\[ P(\text{money back}) = P(\text{Money back without ETP}) + P(\text{ETP with money back}) + P(\text{DBP with money back}) = 7.81\% + 0.24\% + 0.24 = 8.29\% \]

Note: The following below is the probability of the house losing and let E(x) stand for expected value

\[ P(\$2) = P(+2 \text{ tokens}) + P(\text{ETP*+2 tokens}) = 15.63\% + 0.49\% = 16.12\% \]
\[ P(\$4) = P(\text{DBP*+2 tokens (+4)}) = 0.49\% \]
\[ P(\$20) = P(\text{win double}) + P(\text{ETP*win double}) = 9.38\% + 0.29\% = 9.67\% \]
\[ P(\$40) = P(\text{win triple}) + P(\text{ETP*win triple}) = 3.13\% + 0.10\% = 3.23\% \]
\[ P(\$60) = P(\text{jackpot}) + P(\text{ETP*jackpot}) + P(\text{DBP*win double (x4)}) = 1.56\% + 0.05\% + 0.29\% = 1.90\% \]
\[ P(\$100) = P(\text{DBP*win triple (x6)}) = 0.10\% \]
\[ P(\$140) = P(\text{DBP*jackpot (x8)}) = 0.05\% \]

\[ E(x) = P(\text{Player losing}) - (P(\$2) + P(\$4) + P(\$20) + P(\$40) + P(\$60) + P(\$100) + P(\$140)) \]
\[ E(x) = 20(0.6016) - [2(0.1612) + 4(0.0049) + 20(0.0967) + 40(0.0323) + 60(0.019) + 100(0.001) + 140(0.0005)] = 7.1540 \]

\[ 7.1540/20 = 0.3577 \text{ per dollar bet} \]

Therefore, the house is expected to make $0.36 for every dollar when a player bets $20

**Expected value per dollar bet:**

Average gain per dollar bet = \( \frac{(0.2038 + 0.3064 + 0.3406 + 0.3577)}{4} \)

\[ = \frac{1.2085}{4} = 0.30 \]

Therefore, the house is expected to make an average of $0.30 for every dollar when a player bets any amount.