vapour} \]
\[AOC = \text{vapour} \]
\[BOC = 1 \text{ mol} \]

\[O = \text{Triple point} \ (F = 0, P = 3) \]
\[AO = \text{vapour-liquid} \]
\[OB = \text{Ice-water} \]
- Poison - Negative Catalyst
 - Characteristics of a good catalyst -
 - retain back after re-use - at optimum temp
 - specific in their act* - selective in nature

- Homogeneous Catalyst -
 - Acid Base - Enzymes - Wilkinson's

- Acid - Base Catalyst -
 - They are of two types - specific & general
 - a. Acid - catalysed by H+ ions only
 - (Acetic acid)
 - Eg - Inversion of carbohy.
 - b. Base - catalysed by OH- ions only
 - (Ammonia & water)
 - Eg - Hydrogenation

- g. Acid- catalysed by all types of acid
 - Eg -
 - \(\text{CH}_3 - \text{C} - \text{CH}_3 + I_2 \xrightarrow{\text{catalyst}} \text{CH}_3 - \text{C} - \text{CH}_3 I \)
 - (iodoacetic acid)

- g. Base - catalysed by all types of base
 - Eg -
 - \(\text{NH}_2 \text{NO}_2 + \text{CH}_3\text{COOH} \rightarrow \text{N}_2 \text{O} + \text{H}_2 \text{O} \)
 - (decomp. of nitramide cat. by acetate ion)
Rate = \frac{-d[S]}{dt} = R_3 [S H^+] [A^-]

Applying SSA,

\[[S H^+] [A^-] = \frac{R_1 [S][A H^+]}{R_1 + R_3} \]

Rate = \frac{R_1 R_3 [S][A H^+]}{R_2 + R_3}, general acid

Enzyme Catalysis:
- Highly biological processes
- Specific in nature: work at optimum temp.
- Work only at optimum pH (7.4)
- Inhibitors
- Co-enzymes: metal ions (Na^++, Cu^2+, Mg^2+)

Temperature vs. rate of reaction:
- Optimum temp.
- H+parent pH. - IF temp. denature, enzyme destroys

Mechanism of Enzyme Reaction:
- Lock & key Model
- Intermediate formed: decrease energy of activation
- Unstable, so breaks down fast

\[\text{Reactant} \rightarrow \text{enzyme} \rightarrow \text{complex} \rightarrow \text{product} \rightarrow \text{ready type enzyme} \]
Kinetics of Enzyme Catalysis (Michaelis-Menten)

\[
\frac{S + E}{R_1} \xrightarrow{R_2} [ES] \quad \text{(fast)}
\]

\[
[ES] \xrightarrow{R_3} P + E \quad \text{(slow)}
\]

So, Rate = \(R_3[ES] \)

By SSA,

\[
R_1[ES][E] - R_2[ES] - R_3[ES] = 0
\]

\[
[ES] = \frac{R_1[ES][E]}{R_2 + R_3}
\]

\[[E] \text{ can be determined, so,} \]

\[
\frac{[E]}{[S] + R_3 + R_2}
\]

\[\frac{[S]}{R_1} \text{ (Michaelis-Menten constant)} \]

For initial rate,

\[
\frac{r_0}{R_3} = \frac{[S_0][E_0]}{[S_0] + R_m}
\]

I. \([S_0] \gg R_m, \) \(\frac{r_0}{R_3} = \frac{[E_0]}{[S_0] + R_m} = V_{\text{max}} = \frac{V_{\text{max}}}{[S_0]} \quad \text{generation}
\]

II. \(R_m \gg [S_0], \) \(\frac{r_0}{R_3} = \frac{[E_0][S_0]}{R_m} \quad \text{Lancaster}\)

\[\frac{r}{R_m} = \frac{V_{\text{max}}}{[S]} \]

If \(R_m = 5, \) \(r = \frac{V_{\text{max}}}{5} \)
Catalysis by Metal Salts
- Wilkinson's catalyst

Mechanism:
- Solvent

Equation:
\[\text{Cl} + \text{R} \rightarrow \text{Rh} \rightarrow \text{Rh}^{(II)} \rightarrow \text{Rh}^{(III)} \]

Reactions:
- \[\text{R} - \text{Cl} \]
- \[\text{H} - \text{H} \]