Object-Oriented & Component-based Software Development

Programming Style, classes, methods, UML

Frameworks 4. Multithreading, I/O, N/W

Design Patterns 6. Typing & Memory management

Software Engineering I & II

Component-based software

Java beans, EJB components

Web services, components

Fundamentals of Computing and Computer Systems

Digital Logic, Arithmetic

Sets, Theory of Computation

Data Structures

Algorithms

Computer Architecture - instruction sets, CPU, RISC, CISC

Supervisor

OS - threads, processes

OS - concurrency, memory management

OS - I/O, file systems

ADVANCES IN DATA MANAGEMENT

1. Relational model, SQL

- databases: collection of data; shared
 - DBMS: set of programs for managing databases
 - database system: database + DBMS

- 3 schema architecture: physical design + conceptual design + views

- physical & logical independence

- DDL + DML

- objectives: controlling redundancy
 - data structuring & efficient access
 - simultaneous access
 - indexes
 - security (integrity, backup)

- relational model: table, tuple, column, domain
 - key: rows
 - relational algebra
DATA INTEGRATION & WAREHOUSING

1. Introduction & basics, web data models

- Why? apps need to work with data from different sources

- Difference: data models, schema, entities, duplication, conflicts

- Proven & consolidation in order to provide:
 - correctness & completeness
 - single data model & schema
 - 1 entity rep
 - no conflicts

- Heterogeneity
 - Tech: means to access data
 - Syn: encoding

- New SQL
 - data fits into MS
 - logging or persistent DB
6. Data cleaning, quality & fusion

- Providers have different levels of knowledge, view, intentions.
- Info is wrong, biased, outdated, incomplete, inconsistent.
- Depends on consumer on how to use it.
- Data Provenance
 - Info on how data was produced.
 - Simple vs. full provenance.
 - Who processes.
 - Publish provenance on web.
 - Vocab.
 - Time stamp.
 - Metadata.

- Data quality
 - Fitness for use.
 - Enterprise vs. web content.
 - Control / no control.
 - Dimensions.

- Content tech.
 - Intellectual formatting.
DATA MINING

3. Data Mining Process, Preprocessing

- Extraction of useful patterns from data source, which are valid, novel etc

- Basic tasks:
 - Classification, clustering, association rule mining, regression

- Processes:
 - Understand application domain
 - Select sources, collect data
 - Preprocess data mining
 - Post-processing incorporates them

- Applications:
 - Marketing
 - Engineering
 - Tedd
 - Web

Tests

- Two-tailed
 - Upper-tailed
 - Lower-tailed

- F-score

- ANOVA: Analysis of Variance
 - Two or more sample
 - Between / within group variance
 - Independence of observations
 - Normality
- distance of 2 clusters
 - single, complete, avg, centroid

- distance function
 - euclidean distance
 - manhattan distance
 - chess board

- dissimilarity
- cosine

- data standardization
 - z-scores have a mean of zero
 - interval-scaled
 - ratio-scaled

- trial/ error
- evaluation
 - confusion matrix, precision, recall, F-1
 - entropy, purity
 - intra-cluster cohesion / inter-cluster separation

9. classification
- learn a target function that can predict values
- training / testing
- distance if training test data are same

- decision tree
 - NP hard, best tree
 - convert list of rules
 - recursive partitioning based on information gain
 - overfitting
 - preprocessing / postprocessing

- evaluation of classifiers
 - accuracy
 - holdout set, n-fold cross validation
 - precision, recall, F-1
 - score (prob that x belongs to i-th class)
2. Search Strategies
 - Concepts
 - State space
 - path
 - frontier (readable)
 - solution (good bit)
 - Algorithms
 - Tree search (exp)
 - Graph search (state sequence)
 - Uninformed search
 - informed search
 - strategy for expansion
 - evaluation - complexity, graph complexity, optimality (branching factor, depth)
 - Adversaries
 - BFS, DFS, Depth-limited, Uniform cost, Bidirectional
 - Game Life

 \(A^* \rightarrow g(n) + h(n) \)

 - Local search & optimization
 - hill climbing (gradient ascent decent) (local maxima)
 - Simulated annealing
 - expect bad move with prob
 - Tabu algorithm (random, mutate, crossover, iter)

 - Game playing AI
 - Minimax search
 - Alpha-Beta pruning
 - Evaluation function (for board position)
Knowledge representation and Logic

- Knowledge-based agent
- Knowledge base
- Not
- Propositional logic
- First-order logic
- Reasoning via inference

Logic
- Sentence
- Well-formed (meaning)
- Model, true/false
- Entailment
- Inference: e.g. sound, complete

Propositional logic
- Syntax
 - \(\land, \lor, \rightarrow, \leftrightarrow, T, F \)

- Inference
 - Rule: \(\forall x, \exists y (x \rightarrow y) \)
 - \(\forall x \forall y (x \leftrightarrow y) \)
 - Linear with hemi-clauses (almost first order)

- First-order Logic
 - Objects, relations (arity), constants, properties, functions
 - Quantifiers
 - \(\forall x \) (universal, restricted)
 - \(\exists x \) (existential)
 - Equality
 - Cloud world assumption
 - Inference
 - Convert to propositional logic (complete, inefficient)
 - Generalised resolution
 - Frege/Boolean chains
 - Resolution
 - Convert to LNF, search P1 (what to instantiate)
- new node in main memory
- data node
 - block server, block report
 - pipelining
 - block placement, data correctness, failures
- distributed access structures
 - indexing
 - tree, hash
- consistent hashing, distributed hash directories
- Amazon Dynamo, BTREE
 - Bigtable, BTREE + non-index index tables
- data model: Kvs + key (tablets)

5. Map Reduce & Hadoop
- divide & conquer
- scale-out, hide sys details from programmers
 - sync to others
 - comm + shared resource access
 - prg models lower, (mpi, threads)
 - DF: master/slave, prod ones
 - shared worker queues
- map, shuffle & sort, reduce
 - extract, group, aggregate
- MR: combine handlers
 - scheduling
 - data distribution
 - sync
 - error, failure
 - coordination/dealing with failures
- DFS + LFS
Beyond MR:

- BSP
 - processors & communication
 - supersteps - local map + count
 - barrier sync
 - pregel, graph, hama

7. Data Management, Link Analysis, information retrieval in the cloud

- KDBMS v/s MR
 - multipurpose
 - fault tolerant
 - native data

- DB workloads
 - OLTP
 - read-write, small queries, random reads & writes
 - OLAP
 - batches, less concurrency, complex query,
 - large scans for query
 - hadoop: cheaper than parallelized DBs
 - rel alg ops: proj, sel, join, cartesian, union,
c diff, group by, rename
 - proj: map over tuples
 - sel: map over tuples
 - group by: reduce
 - join: map-side, reduce-side, in-memory (hash)
 - Hive, Pig
Index construction
- map over all docs, emit term as key
 (doc, tf) as value
- sort/shuffle - group postings
- reduce - gather, sort, emit postings

 Retrieval
- MR optimized for throughput
 latency, mRstart is expensive
 real-time
- partition of terms/docs
- replication, caching
- ranking

Link analysis
- key: node
 value: adjacency list
 map: adjacency list
 sort/shuffle: group distances by reachable nodes
 reduce: set min distance for each reachable node

Semantic Web Technologies
1. Introduction, Layers
 - gobal vs foundations of semantic web
 - today: synthetic web
 - computers do presentation, humans do
 linking & interpretation
 impossible tasks
 - complex queries involving background
 knowledge
 - web service
 - agent
 - location info in data repositories
 - make implicit knowledge explicit
 - add extra info in a std way
 make it w/c readable
 - set is a set of technologies to realize
 web of data
 - novel w/c understandable language
 rules, ontologies
ontology: explicit specifications for a conceptualization

layers: unicode + uri
xml + namespace + xschema
rdfs + rdf
ontology
logic
proof
trust

HTML: is about presentation
XML: more structure (nesting)
content / formatting (data exchange)
tree model
DTD/XMLs
namespaces

XSL

XSLT xpm xsl-p c
not powerful enough for csw

2. RDF metadata

- subject, predicate, object (mathematical logic)
 ↓
 domain, range (unequal relation) (n-ary)

- resource description framework
- s, p, o all are uris
- triples, xml syntax
- blank node
- container elements
 - bag
 - seq
 - alt
 - verification
 - str
 - alt
 - str
6. Typing, Memory management

- For every operation, types of data on which it is applicable
- Weak/strong typing
 - Type-safe
 - Prevent value of one type to be treated as another

- Static/dynamic typing
 - Compile-time (no type for variable) during prog.
 - Run-time

- Activation records: allocated when proc is entered & deallocated when proc is exited
 - (Info needed by single of proc)
deadlock
- conditions
 - mutual exclusion
 - hold & wait
 - no preemption
 - circular wait
- resource allocation graph
- deadlock prevention/avoidance (future process request)
 - banker algorithm (claim matrix, resource matrix)

Memory Management
- prog relative address, actual address
- registers: base & band

- partitioning, placement: best fit, fixed, dynamic, next fit
- virtual memory
 - paging (replacement, locality, thrashing)

Operating System - I/O, File Systems
- devices
 - devices controller
 - I/O
 - prog, interrupt, DMA
 - device drivers
 - buffering: block, stream
 - disk performance parameters
 - seek, rot, access, latency, time
 - disk scheduling
 - FIFO, SSTF, SCAN
- RAID
- disk cache, LRU