CHAPTER 5: LIPIDS

WHAT ARE LIPID

- Diverse (many and different) group of organic substance – insoluble in water
- Include:
 - Triglycerides
 - Phospholipids
 - Sterols
- Lipid stored in adipose tissue → protect & insulate organ

TRIGLYCERIDES ARE THE MOST COMMON FOOD-BASED LIPID

- Triglycerides contain 3 fatty acids attached to a 3-carbon glycerol backbone
- Fatty acids:
 - Long chain of carbon bound together to hydrogen atoms
- Glycerol:
 - Backbone of triglyceride molecule
 - Composed of 3-carbon atom. One fatty acid attaches to each of these 3-carbon to make triglyceride.
- Can be classified by:
 - Chain length (number of each carbon in fatty acid)
 - Level of saturation (how much hydrogen attached to carbon atom in fatty acid chain)
 - Shape (how they commercially processed)

These factors influence how triglycerides is used in body and affect health

Triglycerides Vary in Chain Length

Short-chain fatty acids: fewer than six carbon atom in length

Medium-chain fatty acids: fatty acids that are 6-12 carbon atoms in length

Long-chain fatty acids: fatty acids are 14 or more carbon atoms in length

Fatty acid chain length:
- determines the method of digestion and absorption
- affects how triglycerides are metabolized and used within the body

NOTE:
Short- and medium-chain are digested, transported, and metabolized more quickly than long-

Triglycerides Vary in Level of Saturation

Saturated fatty acid (SFAs):
- fatty acids have no carbon joined together with double bond

\(^1\) isolate
fatty acids are generally solid at room temperature.

Because every carbon atom in the chain is saturated with hydrogen: each has the maximum amount of hydrogen bound to it

Monounsaturated fatty acids (MUFA

- 2 carbon in the chain bound to each other with one double bond
- Generally liquid at room temperature
- Example: olive oil, canola oil, peanut oil, cashew nuts

Polyunsaturated fatty acids (PUFA

- Have more than 1 double bond in the chain
- Generally liquid at room temperature
- Example: cottonseed, canola, corn, and safflower oils

Carbon Bonding Affects Shape

cis fatty acids:
- hydrogen atom located on the same side of double
 - make molecules kinked

trans fatty acids:
hydrogen atom opposite side of a double carbon bond
- make them overall straighter and rigid

Hydrogenation:
- process adding hydrogen to unsaturated fatty acids
 - make them more saturated and thereby more solid at room temperature
- During the process, the double bond found in mono- and poly- fatty acids in the oil are broken and make oil more solid at room temperature
- Function: help food contain these fats
- partially hydrogenated: some of double bonds are broken

Research: saturated and trans fatty acid raise blood cholesterol levels and appear to change cell membrane function ➞ increased risk for cardiovascular disease

Some Triglycerides Contain Essential Fatty Acids

- Essential fatty acid:
 + must be consumed in the diet ➞ can’t not be made by the body
 + two essential fatty acids are linoleic acid and alpha linoleic acid
- Linoleic acid:
 + Aka: omega-6 fatty acid.
 + found in vegetable, nut oils, such as sunflower, safflower, corn, soy, and peanut oils