Object-Oriented & Component-based Software Development

Programming Style, classes, methods, UML

Interface, polymorphism, encapsulation, inheritance, AOT

Frameworks

1. Multi-threading, I/O, N/w

Design Patterns

6. Typing & Memory management

Software engineering

Component-based programming

Java beans, EJB components

Web services components

Fundamentals of Computing and Computer Systems

Digital Logic, Arithmetic

Sets, Theory of Computation

Data Structures

Algorithms

Computer Architecture - Instruction sets, CPU, RISC, CISC

Operating System - Threads, processes

OS: concurrency, memory management

OS: I/O, File Systems

ADVERTISE IN DATA MANAGEMENT

1. Relational model, SQL

→ Databases: collection of data; shared

→ DBMS: set of prog. for managing database

→ Database system: database + dbms

→ 3 schema architecture: physical design + conceptual design + views

→ Physical & logical independence

→ DDL + DML

→ Objectives:

- Controlling redundancy
- Data structuring + efficient access
- Simultaneous access
- Indexing
- Security / integrity / backup (ref, req, str)

→ Relational model: tuple, column, domain
- Key: rows
- Relational algebra
DATA INTEGRATION & WAREHOUSING

1. Introduction & basics, web data models
 - why? apps need to work with data from diff sources
 - differences: data models, schema, entities, duplication, conflicts
 - Proven & consolidation in order to provide:
 - correctness & completeness
 - Single data model & schema
 - 1 entity rep
 - no conflicts

2. Heterogeneity
 - Tech: means to access data
 - syn: encoding

3. Structured data
 - SQL
 - NoSQL

4. Key-Value stores
 - store data indexed by keys
 - update/lookups ops
 - doc store
 - complex, nested data models
 - primary index
 - data can be more flexibly partitioned

5. Wide (rel) stores
 - records extended by attrs
 - parallel & horizontal partitioning of data

6. Graphs
 - relations = entities
 - graph specific indexes, etc

7. NewSQL
 - data fits into MS
 - logging as persistent DB
5. Data preprocessing - normalize
gather data, normalize values, apply sim measures
combine scores, decide match/non-match

6. Data cleaning, quality & fusion
- records have diff levels of knowledge,
 views, intentions
- info is wrong, biased, outdated, incomplete,
 inconsistent
- depends on context on how to use it
- data provenance
 - info on how data was produced
 - simple vs full prov chains
 who
 - publish prov info on web
 - vocab
 - timestamp
 - metadata
- Data Quality
 - fitness func
 - enterprise web contact
 (control) / (no control)
 - dimension
 - content tech intellecual property

7. Learning matching models
- training data & feature generation
- convert each training ex to pair (v,x)
 & apply learning alg.
DATA MINING

3. Data Mining Process, Preprocessing

- Extraction of useful patterns from data source, which are valid, novel etc.

- Basic tasks:
 - Classification, clustering, association rule mining, regression

- Processes:
 - Understand application domain
 - Select sources, collect data
 - Preprocess data
 - Data mining
 - Post-processing
 - Incorporate them

- Application:
 - Marketing
 - Engineering
 - Web

- F-Score

- ANOVA: Analysis of Variance
 - Two or more samples
 - Between/within group variance
 - Independence of observations
 - Normally
- distance of 2 clusters
 - single
 - complete
 - average unweighted
 - average weighted
 - centroid
- distance function
 - euclidean:
 - manhattan
 - chebychev
- document
- cosine
- data standardization
 - z-score: mean range value
 - interval-scaled
 - ratio-scaled
- trial/ error
- evaluation
 - confusion matrix, precision, recall, f-1
 - entropy, purity
 - intra-cluster cohesion / inter-cluster separation
- classification
 - learn a target function that can predict values
 - training / testing
 - distance of training test data are same
 - decision tree
 - NP hard: best tree
 - convert data into rules
 - recursive partitioning based on information gain
 - overfitting
 - pruning
- evaluation of classifiers
 - accuracy
 - holdout set, n-fold cross validation
 - precision, recall, f-1
 - score (prob that x belongs to two class)
4. Knowledge Representation and Logic

- Knowledge-based agent
 - Knowledge-base
 - KB

- Propositional Logic
 - Connectives
 - AND, OR, NOT

- Inference
 - Direct method
 - Model checking

- First Order Logic
 - Objects, relations (arity), concepts, properties, functions
 - Quantifiers
 - ∀ (for all), ∃ (there exists)

- Equivalence
 - Corresponds to propositional logic (complete, consistent)
 - Generalized resolution
 - Horn clauses
 - Resolution (convert to CNF, sound if # literals in head = # quantifiers)
Map Reduce & Hadoop

- Divide & Conquer
- Scale-out, hide sys details from programmers
- Sync co-workers
 (comm + shared resource access)
- Prag models lower (mpi, threads)
- DF: master/slave, prod-ones
 Shared worker queues

- Map - shuffle & sort - reduce
 Extract | Group | Aggregate

- MR - combine handles
 - scheduling
 - data distribution
 - sync
 - concurrency faults
 - coordination & dealing with failures

- DFS + LFS
7. Data Management, Link Analysis, information retrieved in the cloud

- gekoDBms v/s MR
- multipurpose
- fault tolerant
- native data

Beyond MR:
- BSP
- processors + cores
- supersteps - local map + count
- barrier sync
- pregel, graph, hama

DB workloads
- OLTP
 - real-time, small queries, random reads, write
- OLAP
 - batch, less concurrency, complex query,
 - large scan for query
 - hadoop: cheaper than parallel files
 - rel alg ops: proj, set, join, cartesian, union,
 - diff, group by, rename
 - proj: map over tuples
 - set: map over tuples
 - group by: reduce
 - join: map-side, reduce-side, in-memory (hash)
 - Hive, Pig
SEMANTIC WEB TECHNOLOGIES

1. Introduction, Layers
 - goble & foundations of semantic web
 - today: social web
 - computers do present, humans do linking & interpretation
 - complex queries involving background knowledge
 - web service
 - agents
 - location info in data repositories
 - make implicit knowledge explicit
 - add context info in a std way to make it w/e readable
 - set is a set of technologies to realize web of data
 - formal w/e understandable language, rules, ontologies

-> Index construction
 - map over all docs, emit term as key (doc, tf) as value
 - sort/shuffle - group postings
 - reduce - gather, sort, emit postings

-> Retrieval
 - MR optimized for throughput, low latency, most stat is exp, not on real-time
 - partition of terms/docs
 - replication, caching
 - routing

-> Link analysis
 - key: node
 - value: adjacency list
 - map: adjacency list
 - sort/shuffle: group distances by reachable nodes
 - reduce: set min distance for each reachable node
ontology: explicit specification of a conceptualization

syntax: uri
xml + namespace + xsd + saxon
rdf + rdfs
ontology: uses
logic
proof
trust

HTML: is about presentation

XML: more structure (nesting)
 content/formation (data exchange)
 free model
 DTD/XMLSchema
namespace
 XSL
 XSLT XSL-P
not powerful enough for SW

2. RDF

- subject, predicate, object (mathematical logic)
 ↓
 domain, range (n-ary relation)
 ↓
 resource description framework
 ↓
 s, p, o all are units
 ↓
 triples, xml syntax
 ↓
 blank node
 ↓
 container elements
 - bag
 - seq
 - alt
 ↓
 validation
 - strict, alt, strict
- adapter
 - resolve incompatible interfaces

- visitor
 - define new p w/o changing class
 - only 1 instance of a class is created

- singleton
 - for an object to control references to it

- command
 - encapsulate requests to it

- factory
 - create objects w/o exposing instantiation logic to clients

6. Typing, memory management

- Types vs. untyped languages
 - for every operation, types of data
 - which it is applicable
 - weak/strong typing
 - type-safe
 - prevent value of one type to be treated as another
 - static/dynamic typing
 - compile-time
 - run-time
 - (no-type for variable) during prog

- Activation records: allocated when proc is entered & deallocated when proc is exited
 - info needed by single proc
- interchangeable
- high composability
- goals:
 - manage complexity
 - change
 - re-use
- specification, interface, implementation
- install a component -> object
 - one
- many
- principles: decomposition, abstraction, reusability, software dependable, productivity, standardization
- $C = \{E, M, M, E, I\}$
 - id
 - module
 - event
 - interface
 (visible, type, access, parameter)
- infrastructure: component model
 - component model
 - configuration model
 - deployment model
- contracts

10. Java beans, EJB
- Java beans
- software component model per java
- properties
 - simple (appearance & behavior)
 - bound (value change, notifications)
 - constrained (value changes can be vetoed)
- indexed (null-value)
- events
 - introspection
 - bean info
 - persistence
 via serialization
- deadlock
 - conditions
 - mutual exclusion
 - hold & wait
 - no pre-emption
 - circular wait
 - resource allocation graph
 - deadlock prevention/avoidance
 - banker's algorithm
 - (claim matrix, resource matrix)

- Memory Management
 - program-relative address - actual address
 - register: base & band
 - partitioning, placement
 - fixed, dynamic, next-fit
 - internal fragmentation
 - virtual memory
 - paging (replacement, locality, thrashing)

8. Operating Systems - I/O, File Systems
- devices
 - data rate, unit data error rate, conditions
 - device controllers
 - I/O
 - msg/interrupt, DMA
 - device drivers
 - buffering
 - block, stream
 - disk performance parameters
 - seek, rot, access, time, latency, time
 - disk scheduling
 - FIFO, SSTF, SCAN
- RAID
- disk cache, LRU