N_s = speed of rotating magnetic field.

N = speed of rotor.

 $N_s-N =$ relative speed.

- If rotor catches the speed of rotating magnetic field the relative motion between rotor speed & speed of rotating field vanishes.
- Relative speed is main cause of induced emf in rotor. i.e. $N_s N = 0$, induced emf will vanish & hence there will not be rotor current & flux which is required to produce torque on rotor. Eventually the motor stops.
- Immediately there will exist a relative motion $N_s N$ & motor will start. _
- But due to inertia of rotor this does not happen in practice & rotor continues to rotate with a speed slightly less than synchronous speed of rotating magnetic field.
- So induction motor never rotates at synchronous speed. _

 $N < N_s$

So it can be said that rotor slip behind the rotating magnetic field produced by stator.

The difference between rotor speed & synchronous speed is called slip speed of motor.

Slip speed = $N_s - N$

- esale.co.uk of synchronous speed of the rotating The slip speed is generally expressed to a magnetic field.
- between sincervations speed (N_s) & actual speed (N) Slip is defined as diffe \mathbf{U}_{s} speed (N_s).

$$S = \frac{Ns - N}{Ns}$$
 (absolute slip)

% S =
$$\frac{Ns - N}{Ns}$$
 * 100----- (% slip)

At start, M=0 \therefore S=1

This is maximum slip and minimum slip is zero for which N=N_s.

Actually motor rotates in slip range of 1% to 5%.

$$N_{s} = \frac{120f}{p} \qquad \& \qquad N_{s} - N = \frac{120f}{p}$$
$$\frac{f}{f} = \frac{Ns - N}{Ns} = S$$