x | C++ Programming: From Problem Analysis to Program Design, Fifth Edition

\ rogramm |se
preV‘Sisge

Additional Output Formatting Tools
setfill Manipulator
left and right Manipulators

Input/Output and the string Type

Debugging: Understanding Logic Errors
and Debugging with cout Statements

File Input/Output

Programming Example: Movie Tickets Sale

and Donation to Charity \e ‘CO ‘1\5%

Quick Re‘ﬁew m § O“ ?)92

CONTROL STRUCTURES I(SELECTION)
Control Structures

Relational Operators
Relational Operators and Simple Data Types
Comparing Characters
Relational Operators and the string Type

Logical (Boolean) Operators and Logical Expressions
Order of Precedence
int Data Type and Logical (Boolean) Expressions
bool Data Type and Logical (Boolean) Expressions

Selection: if and if...else
One-Way Selection
Two-Way Selection
Compound (Block of) Statements
Multiple Selections: Nested if
Comparing if...else Statements with a Series of
if Statements
Short-Circuit Evaluation

144
144
146

148

149
152

162
165
166
170

175
176

177
178
179
180

182
184
187
188

188
189
191
195
195

198
199

Table of Contents | xiii

USER-DEFINED FUNCTIONS II 361

Void Functions 362
Value Parameters 367
Reference Variables as Parameters 368

Value and Reference Parameters
and Memory Allocation 372

Reference Parameters and Value-Returning Functions

Scope of an ldentifier CO 382

Global Variables, Named @ e&ad\e Effects
Static and Auto l 92

é ng Dr}Y:Aa'n 392
P(e\,\ unction Ov n Introduction 395
Func |ona‘ Default Parameters 396

w

86

w

91

Programming Example: Classify Numbers 399
Programming Example: Data Comparison 404
Quick Review 414
Exercises 416
Programming Exercises 424

n USER-DEFINED SIMPLE DATA TYPES,

NAMESPACES, AND THE string TYPE 433
Enumeration Type 434
Declaring Variables 436
Assignment 436
Operations on Enumeration Types 437
Relational Operators 437
Input/Output of Enumeration Types 438
Functions and Enumeration Types 440

Declaring Variables When Defining the Enumeration Type 442

Table of Contents | xix

Inheritance, Pointers, and Virtual Functions 828
Classes and Virtual Destructors 835
Abstract Classes and Pure Virtual Functions 835
Address of Operator and Classes 844
Quick Review 846
Exercises 849
Programming Exercises \(

(;O
E OVERLOADING AND TEMPLA%sa\e 861

Why Operator Ovac{dﬂ ?)92 862

Operatow 863
\J\la perator 864
\eOverIoadm er @ome Restrictions 864
previgage

865
Friend Functions of Classes 870
Operator Functions as Member Functions and Nonmember
Functions 873
Overloading Binary Operators 876
Overloading the Stream Insertion (<<) and Extraction (>>)
Operators 882
Overloading the Assignment Operator (=) 887
Overloading Unary Operators 895
Operator Overloading: Member versus Nonmember 901
Classes and Pointer Member Variables (Revisited) 902
Operator Overloading: One Final Word 902
Programming Example: Clock Type 902
Programming Example: Complex Numbers 911

Overloading the Array Index (Subscript) Operator ([]) 916
Programming Example: Newstring 918

Function Overloading 924

PREFACE

uk

WELCOME TO THE FIFTH EDITION OF C++ Programming: From Pro q Program
Design. Designed for a first Computer Science (CS1) C+Sa. s*text provides a
breath of fresh air to you and your students. Tx es as the cornerstone of

the Computer Science curriculum. to m agd excite all CS1

students, regardless of thelr ‘tﬁon breeds e K ing. Motivation

and excitement are critj t ead to programming student. This

text is a cuﬂﬁ}l development o notes throughout more than fifty
ing s

?sf uc ?s %@ to Computer Science students.

Warning: This text can be expected to create a serious reduction in the demand for
programming help during your office hours. Other side eftects include significantly
diminished student dependency on others while learning to program.

C++ Programming: From Problem Analysis to Program Design started as a collection of brief
examples, exercises, and lengthy programming examples to supplement the books that were
in use at our university. It soon turned into a collection large enough to develop into a text.
The approach taken in this book is, in fact, driven by the students’ demand for clarity and readability.
The material was written and rewritten until the students felt comfortable with it. Most of the
examples in this book resulted from student interaction in the classroom.

As with any profession, practice is essential. Cooking students practice their recipes.
Budding violinists practice their scales. New programmers must practice solving
problems and writing code. This is not a C++ cookbook. We do not simply list the
C++ syntax followed by an example; we dissect the “why” behind all the concepts. The
crucial question of “why?” is answered for every topic when first introduced. This
technique offers a bridge to learning C++. Students must understand the “why?” in
order to be motivated to learn.

Traditionally, a C++ programming neophyte needed a working knowledge of another
programming language. This book assumes no prior programming experience. However,
some adequate mathematics background, such as college algebra, is required.

Preface | xxxi

In Figure 1, dotted lines mean the preceding chapter is used in one of the sections of the
chapter and is not necessarily a prerequisite for the next chapter. For example, Chapter 9
covers arrays in detail. In Chapters 11 and 12, we show the relationship between arrays and
structs and arrays and classes, respectively. However, if Chapter 12 is studied before
Chapter 9, then the section dealing with arrays in Chapter 12 can be skipped without any
discontinuation. This particular section can be studied after studying chapter 9.

It is recommended that the first seven chapters be covered sequentially. After covering the
first seven chapters, if the reader is interested in learning OOD and OOP early, then Chapter
12 can be studied right after Chapter 7. Chapter 8 can be studied any time after Chapter 7.

After studying the first seven chapters in sequence, some of the approaches are: u
1. Study chapters in the sequence: 9, 10, 11, 12, 13, 14, 15, 1&%
Te.

2. Study chapters in the sequence: 9, 12, 14, 15,13 5
3. Study chapters in the sequence: 12, N 7, 18 16.
4. Study chapters in t}ﬁseqﬁm &

FEATURES OF THE BooK

Selection; 4€and i£f.0lsa | 205

Following the rule of pairing an elae with an 12, the else in Line 12 is paired with the
£ in Line 10, In other words, using the correct indentation, the code is:

(gpa >= 2.0)
if (gpa >= 3.9)
cout << "Dean\'s Honor List." << endl;
elase
cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl;

e it

pven

ffLina 14

Now, we can see that the ££ statement in Line 9 is a one- way u-l

input number is less than 2.0, no action will take u. lh 2 Mt gv wil

bc printed. Now, suppose the input is 3.8. Then, Bine 9 evaluates 1o
rum, 50 the expression in l.me ltlu eV Iu whi '.: se. Thisgmagns th

s output statement in L:nc 13 r :n a uuumﬁumn_. rn\

Hery

i
e e

oy In fact, b .muug ulrmge only i al 0. and
by
it shou Ta
Dean'sWonor Bist.
Lo .
i the GPA is greater than or equal to 3.9,
To achieve that result, the alse in Line 12 needs o be paired with the ££ 10 Line 9, To
pair the elsae in Line 12 with the ££ in Line 9, you need to use a compound statement, as
tollows:
npth 1f {(gpa >= 2.0) f/Line 9
{
if (gpa >= 3.9) /Line 10
cout << "Dean\'s Honor List." << endl; //Line 11
}
alse ffMans 12
cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //tine 13
The correct program is as follows:
//Correct GPA program
#include <jiostream> JiLine 1
el
using namespace std; filinm 2
ewe

de int main()
- { {{Line 4

double gpa;

cout << "Enter the GPA: ";
cin >> gpa;
cout << endl;

(e3¢

"R
A

Four-color
interior design
shows
accurate C++
code and
related
comments.

176 | Chapter 4; Control Structures | (Selection)

Chapter 2 defined a program as a sequence of statements whose olyective is to
accomplish some rask. The programs vou have examined so far were simpgle
andl strapghtforward. To process a program. the computer begins at thegh e“K
cutable stutement and executes the statements in order mn] it cogft g
In this chapter and Chapter 5, vou will]clm how m t ui PN does

not have to follow 4 simple \t’l}llll!ll-ll nn l‘ can abo make
decisions and repear certain \l.:um mml certain conditions

are met.
ntrﬁ UNtu 392
/ “the o)

NProcess a i‘ll} WELR WAVEL 1IN sTguenoe; “‘k‘t’“\"‘]l\.
o ¢ anehi repetinvely, by exéouning & statement
wver and over, using e a loop: or by calling a funcoon. Figure 4-1
illusteat hre ot 1'mgr.u1\ I'|m\. (I Chaprer 7, we will show how tunction
rogramming examples in Chapters 2 and 3 included simple sequential
ith such o program, the computer starts at the begin and follows the
statements . order, No chotces are made: there s no repeninion. Control structures
provide altematives 1o sequential program execution and are used o alter the sequential
flow of execunion, The two most common control structures are selection and repetition
by sefestion, lie program execntes particolar statements depending on some condition(s)
It reperition, the program repeats particular statements a certaim number of times based on
some concitton(s)

uRing a chowee,

More than 300
visual diagrams,
both extensive
and exhaustive,
illustrate difficult
concepts.

@
|

I
e e

ie-D ... AL,

b, Selection ¢ Repetition

FIGURE 4-1

4 | Chapter 1: An Overview of Computers and Programming Languages

Processor 2.80 GHz, 1GB RAM, 250 GB HD, VX750 19" Silver Flat CRT Color Monitor”
fall into the hardware category; items such as “operating system, games, encyclopedias, and
application software” fall into the software category. Let’s consider the hardware first.

Hardware

Major hardware components include the central processing unit (CPU); main memory
(MM), also called random access memory (RAM); input/output devices; and secondary
storage. Some examples of input devices are the keyboard, mouse, and secondary storage.
Examples of output devices are the screen, printer, and secondary storage. Let’s look at

each of these components in greater detail. u

Central Processing Unit and Mam Memor \e C

The central processing unit is the “brain” e most expensive

piece of hardware in a computer. The e CP a er the computer.
m out 1n51de e -

Arithmetic and logical operaﬂ @ a) shows some

hardware comgone

‘?‘e\'\

Main Memory

(a) (b)
FIGURE 1-1 Hardware components of a computer and main memory

Main memory, or random access memotry, is connected directly to the CPU. All
programs must be loaded into main memory before they can be executed. Similarly, all
data must be brought into main memory before a program can manipulate it. When the
computer is turned off, everything in main memory is lost.

Main memory is an ordered sequence of cells, called memory cells. Each cell has a unique
location in main memory, called the address of the cell. These addresses help you access
the information stored in the cell. Figure 1-1(b) shows main memory with some data.

Elements of a Computer System | 5

Today’s computers come with main memory consisting of millions to billions of cells.
Although Figure 1-1(b) shows data stored in cells, the content of a cell can be either a
programming instruction or data. Moreover, this figure shows the data as numbers and
letters. However, as explained later in this chapter, main memory stores everything as
sequences of 0s and 1s. The memory addresses are also expressed as sequences of 0s and 1s.

SECONDARY STORAGE

Because programs and data must be stored in main memory before processing and

because everything in main memory is lost when the computer is turned off; information

stored in main memory must be transferred to some other device for permanent storagg.

The device that stores information permanently (unless the device becomes ynysaljle

you change the information by rewriting it) is called secondary sgo e@ 2bIT to

transfer information from main memory to secondary sto a& omponents must
ag

be directly connected to each other. Exampleszoiéi@ e are hard disks, flash

drives, floppy disks, ZIP disks, CD-ROM:s,

Input/OutputéSNe&(o O
For a t r\ orm a usefl , A&bbe able to take in data and programs and

C
a(i esults of calgeryts evices that feed data and programs into computers
art called input device§. T oard, mouse, and secondary storage are examples of

input devices. The devices that the computer uses to display results are called output
devices. A monitor, printer, and secondary storage are examples of output devices.
Figure 1-2 shows some input and output devices.

|1 [
i il
E 3 E

=T
IF
[+ [IF

Input devices Output devices

FIGURE 1-2 Some input and output devices

Programming with the Problem Analysis—Coding—Execution Cycle | 13

Problem

|

Analysis -

Preproce“o‘e

m;m*

Error >

No Error

FIGURE 1-4 Problem analysis—coding—execution cycle

To develop a program to solve a problem, you start by analyzing the problem. You then
design the algorithm; write the program instructions in a high-level language, or code the
program; and enter the program into a computer system.

Analyzing the problem is the first and most important step. This step requires you to do
the following:
1. Thoroughly understand the problem.

2. Understand the problem requirements. Requirements can include whether
the program requires interaction with the user, whether it manipulates data,

Programming with the Problem Analysis—Coding—Execution Cycle | 19

There are 10 students in a class. Each student has taken five tests, and each test is worth 100
points. We want to design an algorithm to calculate the grade for each student, as well as the
class average. The grade is assigned as follows: If the average test score is greater than or equal
to 90, the grade is A; if the average test score is greater than or equal to 80 and less than 90,
the grade is B; if the average test score is greater than or equal to 70 and less than 80, the grade
is C; if the average test score is greater than or equal to 60 and less than 70, the grade is D;
otherwise, the grade is F. Note that the data consists of students’ names and their test scores.

This is a problem that can be divided into subproblems as follows: There are five tests, Sﬁ‘\(
design an algorithm to find the average test score. Next, you design an algontl‘ﬁ

the grade. The two subproblems are to determine the average test termine the
grade. a

Let us first design an algorithm to determige @ ¢ test scQ % the average test
score, add the five test scoreiv @me the sum b algorithm is:
ool 600"
w test scom stands for the sum of the test scores.
0

se avera the average test score. Then:
average = sum / 5;

Next, you design an algorithm to determine the grade. Suppose grade stands for the grade
assigned to a student. The following algorithm determines the grade:

if average is greater than or equal to 90

grade = A
otherwise
if average is greater than or equal to 80 and less than 90
grade = B
otherwise
if average is greater than or equal to 70 and less than 80
grade = C
otherwise
if average is greater than or equal to 60 and less than 70
grade = D
otherwise
grade = F

You can use the solutions to these subproblems to design the main algorithm as follows:
(Suppose totalAverage stands for the sum of the averages of each student’s test average.)

1. totalAverage = 0;
2. Repeat the following steps for each student in the class:
a. Get student’s name.

b. Use the algorithm as discussed above to find the average test score.

20 | Chapter 1: An Overview of Computers and Programming Languages

c. Use the algorithm as discussed above to find the grade.

d. Update totalAverage by adding the current student’s average test
score.

3. Determine the class average as follows:
classAverage = totalAverage / 10

A programming exercise in Chapter 7 asks you to write a C++ program to determine the
average test score and grade for each student in a class.

Programming Methodologies v~ CO .\)\(

Two popular approaches to programming design a g kgp‘proach and the

object-oriented approach, which are outhnﬁ@ 2

Structured ProgramK@ ?)9

D1v1d1ngaproble rXu proble 3;; @ct Ted design. Each subproblem
(% e the subproblem. The solutions to all of

is then a asolution is Qb
YE It s are th ﬁ% solve the overall problem. This process of imple-
nting a structured d on d structured programming. The structured-design

approach is also known as top-down design, bottom-up design, stepwise refinement,
and modular programming.

Object-Oriented Programming

Object-oriented design (OOD) is a widely used programming methodology. In OOD, the
first step in the problem-solving process is to identify the components called objects, which
form the basis of the solution, and to determine how these objects interact with one another.
For example, suppose you want to write a program that automates the video rental process for
a local video store. The two main objects in this problem are the video and the customer.

After identifying the objects, the next step is to specify for each object the relevant data
and possible operations to be performed on that data. For example, for a video object, the
data might include:

® movie name

® starring actors

e producer

® production company

® number of copies in stock
Some of the operations on a video object might include:
e checking the name of the movie
® reducing the number of copies in stock by one after a copy is rented

® incrementing the number of copies in stock by one after a customer returns a
particular video

Programming Methodologies | 21

This illustrates that each object consists of data and operations on that data. An object
combines data and operations on the data into a single unit. In OOD, the final program is
a collection of interacting objects. A programming language that implements OOD is
called an object-oriented programming (OOP) language. You will learn about the
many advantages of OOD in later chapters.

Because an object consists of data and operations on that data, before you can design and
use objects, you need to learn how to represent data in computer memory, how to
manipulate data, and how to implement operations. In Chapter 2, you will learn the basic
data types of C++ and discover how to represent and manipulate data in computer
memory. Chapter 3 discusses how to input data into a C++ program and outpu lK
results generated by a C++ program. \3

To create operations, you write algorithms and 1mplement ogrammmg
language. Because a data element in a complex a’ as many operations,
to separate operations from each other and ectwe in a convenient
manner, you use functlons to 1thrn ?ntroductlon in

Chapters 2 and 3, you eta1ls of fu ns 1 pters 6 and 7. Certain

algonthms re e\ﬁ pPogram ma e siofg) @ process called selection. Other

quire certai e repeated until certain conditions are

ess called r g her algonthms might require both selection and

re et1t10n You will l selection and repetition mechanisms, called control

structures, in Chapters 4 and 5. Also, in Chapter 9, using a mechanism called an array,

you will learn how to manipulate data when data items are of the same type, such as items
in a list of sales figures.

Finally, to work with objects, you need to know how to combine data and operations on
the data into a single unit. In C++, the mechanism that allows you to combine data and
operations on the data into a single unit is called a class. You will learn how classes work,
how to work with classes, and how to create classes in the chapter Classes and Data
Abstraction (later in this book).

As you can see, you need to learn quite a few things before working with the OOD
methodology. To make this learning easier and more eftective, this book purposely
divides control structures into two chapters (4 and 5) and user-defined functions into
two chapters (6 and 7).

For some problems, the structured approach to program design will be very effective.
Other problems will be better addressed by OOD. For example, if a problem requires
manipulating sets of numbers with mathematical functions, you might use the struc-
tured design approach and outline the steps required to obtain the solution. The C++
library supplies a wealth of functions that you can use eftectively to manipulate
numbers. On the other hand, if you want to write a program that would make a
candy machine operational, the OOD approach is more effective. C++ was designed
especially to implement OOD. Furthermore, OOD works well and is used in conjunction
with structured design.

Exercises

The most basic language of a computer is a sequence of Os and 1s called machine
language. Every computer directly understands its own machine language.

12. A bit is a binary digit, 0 or 1.

13. A byte is a sequence of eight bits.

14. A sequence of Os and 1s is referred to as a binary code or a binary number.

15. One kilobyte (KB) is 2'Y = 1024 bytes; one megabyte (MB) is 2*° = 1,048,576
bytes; one gigabyte (GB) is 2°° = 1,073,741,824 bytes; one terabyte (TB) is
2% =1,099,511,627,776 bytes; one petabyte (PB) is 2°” = 1,125,899,906,842,624
bytes; one exabyte (EB) is 2° = 1,152,921,504,606,846,976 bytes; and one
zettabyte (ZB) is 2" = 1,180,591,620,717,411,303,424 bytes.

16. Assembly language uses easy-to-remember instructions called mne

17. Assemblers are programs that translate a program ertte r\l@ 1&nguage
into machine language. "

18. Compilers are programs that m Wam writt glgh -level
language into machine ject code. 63

19. A linker lm jectic de w1th ﬁ }d by the integrated
de onment n the program to produce execu-

o e

2? Typically, six step to execute a C++ program: edit, preprocess,
compile, link, load, and execute.

21. A loader transfers executable code into main memory.

22. An algorithm is a step-by-step problem-solving process in which a solution is
arrived at in a finite amount of time.

23. The problem-solving process has three steps: analyze the problem and design
an algorithm, implement the algorithm in a programming language, and
maintain the program.

24. Programs written using the structured design approach are easier to understand,
easier to test and debug, and easier to modify.

25. In structured design, a problem is divided into smaller subproblems. Each
subproblem 1is solved, and the solutions to all of the subproblems are then
combined to solve the problem.

26. In object-oriented design (OOD), a program is a collection of interacting objects.

27. An object consists of data and operations on that data.

28. The ANSI/ISO Standard C++ syntax was approved in mid-1998.

EXERCISES

| 23

\)\4

1.

Mark the following statements as true or false.
a. The first device known to carry out calculations was the Pascaline.

b. Modern-day computers can accept spoken-word instructions but cannot

imitate human reasoning.

Input | 53

NOTE In C++, you must declare all identifiers before you can use them. If you refer to an
identifier without declaring it, the compiler will generate an error message (syntax error),
indicating that the identifier is not declared. Therefore, to use either a named constant or
a variable, you must first declare it.

Now that data types, variables, and constants have been defined and discussed, it is
possible to offer a formal definition of simple data types. A data type is called simple if
the variable or named constant of that type can store only one value at a time. For
example, if x is an int variable, at a given time, only one value can be stored in x.

I coV
Putting Data into Variables \{
Now that you know how to declare variables, x &@ ow do you put data

into those variables? In C++, you can plac Varlable q ways:
1. Use C++’s asmgnﬁxﬂ &z _‘ l
Use 1 pe) stdtdments. 9 O

prefigmae
e assignment stateme§t takes e following form:

variable = expression;

In an assignment statement, the value of the expression should match the data type of
the variable. The expression on the right side is evaluated, and its value is assigned to
the variable (and thus to a memory location) on the left side.

A variable is said to be initialized the first time a value is placed in the variable.

In C++, = is called the assignment operator.

Suppose you have the following variable declarations:

int numl, num2;
double sale;
char first;
string str;

Now consider the following assignment statements:

numl = 4;

num2 = 4 * 5 - 11;

sale = 0.02 * 1000;

first = 'D';

str = "It is a sunny day.";

56 | Chapter 2: Basic Elements of C++

Values of the Variables Explanation
Before Statement 1
numl num2 num3
After Statement 1 18
numl num2 num3
numl + 27 = 18 + 27 = 45.
After Statement 2 45 This value is assigned to numl, whi
numl num2 num3 replaces the old value of numl.‘ \
N
GU o &
After Statement 3 Copy the é’*enp into num2.
S
) 75 =%/ 5 = 9. This
After Statement 4 value 4s %@t um3. So num3
£\
- Wrkm3™7 4 = 9 / 4 = 2. This
After St e t‘(value is assigned to num3, which
D (replaces the old value of num3.
)

Thus, after the executior? of the statement in Line 5, numl = 45, num2 = 45, and num3 = 2.

Tracing values through a sequence, called a walk-through, is a valuable tool to learn and
practice. Try it in the sequence above. You will learn more about how to walk through a
sequence of C++ statements later in this chapter.

NOTE Suppose that %, y, and z are int variables. The following is a legal statement in C++:
X =Yy =z

In this statement, first the value of z is assigned to y, and then the new value of y is
assigned to x. Because the assignment operator, =, is evaluated from right to left, the
associativity of the assignment operator is said to be from right to left.

Saving and Using the Value of an Expression

Now that you know how to declare variables and put data into them, you can learn
how to save the value of an expression. You can then use this value in a later
expression without using the expression itself, thereby answering the question raised
earlier in this chapter. To save the value of an expression and use it in a later
expression, do the following:

1. Declare a variable of the appropriate data type. For example, if the
result of the expression is an integer, declare an int variable.

58 | Chapter 2: Basic Elements of C++

During data manipulation, the computer takes the value stored in particular cells and
performs a calculation. If you declare a variable and do not store a value in it, the memory
cell still has a value—usually the value of the setting of the bits from their last use—and
you have no way to know what this value is.

If you only declare a variable and do not instruct the computer to put data into the variable,
the value of that variable is garbage. However, the computer does not warn us, regards
whatever values are in memory as legitimate, and performs calculations using those values
in memory. Using a variable in an expression without initializing it produces erroneous
results. To avoid these pitfalls, C++ allows you to initialize variables while they are being
declared. For example, consider the following C++ statements in which variables are IK
declared and then initialized: CO

int first, second;

c.
F)

first = 13; Om N e
secom'i 10; e\N “(gg O“

1
(%clare and 1 1n 1 Varlables at the same time using the following C++

statements

int first = 13, second = 10;
char ch =" ';
double x = 12.6;

The first C++ statement declares two int variables, first and second, and stores 13 in
first and 10 in second. The meaning of the other statements is similar.

In reality, not all variables are initialized during declaration. It is the nature of the
program or the programmer’s choice that dictates which variables should be initi-
alized during declaration. The key point is that all variables must be initialized before
they are used.

Input (Read) Statement

Previously, you learned how to put data into variables using the assignment statement. In
this section, you will learn how to put data into variables from the standard input device,
using C++’s input (or read) statements.

NOTE In most cases, the standard input device is the keyboard.

When the computer gets the data from the keyboard, the user is said to be acting interactively.

Input | 61

cin >> firstName >> lastName; //Line 6
cin >> age >> weight; //Line 7
cout << "Name: " << firstName << " "
<< lastName << endl; //Line 8
cout << "Age: " << age << endl; //Line 9
cout << "Weight: " << weight << endl; //Line 10
return 0; //Line 11
}
Sample Run: In this sample run, the user input is shaded. k

Sheila Mann 23 120.5

Name: Sheila Mann O

Age: 23 9 2

Weight: 120.5 ‘k _‘ l

The prece \Nwor s as foll @1 atdMhents in Lines 1 to 4 declare the
t

@ ame and las ring, age of type int, and weight of
le. The StE 1iTe 5 is an output statement and tells the user what to

Such output statckmnents are called prompt lines.) As shown in the sample run, the
1nput to the program is:

Enter first name, last name, age, and welght sefe*@mgpaces

Sheila Mann 23 120.5

The statement in Line 6 first reads and stores the string Sheila into the variable
firstName and then skips the space after Sheila and reads and stores the string Mann
into the variable lastName. Next, the statement in Line 7 first skips the blank after
Mann and reads and stores 23 into the variable age and then skips the blank after 23
and reads and stores 120.5 into the variable weight.

The statements in Lines 8, 9, and 10 produce the third, fourth, and fifth lines of the
sample run.

NOTE During programming execution, if more than one value is entered in a line, these values must
be separated by at least one blank or tab. Alternately, one value per line can be entered.

Variahle Initialization

Remember, there are two ways to initialize a variable: by using the assignment statement
and by using a read statement. Consider the following declaration:

int feet;
int inches;

64 | Chapter 2: Basic Elements of C++

Next, we show the values of the variables after the execution of each statement.

After . .

St Values of the Variables Explanation

1 N KX KN - BEM | sorc 4 inwo £irstvum,
firstNum secondNum z name

2* firstNum+ 6=2%* 4

2 u +6=14.

firstNum secondNum z ch name Store 14 into secondNum. ‘\
. | {
(firstNum + 1 @) U
.
3 sl I E | - - ez /*2.0
firstNum secondNum z ch name . | =€ t .5 into z.

Sto;i g@%

a number from the

firstNum secondNu
. \N ﬁea
i I a e keyboard (which is 8) and store it

(into secondNum. This statement
firstNum se
Read a number from the

replaces the old value of
secondNum with this new
keyboard (which is 16. 3)
4 A ? . .
6 IEE KN Ss] D EE o i oumber ino 2
firsthum secondNum z ch name This statement replaces the old

value.
value of z with this new value.

;| mm Em

-

2 * secondNum +

static cast<int>(z) =

2 * 8 +

7 - n static_cast<int> (16.3)
firstNum secondNum z ch name =16+ 16 = 32.Store 32 into
firstNum. This statement
replaces the old value of
firstNum with this new value.

Read the next input, Jenny,

8 n - from the keyboard a;'ld store it

FfirstNum secondNum z ch name into name.
9 o secondNum + 1 =8 + 1 = 9.

_ Store 9 into secondNum.
firstNum secondNum z ch name

Read the next input from the
keyboard (which is D) and store it
32 16.3 J . .
10 - n - o into ch. This statement replaces
firstNum secondNum z ch name the old value of ch with the new
value.

70 | Chapter 2: Basic Elements of C++

cout << 29 / 4 << endl; //Line 3
cout << 3.0 / 2 << endl; //Line 4
cout << "Hello there.\n"; //Line 5
cout << 7 << endl; //Line 6
cout << 3 + 5 << endl; //Line 7
cout << "3 + 5"; //Line 8
cout << endl; //Line 9
cout << a << endl; //Line 10
cout << "a" << endl; //Line 11
cout << (a + 5) * 6 << endl; //Line 12
cout << 2 * b << endl; //Line 13

} return 0; CO u\(

In the following output, the column marked “Output o, and the line
numbers are not part of the output. The line nyn n thlS olumn to make
it easy to see which output correspond 0 1en 2

“(O Output 6
\,”x} :
*@‘&m pa@e o

Line
3 + 5 Line 8
65 Line 10
a Line 11
420 Line 12
156 Line 13

For the most part, the output is straightforward. Look at the output of the statements in
Lines 7, 8, 9, and 10. The statement in Line 7 outputs the result of 3 + 5, which is 8, and
moves the insertion point to the beginning of the next line. The statement in Line 8
outputs the string 3 + 5. Note that the statement in Line 8 consists only of the string 3 + 5.
Therefore, after printing 3 + 5, the insertion point stays positioned after 5; it does not
move to the beginning of the next line.

The output statement in Line 9 contains only the manipulator endl, which moves
the insertion point to the beginning of the next line. Therefore, when the statement
in Line 10 executes, the output starts at the beginning of the line. Note that in
this output, the column “Output of Statement at” does not contain Line 9. This is due
to the fact that the statement in Line 9 does not produce any printable output. It simply
moves the insertion point to the beginning of the next line. Next, the statement in Line
10 outputs the value of a, which is 65. The manipulator endl then moves the insertion
point to the beginning of the next line.

Program Style and Form | 87

only tells the user to input a number, but also informs the user that the number
should be between 1 and 10.

Documentation

The programs that you write should be clear not only to you, but also to anyone
else. Therefore, you must properly document your programs. A well-documented
program is easier to understand and modify, even a long time after you originally
wrote it. You use comments to document programs. Comments should appear in a
program to explain the purpose of the program, identify who wrote it, and explain

the purpose of particular statements.

Form and Style

You might be thinking that C++ has too m , 1In prac , the rules give
C++ a great degree of freedom. F a n51der the two ways of
declaring variables: ﬁ

Soxble m ”’i*e
PV oa00

int feet,inches;double x,y;

xlg

The computer would have no difficulty understanding either of these formats, but the
first form is easier to read and follow. Of course, the omission of a single comma or
semicolon in either format may lead to all sorts of strange error messages.

What about blank spaces? Where are they significant and where are they meaningless?
Consider the following two statements:

int a,b,c;
and:
int a, b, c;

Both of these declarations mean the same thing. Here, the blanks between the identifiers
in the second statement are meaningless. On the other hand, consider the following
statement:

inta,b,c;

This statement contains a syntax error. The lack of a blank between int and the
identifier a changes the reserved word int and the identifier a into a new identifier,
inta.

The clarity of the rules of syntax and semantics frees you to adopt formats that are pleasing
to you and easier to understand.

94 | Chapter 2: Basic Elements of C++

int main ()

//Declare variables
int feet, inches;
int totalInches;
double centimeter;

//Statements: Step 1 - Step 7
cout << "Enter two integers, one for feet and "

<< "one for inches: "; //Step 1
cin >> feet >> inches; //Step 2
cout << endl; K
cout << "The numbers you entered are " << feet u

<< " for feet and " << inches

<< " for inches. " << endl; \e/‘/Step 3

totalInches = INCHES PER FOON‘ anche g’lstep 4

cout << "The to l‘@m inches -‘ lg
éﬁﬂnc endl 6 //Step 5
P(zet\ll\er = CENT]g awCH * totalInches; //Step 6

cout << “Th f centimeters = "
<< centimeter << endl; //Step 7

return 0;

}
Sample Run: In this sample run, the user input is shaded.

Enter two integers, one for feet, one for inches: 15 7

The numbers you entered are 15 for feet and 7 for inches.
The total number of inches = 187
The number of centimeters = 474.98

PROGRAMMING EXAMPLE: Make Change

Write a program that takes as input any change expressed in cents. It should then
compute the number of half-dollars, quarters, dimes, nickels, and pennies to be
returned, returning as many half-dollars as possible, then quarters, dimes, nickels,
and pennies, in that order. For example, 483 cents should be returned as 9 half-
dollars, 1 quarter, 1 nickel, and 3 pennies.

Input Change in cents.

Output Equivalent change in half-dollars, quarters, dimes, nickels, and pennies.

23.
24,

25.

26.

27.

28.

29.
30.
31.

Quick Review

The modulus operator, %, takes only integer operands.

Arithmetic expressions are evaluated using the precedence rules and the
associativity of the arithmetic operators.

All operands in an integral expression, or integer expression, are integers,
and all operands in a floating-point expression are decimal numbers.

A mixed expression is an expression that consists of both integers and
decimal numbers.

When evaluating an operator in an expression, an integer is converted to a
floating-point number, with a decimal part of 0, only if the operator has
mixed operands.

You can use the cast operator to explicitly convert values from OI’G@
type to another.

A string is a sequence of zero or more ¢ Q
Strings in C++ are enclosegm n mark 9 2
s ¥s

A string containing n alled anu oi
Every ch gﬂ\dsm g has a rel Ve& h string. The position of
%X_ second character is 1, and so on.

tg\l er is 0, th
P h&length of @ mber of characters in it.

35.
36.
37.
38.
39.
40.
41.

42.
43.

45.
46.

47.

During program executlon the contents of a named constant cannot be
changed.

A named constant is declared by using the reserved word const.
A named constant is initialized when it is declared.

All variables must be declared before they can be used.

C++ does not automatically initialize variables.

Every variable has a name, a value, a data type, and a size.
When a new value is assigned to a variable, the old value is lost.

Only an assignment statement or an input (read) statement can change the
value of a variable.

In C++, >> is called the stream extraction operator.

Input from the standard input device is accomplished by using cin and the
stream extraction operator >>.

When data is input in a program, the data items, such as numbers, are
usually separated by blanks, lines, or tabs.

In C++, << is called the stream insertion operator.

Output of the program to the standard output device is accomplished by
using cout and the stream insertion operator <<.

The manipulator end1 positions the insertion point at the beginning of the
next line on an output device.

[99

uk

Programming Exercises

PROGRAMMING EXERCISES

109

1. Write a program that produces the following output:

*khkhkhkkhkhkkhkhkhkhkhkkhkhkkhkkhkhkhkhkhkhkkhkhkkkkhkkkhk

* Programming Assignment 1 *
* Computer Programming I *
* Author: ??? *

* Due Date: Thursday, Jan. 24 *
kkhkhkkkhkhkhkkhkhkkkhkhkkhkhkkhkkhkhkkhkhkhkkhkhkkhkkkhkkkkhhkk

In your program, substitute 2?? with your own name. If necessary, adjust the
positions and the number of the stars to produce a rectangle.

2. Write a program that produces the following output: CO
Cccccceccee ++ ++ \
CcC ++

cc R S »ﬂ} +++

CC ++++++++++O+m +++++‘§++ g

cccccc é “ 0 O
3P(‘(\€\ll¥ lowing p ge 56&5

//include
//using n pace statement

int main ()

{
//variable declaration
//executable statements
//return statement

}

a. Write C++ statements that include the header files iostream.

b. Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std::.

c. Write C++ statements that declare the following variables: numl, num2,
num3, and average of type int.

d. Write C++ statements that store 125 into numl, 28 into num?2, and
-25 into num3.

e. Write a C++ statement that stores the average of numl, num2, and
num3, into average.

. Write C++ statements that output the values of numl, num2, num3,
and average.

g. Compile and run your program.

uk

24,

25.

Programming Exercises

program that prompts the user to input the masses of the bodies and the

distance between the bodies. The program then outputs the force between
the bodies.

One metric ton is approximately 2205 pounds. Write a program that
prompts the user to input the amount of rice, in pounds, in a bag. The
program outputs the number of bags needed to store one metric ton of rice.

Cindy uses the services of a brokerage firm to buy and sell stocks. The firm
charges 1.5% service charges on the total amount for each transaction, buy
or sell. When Cindy sells stocks, she would like to know if she gained or
lost on a particular investment. Write a program that allows Cindy to input
the number of shares sold, the purchase price of each share, and the sellj

price of each share. The program outputs the amount 1nv t
service charges, amount gained or lost, and the am eIr selling

the stock. O
e £(O l‘f\)\\ of l?ag'l

preVoa0e

115

uk

120 | Chapter 3: Input/Output

As you can see in the preceding syntax, a single input statement can read more than one
data item by using the operator >> several times. Every occurrence of >> extracts the
next data item from the input stream. For example, you can read both payRate and
hoursWorked via a single input statement by using the following code:

cin >> payRate >> hoursWorked;

There is no difference between the preceding input statement and the following two
input statements. Which form you use is a matter of convenience and style.

cin >> payRate;

cin >> hoursWorked ¥
How does the extraction operator >> work? When scanning for the next I@g \ép
all whitespace characters. Recall that whitespace characters co%‘ certain

nonprintable characters, such as tabs and the newt us, whether you

separate the input data by lines or blanks, Operator, ymply finds the
ga ayRate and

next input data in the 1nput st amp
hoursWorked are double ¥ 51der the fo vﬁng statement:

cin >> aq\e\mursWorked ILG
\L e T NAN P ag

15.50 48.30
or:

15.50 48.30
or:

15.50
48.30

the preceding input statement would store 15.50 in payRate and 48.30 in
hoursWorked. Note that the first input is separated by a blank, the second input is
separated by a tab, and the third input is separated by a line.

Now suppose that the input is 2. How does the extraction operator >> distinguish
between the character 2 and the number 2? The right-side operand of the extraction
operator >> makes this distinction. If the right-side operand is a variable of the data type
char, the input 2 is treated as the character 2 and, in this case, the ASCII value of 2 is
stored. If the right-side operand is a variable of the data type int or double, the input 2
is treated as the number 2.

Next, consider the input 25 and the statement:
cin >> a;

where a is a variable of some simple data type. If a is of the data type char, only the single
character 2 is stored in a. If a is of the data type int, 25 is stored in a. If a is of the data type

Output and Formatting Output | 139

int main()

{
double hours = 35.45;
double rate = 15.00;
double tolerance = 0.01000;
cout << "hours = " << hours << ", rate = " << rate
<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;
cout << scientific;
cout << "Scientific notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate
<< ", pay = " << hours * rate »
<< ", tolerance = " << tolerance << endl <\
cout << fixed; 1%5
cout << "Fixed decimal notatloNc>
cout << "hours = " << rate =
<< pay = "ﬁf * rate
<< o éﬂ\lam eb="" <<,3t‘% 1 << endl;
P pagd©
Sample Run:

hours = 35.45, rate = 15, pay = 531.75, tolerance = 0.01

Scientific notation:
hours = 3.545000e+001, rate = 1.500000e+001, pay = 5.317500e+002, tolerance = 1
.000000e-002

Fixed decimal notation:
hours = 35.450000, rate = 15.000000, pay = 531.750000, tolerance = 0.010000

The sample run shows that when the value of rate and tolerance are printed without
setting the scientific or fixed manipulators, the trailing zeros are not shown and, in the
case of rate, the decimal point is also not shown. After setting the manipulators, the values
are printed to six decimal places. In the next section, we describe the manipulator
showpoint to force the system to show the decimal point and trailing zeros. We will then
give an example to show how to use the manipulators setprecision, fixed, and
showpoint to get the desired output.

showpoint Manipulator

Suppose that the decimal part of a decimal number is zero. In this case, when you instruct the
computer to output the decimal number in a fixed decimal format, the output may not show
the decimal point and the decimal part. To force the output to show the decimal point and

Output and Formatting Output | 141

cout << "Line 23: volume = "
<< PI * radius * radius * height << endl; //Line 23
cout << "Line 24: PI = " << PI << endl << endl; //Line 24

cout << "Line 25: "
<< setprecision(3) << radius << ", "
<< setprecision(2) << height << ", "

<< setprecision (5) << PI << endl; //Line 25
return 0; //Line 26
} //Line 27

Sample Run:

Line 10: setprecision(2) \e CO 'u
L)

Line 11: radius 12.67 a
Line 12: height 12.00 es
Line 13: volume = 6051.80 O‘_
Line 14: PI = 3.14 m 3
Line 15: setpreci &)(O O“ l
Line 16 rag 2
Line E— .000 l

g ume = 605

=L Pa0C

Line 20: setprecision (4)
Line 21: radius = 12.6700
Line 22: height 12.0000
Line 23: volume 6051.7969
Line 24: PI = 3.1416

Line 25: 12.670, 12.00, 3.14159

In this program, the statement in Line 2 includes the header file iomanip, and the
statement in Line 4 declares the named constant PI and sets the value to eight decimal
places. The statements in Lines 7 and 8 declare and initialize the variables radius and
height to store the radius of the base and the height of a cylinder. The statement in Line
10 sets the output of floating-point numbers in a fixed decimal format with a decimal
point and trailing zeros.

The statements in Lines 11, 12, 13, and 14 output the values of radius, height, the
volume, and PI to two decimal places.

The statements in Lines 16, 17, 18, and 19 output the values of radius, height,
the volume, and PI to three decimal places.

The statements in Lines 21, 22, 23, and 24 output the values of radius, height, the
volume, and PI to four decimal places.

The statement in Line 25 outputs the value of radius to three decimal places, the value
of height to two decimal places, and the value of PI to five decimal places.

Additional Output Formatting Tools | 147

where ostreamVar is an output stream variable. Disabling the manipulator 1eft returns
the output to the settings of the default output format. For example, the following
statement disables the manipulator left on the standard output device:

cout.unsetf (ios::1left);

The syntax to set the manipulator right is:

ostreamVar << right;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be right-justified on the standard output device:

cout << right; O u
GV

NOTE Onsome compliers, the statements cin>> lef a\lght might not work.
In this case, you can use cin.setf (x

ﬁ in place 2> left; and
cin.setf (ios: rlghbm n>> 1:‘
The program I\%W 3-T4 illustrateqt 1% e manipulators left and right.

EXAMPLE 3-14 P&

//Example: left justification

#include <iostream>
#include <iomanip>

using namespace std;

int main ()

{

int x = 15; //Line 1
int y = 7634; //Line 2
cout << left; //Line 3
cout << "12345678901234567890" << endl; //Line 4
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 5
cout << setfill('*'"); //Line 6

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << x << setw(7) << setfill('#'")
<< y << setw(8) << "Warm" << endl; //Line 8

cout << setw(5) << setfill('Q') << x
<< setw(7) << setfill('#') << y

152 | Chapter 3: Input/Output

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

celsius = static cast<int>

(5.0 / 9 * (fahrenheit - 32) + 0.5); //Line 10
cout << fahrenheit << " degree F ="
<< celsius << " degree C. " << endl; //Line 11
return 0; //Line 12
} //Line 13 K
Sample Run: In this sample run, the user input is shaded. \ CO *

Enter temperature in Fahrenheit: 110 tes

110 degree F = 43 degree C. NO 3

As we can see, using tem c,@ tatemen Q ab%éo nd the problem. After
correcting the @\fhe emporary %m are removed.

’?ﬁ ra re cony, tamed logic errors, not syntax errors. Using
cqut statements to p? s of expressions and/or variables to see the results of a

calculation is an effecttve way to find and correct logic errors.

File Input/Output

The previous sections discussed in some detail how to get input from the keyboard (standard
input device) and send output to the screen (standard output device). However, getting input
from the keyboard and sending output to the screen have several limitations. Inputting data in a
program from the keyboard is comfortable as long as the amount of input is very small. Sending
output to the screen works well if the amount of data is small (no larger than the size of the
screen) and you do not want to distribute the output in a printed format to others.

If the amount of input data is large, however, it is inefficient to type it at the keyboard
each time you run a program. In addition to the inconvenience of typing large amounts
of data, typing can generate errors, and unintentional typos cause erroneous results. You
must have some way to get data into the program from other sources. By using alternative
sources of data, you can prepare the data before running a program, and the program can
access the data each time it runs.

Suppose you want to present the output of a program in a meeting. Distributing printed
copies of the program output is a better approach than showing the output on a screen.
For example, you might give a printed report to each member of a committee before an
important meeting. Furthermore, output must sometimes be saved so that the output
produced by one program can be used as an input to other programs.

This section discusses how to obtain data from other input devices, such as a disk (that is,
secondary storage), and how to save the output to a disk. C++ allows a program to get

154 | Chapter 3: Input/Output

Here, fileStreamVariable is a file stream variable, and sourceName is the name of the
input/output file.

Suppose you include the declaration from Step 2 in a program. Further suppose that the input
data is stored in a file called prog.dat. The following statements associate inData with
prog.dat and outData with prog.out. That is, the file prog.dat is opened for inputting
data, and the file prog. out is opened for outputting data.

inData.open ("prog.dat"); //open the input file; Line 1
outData.open ("prog.out"); //open the output file; Line 2

IDEs such as Visual Studio .Net manage programs in the form of projects. That 'ﬁirs@\(

create a project, and then you add source files to the project. The st nt i a%sumes
that the file prog.dat is in the same directory (subdwect% \ owever, if this
is in a different directory (subdirectory) theRy

e path where the file is
located, along with the name oft he file. e, "suppose t @ eprog.datisona
flash memory in dr|v m nt in Line {\ be o as follows:

1nDatagW rog dig
P (Q ere are two, from Chapter 2 that in C++, \ is the escape
a

racter. Th e a \within a string, you need \\. (To be absolutely sure
about specifyirig the source Where the input file is stored, such as the drive h:\\, check
your system’s documentation.)

Similar conventions for the statement in Line 2.

Suppose that a program reads data from a file. Because different computers have drives
labeled differently, for simplicity, throughout the book, we assume that the file containing
the data and the program reading data from the file are in the same directory (subdirectory).

We typically use .dat, .out, or .txt as an extension for the input and output files
and use Notepad, Wordpad, or TextPad to create and open these files. You can also use
your IDE’s editor, if any, to create . txt (text) files. (To be absolutely sure about it, check
you IDE’s documentation.)

Step 4 typically works as follows. You use the file stream variables with >>, <<, or other
input/output functions. The syntax for using >> or << with file stream variables is exactly
the same as the syntax for using cin and cout. Instead of using cin and cout, however,
you use the file stream variable names that were declared. For example, the statement:

inData >> payRate;
reads the data from the file prog.dat and stores it in the variable payRate. The statement:

outData << "The paycheck is: $" << pay << endl;

162 | Chapter 3: Input/Output

PROGRAMMING EXAMPLE: Student Grade

Write a program that reads a student name followed by five test scores. The program
should output the student name, the five test scores, and the average test score.
Output the average test score with two decimal places.

The data to be read is stored in a file called test.txt. The output should be stored
in a file called testavg.out.

Input A file containing the student name and the five test scores. A sample input is: K
Andrew Miller 87.50 89 65.75 37 98.50 0.

Output The student name, the five test score @@&\go‘f the five test
scores, saved to a file. k 2;
PROBLEM To find the average of thegfiy @zﬁ& ou add th éxn 9 d divide the
‘E llo tud

ANALYSIS sum by 5. The input.dgt in name followed by the
AND five test sco re, you must 6 ame first and then read the five
ALGORITHM P ﬁc \T& oblem a nto the following algorithm:

BESIGH . Read the s and the five test scores.

Output the student name and the five test scores.
3. Calculate the average.
4. Output the average.

You output the average test score in the fixed decimal format with two decimal places.

Variables The program needs to read a student’s first and last name and five test scores. Therefore, you
need two variables to store the student name and five variables to store the five test scores.

To find the average, you must add the five test scores and then divide the sum by 5.
Thus, you need a variable to store the average test score. Furthermore, because the
input data is in a file, you need an ifstream variable to open the input file. Because
the program output will be stored in a file, you need an ofstream variable to open
the output file. The program, therefore, needs at least the following variables:

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double testl, test2, test3, testd, test5; //variables to
//read the five test scores

double average; //variable to store the average test score
string firstName; //variable to store the first name
string lastName; //variable to store the last name

MAIN In the preceding sections, we analyzed the problem and determined the formulas to

ALGORITHM perform the calculations. We also determined the necessary variables and named

Quick Review | 165

NOTE The preceding program uses five variables—testl, test2, test3, test4,
and test5—to read the five test scores and then find the average test score.
The Web site accompanying this book contains a modified version of this program
that uses only one variable, testScore, to read the test scores and another
variable, sum, to find the sum of the test scores. The program is named
Ch3 AverageTestScoreVersion2.cpp.

QUICK REVIEW ~O U
1. A stream in C++ is an infinite sequence of charact \ellfce to a

destination.
2. An input stream is a stream fr \NQ comp 2
3. An output strea comute dest
cin, @m\aﬁor common t stream ObJCCt typically

e standar thh is the keyboard.

E X;ut which s?sawgmon output, is an output stream object,

typically initializ8d to the standard output device, which is the screen.

6. When the binary operator>> is used with an input stream object, such as cin, it
is called the stream extraction operator. The left-side operand of >> must be an
input stream variable, such as cin; the right-side operand must be a variable.

7. When the binary operator << is used with an output stream object, such as
cout, it is called the stream insertion operator. The left-side operand of <<
must be an output stream variable, such as cout; the right-side operand of
<< must be an expression or a manipulator.

8. When inputting data into a variable, the operator >> skips all leading
whitespace characters.

9. To use cin and cout, the program must include the header file iostream.

10. The function get is used to read data on a character-by-character basis and
does not skip any whitespace characters.

11. The function ignore is used to skip data in a line.

12. The function putback puts the last character retrieved by the function get
back into the input stream.

13. The function peek returns the next character from the input stream but
does not remove the character from the input stream.

14. Attempting to read invalid data into a variable causes the input stream to
enter the fail state.

15. Once an input failure has occurred, you use the function clear to restore
the input stream to a working state.

170 | Chapter 3: Input/Output

18. Suppose that infile is an ifstream variable and it is associated with the
file that contains the following data: 27306 savings 7503.35. Write the
C++ statement(s) that reads and stores the first input in the int variable
acctNumber, the second input in the string variable accountType, and
the third input in the double variable balance.

19. Suppose that you have the following statements:

ofstream outfile;
double distance = 375;
double speed = 58;
double travelTime;

Write C++ statements to do the following: K

a. Open the file travel.dat using the variable outfil \13 ‘CO *

h. Worite the statement to format your out q"esa al places in
fixed form. 6 2m

c. Worite the values c%th Gﬁe\daﬂistan , a@%%l e file
travel.dat (ﬁ ?

d. Cﬁ‘@“\lﬁte the trav%% jthe Tile travel.dat.

P (a’h h head 1]aed O process the information in (a) to (d)?

PROGRAMMING EXERCISES

1. Consider the following incomplete C++ program:

#include <iostream>

int main ()

{
}

a. Write a statement that includes the header files £stream, string, and
iomanip in this program.

h. Write statements that declare inFile to be an ifstream variable and
outFile to be an ofstream variable.

c. The program will read data from the file inData.txt and write output
to the file outData.txt. Write statements to open both of these files,
associate inFile with inData.txt, and associate outFile with
outData.txt.

d. Suppose that the file inData.txt contains the following data:

10.20 5.35
15.6

Randy Gill 31
18500 3.5

A

Relational Operators | 181

strl > "Hen" false
strl = "Hello". The first two characters of strl and
"Hen" are the same, but the third character '1" of strl is

less than the third character "n"' of "Hen". Therefore,
strl > "Hen" is false.

str3 < "An" true

str3 = "Air". The first characters of str3 and "An" are
the same, but the second character "1i"' of "Air" is less than
the second character 'n"' of "An". Therefore, str3 < "An"
is true.

strl == "hello" false Q ‘U
strl = "Hello". The first char 1C! is less

than the first character ecause the ASCII
value of "H' is Q}‘x' alue is 104.
Theref llo Q'Z
str3 <= str4 ‘ 1@)‘ v "

S e\l\J str3 = 1‘2:1 LQ "Bill". The first character

\, \ 'A' J% an the first character 'B' of str4.

p (e) @ee str3 <= str4 is true.

Str2 > str4 Y t!'l{e

str2 = "Hi" and str4 = "Bill". The first character
"H' of str2 is greater than the first character 'B" of str4.

Therefore, str2 > stré is true.

If two strings of difterent lengths are compared and the character-by-character compar-
ison is equal until it reaches the last character of the shorter string, the shorter string is
evaluated as less than the larger string, as shown next.

Expression Value/Explanation
strd >= "Billy" false
strd = "Bill". It has four characters, and "Bi11y™ has

five characters. Therefore, str4 is the shorter string. All four
characters of str4 are the same as the corresponding first
four characters of "Bi11ly", and "Billy" is the larger
string. Therefore, str4 >= "Billy" is false.

str5 <= "Bigger" true

str5 = "Big". It has three characters, and "Bigger"
has six characters. Therefore, str5 is the shorter string.
All three characters of str5 are the same as the
corresponding first three characters of "Bigger™",

and "Bigger" is the larger string. Therefore,
str5 <= "Bigger" is true.

186 | Chapter 4: Control Structures | (Selection)

Expression

Value / Explanation

hours + overTime <= 75.00 true

(count >= 0)
(count <= 100)

Because hours + overTimeis45.30 + 15.00 =
60.30and 60.30<=75.00is true, it follows that
hours + overTime <= 75.00 evaluates to true.

&& true

Now, count is 20. Because 20 >= 0 is true,
count >= 0is true. Also, 20 <= 100 is true, so
count <= 100 is true. Therefore, (count >=
0) && (count <= 100) is true && true,

which evaluates to true.

('A' <= ch && ch <= 'Z2") true \@
Here, ch is ! ' 'B' is true,

AT true because 'B'
ﬁ Ch <— 9!;1 ates to true.

ﬁ\yef re 'A' = '7Z') is true
“(0 && t lua t:o true.

The foll é}ﬁ \Nvaluates and 02 hz values of these logical expressions. Note
expr e,

the corresponding output is 1; if the logical

ess
ressmn evaluates t%‘ correspondmg output is 0, as shown in the output at the

end of the program. (

all that if the value of a logical expression is true, it evaluates to 1,

and if the value of the logical expression is £alse, it evaluates to 0.)

//Chapter 4 Logical operators

#include <iostream>
#include <iomanip>

using namespace std;

int main

{

0

bool found = true;

int

age

= 20;

double hours = 45.30;
double overTime = 15.00;
int count = 20;

char

cout
cout

cout
cout
cout
cout

ch

<<
<<
<<
<<
<<

<<
<<
<<
<<
<<

= 'B';

fixed << showpoint << setprecision(2);

"found = " << found << ", age = " << age

", hours = " << hours << ", overTime = " << overTime
"," << endl << "count = " << count

", ch = " << ch << endl << endl;

"!found evaluates to " << !found << endl;

"hours > 40.00 evaluates to " << (hours > 40.00) << endl;
"lage evaluates to " << lage << endl;

"!found && (hours >= 0) evaluates to "

(!found && (hours >= 0)) << endl;

Selection: if and if...else | 193

The following statements show an example of a syntax error.

if (hours > 40.0); //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2
else //Line 3
wages = hours * rate; //Line 4

The semicolon at the end of the if statement (see Line 1) ends the if statement, so the
statement in Line 2 separates the else clause from the if statement. That is, els
by itself. Because there is no stand-alone else statement in C++, this ¢

syntax error. As shown in Example 4-10, in a one-way select] @\ﬁ
1

end of an if statement is a logical error, whereas as sﬁég

ﬁn at the

e, in a two-way

selection, it is a syntax error.

The followmg progra es an employee’s weekly wages. If the hours worked
exceed 40, wages include overtime payment.

//Program: Weekly wages

#include <iostream>
#include <iomanip>

using namespace std;
int main ()

double wages, rate, hours;

cout << fixed << showpoint << setprecision(2); //Line 1
cout << "Line 2: Enter working hours and rate: "; //Line 2
cin >> hours >> rate; //Line 3
if (hours > 40.0) //Line 4
wages = 40.0 * rate +
1.5 * rate * (hours - 40.0); //Line 5
else //Line 6
wages = hours * rate; //Line 7
cout << endl; //Line 8
cout << "Line 9: The wages are $" << wages
<< endl; //Line 9

return 0;

Selection: if and if...else | 195

Compound (Block of) Statements

The if and if...else structures control only one statement at a time. Suppose, how-
ever, that you want to execute more than one statement if the expression in an if or
if...else statement evaluates to true. To permit more complex statements, C++
provides a structure called a compound statement or a block of statements. A
compound statement takes the following form:

statement_1
statement 2

a\eco’

statement n
) \\\Otes
That is, a compound state Q‘ fa sequence t%genclosed in curly
ﬁ se stru

braces, {and }. ‘[n a

statement functions as if it
was a sin ? eﬁ‘ us mstead o two—way selection similar to the
E (age >= 18) E
cout << "Eligible to vote." << endl;

else
cout << "Not eligible to vote." << endl;

you could include compound statements, similar to the following code:

if (age >= 18)

{
cout << "Eligible to vote." << endl;
cout << "No longer a minor." << endl;

}

else

{
cout << "Not eligible to vote." << endl;
cout << "Still a minor." << endl;

}

The compound statement is very useful and will be used in most of the structured
statements in this chapter.

Multiple Selections: Nested if

In the previous sections, you learned how to implement one-way and two-way selections
in a program. Some problems require the implementation of more than two alternatives.
For example, suppose that if the checking account balance is more than $50,000, the
interest rate is 7%; if the balance is between $25,000 and $49,999.99, the interest rate is
5%; if the balance is between $1,000 and $24,999.99, the interest rate is 3%; otherwise,

198

| Chapter 4: Control Structures | (Selection)

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is in Line 2. In this code, the if in Line 1 has no
else and is a one-way selection. Once again, the indentation does not determine the
pairing, but it communicates the pairing.

EXAMPLE 4-19

Assume that all variables are properly declared, and consider the following stateme“¥

if

(gender == 'M')

if (age < 21)
policyRate = 0.05;

else
policyRate

0 035;

else if (gender == O
if (age < 2 g

°\ﬁ
o icyRat

//Line 1
//Line 2
//Llne

éLlne 6
”2’{

//Llne 10

esd)

eC

12972

In thls code, the else n L@Q paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is the if in Line 2. The else in Line 6 is paired
with the if in Line 1. The else in Line 9 is paired with the if in Line 7. Once again,
the indentation does not determine the pairing, but it communicates the pairing.

Comparing if...else Statements with a Series of i £ Statements
Consider the following C++ program segments, all of which accomplish the same task.

a.

if (month == 1)
cout << "January" << endl;
else if (month == 2)

cout << "February" << endl;

else if (month == 3)

cout << "March" << endl;
else if (month == 4)

cout << "April" << endl;
else if (month == 5)

cout << "May" << endl;
else if (month == 6)

cout << "June" << endl;

if (month == 1)
cout << "January" << endl;
if (month == 2)

cout << "February" << endl;

if (month == 3)
cout << "March" << endl;

//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

woJdould WNRE

11
12

200 | Chapter 4: Control Structures | (Selection)

For the expression in Line 1, suppose that the value of age is 25. Because (25>=21) is
true and the logical operator used in the expression is | |, the expression evaluates to
true. Due to short-circuit evaluation, the computer does not evaluate the expression
(x == 5). Similarly, for the expression in Line 2, suppose that the value of grade
is 'B'. Because ('B' == 'A') is false and the logical operator used in the
expression is &&, the expression evaluates to false. The computer does not evaluate
(x>=17).

Comparing Floating-Point Numbers for Equality: A Preca& \(

Comparison of floating-point numbers for equality may not beha ou W,
For example, consider the following program: V\

finciude <iovereun ese

s WO 7a02

Y] 0™ '\ o 139

@;%\ﬁe oe 283
re

double x =
double y = 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0;

dpect.

cout << fixed << showpoint << setprecision(1l7);

cout << "3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 ="
<< 3.0/ 7.0+ 2.0/ 7.0+ 2.0/ 7.0 << endl;

cout << "x " << x << endl;

cout << "y = " << y << endl;
if (x == vy)

cout << "x and y are the same." << endl;
else

cout << "x and y are not the same." << endl;

if (fabs(x - y) < 0.000001)
cout << "x and y are the same within the tolerance "
<< "0.000001."™ << endl;
else
cout << " x and y are not the same within the "
<< "tolerance 0.000001." << endl;

return O0;

206 | Chapter 4: Control Structures | (Selection)

if (gpa >= 2.0) //Line 9
{ //Line 10
if (gpa >= 3.9) //Line 11
cout << "Dean\’ s Honor List." << endl; //Line 12

} //Line 13
else //Line 14

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "

<< "academic advisor." << endl; //Line 15
return 0; //Line 16
} //Line 17 K
Sample Runs: In these sample runs, the user input is shaded. u

Sample Run 1:

Entepr the GPA: 3.91 NO‘GSa

Dean’ s Honor List. 392
Sample Run 2; “ 1
Enter \@W 2A

Enter the GPA: 1.9

The GPA is below the graduation requirement.
See your academic advisor.

In cases such as this one, the general rule is that you cannot look inside of a block (that is,
inside the braces) to pair an else with an if. The else in Line 14 cannot be paired with
the if in Line 11 because the if statement in Line 11 is enclosed within braces, and the
else in Line 14 cannot look inside those braces. Therefore, the else in Line 14 is paired
with the if in Line 9.

In this book, the C++ programming concepts and techniques are presented in a logical
order. When these concepts and techniques are learned one at a time in a logical order,
they are simple enough to be understood completely. Understanding a concept or
technique completely before using it will save you an enormous amount of debugging
time.

Input Failure and the if Statement

In Chapter 3, you saw that an attempt to read invalid data causes the input stream to enter a
fail state. Once an input stream enters a fail state, all subsequent input statements associated
with that input stream are ignored, and the computer continues to execute the program,
which produces erroneous results. You can use if statements to check the status of an input
stream variable and, if the input stream enters the fail state, include instructions that stop
program execution.

Selection: if and if...else | 209

{
cout << "Cannot open the input file. "
<< "The program terminates." << endl;
return 1;
}

outFile.open ("testavg.out"); //open the output file

outFile << fixed << showpoint;
outFile << setprecision(2);

cout << "Processing data" << endl;

inFile >> firstName >> lastName; CO ‘u

outFile << "Student name: " << firstName
<< " " <L lastName << endl;

inFile >> testl >> test2 >> teNO‘e 2

>> testd >> tes

outFile << "Tes % < setw(4) <§tes
4) test2 < test3

\,L Wa) << testfl (4) << test5
(e endl; 9
average = (te tlat t2 + test3 + testd4d + test5) / 5.0;

outFile << "Average test score: " << setw(6)
<< average << endl;

inFile.close();
outFile.close();

return 0;

Confusion between the Equality Operator (==) and the
Assignment Operator (=)

Recall that if the decision-making expression in the if statement evaluates to true, the
statement part of the if statement executes. In addition, the expression is usually a logical
expression. However, C++ allows you to use any expression that can be evaluated to either
true or false as an expression in the if statement. Consider the following statement:

if (x = 5)
cout << "The value is five." << endl;

The expression—that is, the decision maker—in the if statement is x = 5. The

expression x = 5 is called an assignment expression because the operator = appears in
the expression and there is no semicolon at the end.

This expression is evaluated as follows. First, the right side of the operator = is evaluated,
which evaluates to 5. The value 5 is then assigned to x. Moreover, the value 5—that is, the

Using Pseudocode to Develop, Test, and Debug a Program | 213

If the statement in (a) is true, then x is larger. If the statement in (b) is true, then y is
larger. However, for this code to work in concert to determine the larger of two integers,
the computer needs to evaluate both expressions:

(x > y) and (y > x)

even if the first statement is true. Evaluating both expressions is a waste of computer
time.

Let’s rewrite this pseudo as follows:

if (x > y) then
x 1is larger

else O u
. .
y is larger \ C
Here, only one condition needs to be evaluated e)gla(ay, so let’s put it

into C++. 92
#include <iostream> ﬁ(Om lg

PN a0 2°

if (x > vy)

5 of
pag

Wait...once you begin translating the pseudo into a C++ program, you should
immediately notice that there is no place to store the value of x or y. The variables
were not declared, which is a very common oversight, especially for new program-
mers. If you examine the pseudo, you will see that the program needs three variables,
and you might as well make them self~documenting. Let’s start the program code
again:

#include <iostream>
using namespace std;

int main ()

{
int numl, num2, larger; //Line 1
if (numl > num?2); //Line 2; error
larger = numl; //Line 3
else //Line 4
larger = num2; //Line 5
return O0;
}

Compiling this program will result in the identification of a common syntax error
(in Line 2). Recall that a semicolon cannot appear after the expression in the

222 | Chapter 4: Control Structures | (Selection)

int main()

cout << "Enter the test score: ";

core;

Score / 10)

"The grade is F." ﬁ tes

o %a e is 6%@0“
"The ége < endl;

"The grade is A." << endl;

"Invalid test score." << endl;

{
int testScore;
cin >> testS
cout << endl;
switch (test
{
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
cout <<
case 6:
cout <<
case 7:
coub
cas
xéﬂt <
‘E) sé 9:
case 10:
cout <<
default:
cout <<
}
return 0;
}

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the test score: 110

Invalid test score.

Sample Run 2:

Enter the test score: =70

Invalid test score.

Sample Run 3:

Enter the test score: 75

The grade is C.
The grade is B.
The grade is A
Invalid test s

//Line
//Line
//Line

//Line
//Line
//Line

//Line
//Line
//Line
//Line
//Line 1

GO

\,3/‘9%

//LIne
//Line
//Line
//Line
//Line
//Line
//Line
//Line
//Line

//Line
//Line

9
10
11

12 \h))k(;

16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

Programming Example: Cable Company Billing | 227

Variables Because the program will ask the user to input the customer account number,
customer code, number of premium channels, and number of basic service
connections, you need variables to store all of this information. Also, because the
program will calculate the billing amount, you need a variable to store the billing
amount. Thus, the program needs at least the following variables to compute and
print the bill:

int accountNumber; //variable to store the customer's
//account number
char customerType; //variable to store the customer code
int numOfPremChannels; //variable to store the number
//of premium channels to which the O
.

//customer subscribes
int numOfBasicServConn; //variable to store t G: .
//number of basic se ions

//to which the ; Scribe 2‘

double amountDue; //varla}qm ﬁ the bl}ii%

Named As you ca % processmg fe f asm service connection, and the
channel a se values are needed to compute the bill.

Constants x
g these valra‘ 1n the program, the cable company can change
pin

them with little wa simplify the process of modifying the program later,
instead of using these values directly in the program, you should declare them as
named constants. Based on the problem analysis, you need to declare the following
named constants:

//Named constants - residential customers
const double RES BILL PROC FEES = 4.50;
const double RES BASIC_SERV_COST = 20.50;
const double RES COST PREM CHANNEL = 7.50;

//Named constants - business customers
const double BUS BILL_PROC_FEES = 15.00;
const double BUS_BASIC_SERV_COST 75.00;
const double BUS BASIC CONN COST = 5.00;
const double BUS_COST PREM CHANNEL = 50.00;

Formulas The program uses a number of formulas to compute the billing amount. To compute
the residential bill, you need to know only the number of premium channels to
which the user subscribes. The following statement calculates the billing amount for a
residential customer.

amountDue = RES ~BILL PROC FEES + RES BASIC SERV COST
+ numOfPremChannels * RES _cosT PREM | CHANNEL;

To compute the business bill, you need to know the number of basic service
connections and the number of premium channels to which the user subscribes. If
the number of basic service connections is less than or equal to 10, the cost of the

15.

16.

17.

Programming Exercises

Worite a program that calculates and prints the bill for a cellular telephone
company. The company offers two types of service: regular and premium.
Its rates vary, depending on the type of service. The rates are computed as
follows:

Regular service: $10.00 plus first 50 minutes are free. Charges for
over 50 minutes are $0.20 per minute.
Premium service: $25.00 plus:

a. For calls made from 6:00 a.m. to 6:00 p.m., the first 75 minutes are free;
charges for more than 75 minutes are $0.10 per minute.

b. For calls made from 6:00 p.m. to 6:00 a.m., the first 100 minutes 6 u

free; charges for more than 100 minutes are $O 05 per m éé

Your program should prompt the user to en rﬁ & mber,
service code (type char), and the nu e service yegs used.
A service code of r or R mean: e; a Servic CI:ZQ or P
means premlum servi f@mther charactefas a ~Your pro-
gram shoul t ount n lﬁt f s€rvice, number of
mlé e service Wasﬂg he amount due from the user.

e premiu stomer may be using the service during the
day and the nigh , to calculate the bill, you must ask the user to

input the number of minutes the service was used during the day and the
number of minutes the service was used during the night.

Write a program to implement the algorithm that you designed in Exercise
22 of Chapter 1. (Assume that the account balance is stored in the file
Ch4_Ex16_Data.txt.) Your program should output account balance before
and after withdrawal and service charges. Also save the account balance after
withdrawal in the file Ch4_Ex16_Output.txt.

You have several pictures of different sizes that you would like to frame. A
local picture-framing store offers two types of frames—regular and fancy.
The frames are available in white and can be ordered in any color the
customer desires. Suppose that each frame is 1 inch wide. The cost of
coloring the frame is $0.10 per inch. The cost of a regular frame 1s $0.15
per inch, and the cost of a fancy frame is $0.25 per inch. The cost of putting
a cardboard paper behind the picture is $0.02 per square inch, and the cost
of putting glass on top of the picture is $0.07 per square inch. The customer
can also choose to put crowns on the corners, which costs $0.35 per crown.
Write a program that prompts the user to input the following information
and then output the cost of framing the picture:

a. The length and width, in inches, of the picture
b. The type of the frame
c. Customer’s choice of color to color the frame

d. If the user wants to put the crowns, then the number of crowns

245

248 | Chapter 5: Control Structures Il (Repetition)

In Chapter 4, you saw how decisions are incorporated in programs. In this chapter, you
learn how repetitions are incorporated in programs.

Why |Is Repetition Needed?

Suppose you want to add five numbers to find their average. From what you have learned
so far, you could proceed as follows (assume that all variables are properly declared):

cin >> numl >> num2 >> num3 >> num4 >> numb5; //read five numbers

sum = numl + num2 + num3 + numé4 + num5; //add the numbers
average = sum / 5; //£find the average ¥
But suppose you want to add and average 100, 1000, or more numbers 1d

to declare that many variables and list them again in cin stateme > again in
the output statements. This takes an exorbitant amo %aéa ime. Also if you
differ

want to run this program again with dlffereN @Tber of values,

you have to rewrite the program.

Suppose you want to\i\r % ng numbg 0"

? sXer :E fo llowu?@%sen which sum and num are variables of type int:
. sum =

2. cin >> num;

3. sum = sum + num;

The first statement initializes sum to 0. Let us execute statements 2 and 3. Statement 2
stores 5 in num; statement 3 updates the value of sum by adding num to it. After statement
3, the value of sum is 5.

Let us repeat statements 2 and 3. After statement 2 (after the programming code reads the
next number):

num = 3
After statement 3:
sum = sum + num = 5 + 3 = 8

At this point, sum contains the sum of the first two numbers. Let us again repeat statements
2 and 3 (a third time). After statement 2 (after the code reads the next number):

num = 7
After statement 3:
sum = sum + num = 8 + 7 = 15

Now, sum contains the sum of the first three numbers. If you repeat statements 2 and 3
two more times, sum will contain the sum of all five numbers.

254 | Chapter 5: Control Structures Il (Repetition)

sum = 0; //Line 4
counter = 0; //Line 5

cout << "Line 6: Enter " << limit

<< " integers." << endl; //Line 6
while (counter < limit) //Line 7
{
cin >> number; //Line 8
sum = sum + number; //Line 9
counter++; //Line 10
| K
cout << "Line 11: The sum of the " << limit p \)
<< " numbers = " << sum << endl;

if (counter != 0) esa//la
cout << "Line 13: The aver%% i 2
n 13

/’i Q0 of Lo

Sample Run: In this sample run, the user input is shaded.

//Line 16

Line 1: Enter the number of integers in the list: 12

Line 6: Enter 12 integers.

8 92 3 90 38 56 8 23 89 7 2

Line 11: The sum of the 12 numbers = 335
Line 13: The average = 27

This program works as follows. The statement in Line 1 prompts the user to input the
number of data items. The statement in Line 2 reads the next input line and stores it in the
variable 1imit. The value of 1imit indicates the number of items in the list. The statements
in Lines 4 and 5 initialize the variables sum and counter to 0. (The variable counter is the
loop control variable.) The statement in Line 6 prompts the user to input numbers. (In this
sample run, the user is prompted to enter 12 integers.) The while statement in Line 7
checks the value of counter to determine how many items have been read. If counter is
less than limit, the while loop proceeds for the next iteration. The statement in Line 8
reads the next number and stores it in the variable number. The statement in Line 9 updates
the value of sum by adding the value of number to the previous value, and the statement in
Line 10 increments the value of counter by 1. The statement in Line 11 outputs the sum of
the numbers; the statements in Lines 12 through 15 output the average.

Note that sum s initialized to 0 in Line 4 in this program. In Line 9, after reading a number at
Line 8, the program adds it to the sum of all the numbers scanned before the current number.
The first number read will be added to zero (because sum is initialized to 0), giving the
correct sum of the first number. To find the average, divide sum by counter. If counter

while Looping (Repetition) Structure | 261

srand (time (0)) ;
num = rand() % 100;

The first statement sets the seed, and the second statement generates a random number
greater than or equal to 0 and less than 100. Note how the function time is used. It is
used with an argument, that is, parameter, which is 0.

The program uses the bool variable isGuessed to control the loop. The bool variable
isGuessed is initialized to false. It is set to true when the user guesses the correct
number.

//Flag-controlled while loop.
//Number guessing game.

O AV
#include <iostream> \e ‘C
#include <cstdlib> a
#include <ctime>

using namespace std; Om N
1nt maln() ' ﬁ(
(‘ are he v,
t num; le to store the random

int guess; //varlable to store the number
//guessed by the user
bool isGuessed; //boolean variable to control

//the loop
srand (time (0)) ; //Line 1
num = rand() % 100; //Line 2
isGuessed = false; //Line 3
while (!isGuessed) //Line 4
{ //Line 5

cout << "Enter an integer greater"
<< " than or equal to 0 and "

<< "less than 100: "; //Line 6
cin >> guess; //Line 7
cout << endl; //Line 8
if (guess == num) //Line 9
{ //Line 10
cout << "You guessed the correct "
<< "number." << endl; //Line 11
isGuessed = true; //Line 12
} //Line 13
else if (guess < num) //Line 14

cout << "Your guess is lower than the "
<< "number.\n Guess again!"
<< endl; //Line 15

while Looping (Repetition) Structure | 263

Case 4: EOF-Controlled while Loops

If the data file is frequently altered (for example, if data is frequently added or deleted), it’s
best not to read the data with a sentinel value. Someone might accidentally erase the sentinel
value or add data past the sentinel, especially if the programmer and the data entry person are
different people. Also, it can be difficult at times to select a good sentinel value. In such
situations, you can use an end-of-file (EOF)-controlled while loop.

Until now, we have used an input stream variable, such as cin, and the extraction
operator, >>, to read and store data into variables. However, the input stream variable

can also return a value after reading data, as follows: \

1. If the program has reached the end of the input data, the input stre
variable returns the logical value false. \ *
Q) an int

2. If the program reads any faulty data (such as a é§
r

variable), the input stream enters the gail t@ eam entgrsthe fail
state, any further [/O operatl in, eam are aZbe null

operations; that is, “ effect. Unfo \‘ely, puter does
not halk t glve any err sagl st continues executing
Gﬁf ently 1gno ohal attempt to use that stream. In
P (é se, the i returns the value false.
4

In cases othe
logical value true.

), the input stream variable returns the

You can use the value returned by the input stream variable to determine whether the
program has reached the end of the input data. Because the input stream variable returns the
logical value true or false, in a while loop, it can be considered a logical expression.

The following is an example of an EOF-controlled while loop:

cin >> variable; //initialize the loop control variable
while (cin) //test the loop control variable
{

cin >> variable; //update the loop control variable

}

Notice that here, the variable cin acts as the loop control variable.

eof Function

In addition to checking the value of an input stream variable, such as cin, to determine
whether the end of the file has been reached, C++ provides a function that you can use
with an input stream variable to determine the end-of-file status. This function is called

MAIN
ALGORITHM

int current;

int counter;
int nthFibonacci; //variable to store the desired

Programming Example: Fibonacci Number | 271

//variable to store the current
//Fibonacci number
//loop control variable

//Fibonacci number

To calculate the third Fibonacci number, add the values of previousl and previous2
and store the result in current. To calculate the fourth Fibonacci number, add the value
of the second Fibonacci number (that is, previous2) and the value of the third Fibonacci
number (that is, current). Thus, when the fourth Fibonacci number is calculated, you

no longer need the first Fibonacci number. Instead of declaring additional variables, whic

B\

could be too many, after calculating a Fibonacci number to determine the next Pizyondec

number, current becomes previous2 and previous?2 beco

.

This process is repeated until the desmed Fl

Therefore, you can again use the variable current to st %onaca number
@ alculated 1a11y,
n soft

previousl and previous?2 are th

h s phed by the
user. From the preceding *T@ itfodows that you d&

p(eé’:i‘éou

Read (inp

oo

@

e user for t e@t t l%rs—that is, previousl and

u§ the ;;rs wo numbers into previousl and previous?2.

Output the first two Fibonacci numbers. (Echo input.)

Prompt the user for the position of the desired Fibonacci number.

Read the position of the desired Fibonacci number into
nthFibonacci.

if (nthFibonacci == 1)

the desired Fibonacci number is the first Fibonacci number.
Copy the value of previousl into current.

a.

else if (nthFibonacci == 2)
the desired Fibonacci number is the second Fibonacci number.
Copy the value of previous?2 into current.

else calculate the desired Fibonacci number as follows:

Because you already know the first two Fibonacci numbers of
the sequence, start by determining the third Fibonacci number.

c.1.

c.2.

c.3.
c.4.
c.5.

Initialize counter to 3 to keep track of the calculated
Fibonacci numbers.

Calculate the next Fibonacci number, as follows:
current = previous2 + previousl;

Assign the value of previous2 to previousl.
Assign the value of current to previous?2.

Increment counter.

for Looping (Repetition) Structure

else if (nthFibonacci == 2) //Step 6.b
current = previous2;
else //Step 6.c
{
counter = 3; //Step 6.c.1
//Steps 6.c.2 - 6.c.5
while (counter <= nthFibonacci)
{
current = previous2 + previousl; //Step 6.c.2
previousl = previous2; //Step 6.c.3
previous2 = current; //Step 6.c.4
counter++; //Step 85
}//end while
}//end else

cout << "The Fibonacci numbeN ‘t@
C

<< nthFibonacci <

<< endl; ,‘(0 ur-? l Qtep 7

retyr 1 \N l
prev’
ample Runs: In tP @g'uns the user input is shaded.

Sample Run 1:
Enter the first two Fibonacci numbers: 12 16

The first two Fibonacci numbers are 12 and 16
Enter the position of the desired Fibonacci number:

The Fibonacci number at position 10 is 796
Sample Run 2:

Enter the first two Fibonacci numbers: 1 1

The first two Fibonacci numbers are 1 and 1
Enter the position of the desired Fibonacci number:

The Fibonacci number at position 15 is 610

for Looping (Repetition) Structure

10

15

273

B\

The while loop discussed in the previous section is general enough to implement
most forms of repetitions. The C++ for looping structure discussed here is a specialized
form of the while loop. Its primary purpose is to simplify the writing of counter-controlled
loops. For this reason, the for loop is typically called a counted or indexed for loop.

278 | Chapter 5: Control Structures Il (Repetition)

Next, the update statement increments the value of 1 by 1, so the value of 1 becomes
11. Now the loop condition evaluates to false and the for loop terminates. Note
that the output statement in Line 2 executes only once.

4. Consider the following for loop:

for (1 = 1; i <= 10; i++); //Line 1
cout << i << " "; //Line 2
cout << endl; //Line 3

This for loop has no effect on the output statement in Line 2. The semicolon at the
end of the for statement terminates the for loop; the action of the for loop is thys
empty. The output statement is all by itself and executes only once. UK

5. Consider the following for loop: \e C

for (1 = 1; ; i++4)
1t ;rom the for statement,

cout << 1 << " "; NO‘@
In this for, loop, ke au&ﬁgop c
the lo 1 ™Nn is always @;@ Infinite loop.

cout << endl;

In this example, a for loop reads five numbers and finds their sum and average.
Consider the following program code, in which i, newNum, sum, and average are
int variables.

sum = 0;

for (1 = 1; 1 <= 5; i++)
{

cin >> newNum;

sum = sum + newNum;

}

average = sum / 5;
cout << "The sum is " << sum << endl;
cout << "The average is " << average << endl;

In the preceding for loop, after reading a newNum, this value is added to the previously
calculated (partial) sum of all the numbers read before the current number. The variable
sum is initialized to 0 before the for loop. Thus, after the program reads the first
number and adds it to the value of sum, the variable sum holds the correct sum of the
first number.

for Looping (Repetition) Structure | 279

NOTE The syntax of the for loop, which is:

for (initial expression; logical expression; update expression)
statement

is functionally equivalent to the following while statement:

initial expression
while (expression)
{

statement

update expression

! S\
For example, the following for and while loops are equiv? e\e ‘CO *

for (int i = 0; i < 10; i++) &

cout << i << " m; O‘ewhile 0)
cout << endl; “(Om N O“ {l%gz w n,

e 20
}
P (e\,\ e 3 cout << endl;
If the number?t 'gof a loop is known or can be determined in advance, typically

programmers use a £or loop.

EXAMPLE 5-16 (FIBONACCI NUMBER PROGRAM: REVISITED)

The Programming Example: Fibonacci Number given in the previous section uses a
while loop to determine the desired Fibonacci number. You can replace the while
loop with an equivalent for loop as follows:

for (counter = 3; counter <= nthFibonacci; counter++)
{

current = previous2 + previousl;

previousl = previous2;

previous2 = current;

counter++;
}//end for

The complete program listing of the program that uses a for loop to determine the
desired Fibonacci number is given at the Web site accompanying this book. The program
is named Ch5 FibonacciNumberUsingAForLoop.cpp.

In the following C++ program, we recommend that you walk through each step.

282 | Chapter 5: Control Structures Il (Repetition)

int counter; //loop control variable

int number; //variable to store the number read
int zeros; //variable to store the zero count
int evens; //variable to store the even count
int odds; //variable to store the odd count

Clearly, you must initialize the variables zeros, evens, and odds to zero. You can
initialize these variables when you declare them.

MAIN 1. Initialize the variables.
ALGORITHM 2. Prompt the user to enter 20 numbers.

3. For each number in the list: u
\e OO

a. Read the number.

b. Output the number (echo mQ O‘esa

c. If the number is even:

h 33
\,\e\l\"ﬁi%%i e

e
PY Y|

Intrement the odd count.

4. Print the results.

Before writing the C++ program, let us describe Steps 1—4 in greater detail. It will be
much easier for you to then write the instructions in C++.

1. Initialize the variables. You can initialize the variables zeros,
evens, and odds when you declare them.

2. Use an output statement to prompt the user to enter 20 numbers.

3. For Step 3, you can use a for loop to process and analyze the 20
numbers. In pseudocode, this step is written as follows:

for (counter = 1; counter <= 20; counter++)
{

read the number;

output number;

switch (number % 2) // check the remainder
{
case 0:
increment even count;
if (number == 0)
increment zero count;
break;

290 | Chapter 5: Control Structures Il (Repetition)

to sum, check whether num is negative. If num is negative, an error message appears on
the screen and isNegative is set to true. In the next iteration, when the expression in
the while statement is evaluated, it evaluates to false because !isNegative is
false. (Note that because isNegative is true, !lisNegative is false.)

The following while loop is written without using the variable isNegative:

sum = 0;
cin >> num;

while (cin)

{
if (num < Q) //if num is negative, terminate the loop

{ O-.
cout << "Negative number found in the dat \e&
break;

} O"e
e \ w 0\‘(\?\3 ol lgg’l
@ f%\lf e w}? é‘ egatlve number is found, the expression in the

tatement evalua after printing an appropriate message, the break
statement terminates the loop. (After executing the break statement in a loop, the
remaining statements in the loop are discarded.)

NOTE The break statement is an effective way to avoid extra variables to control a loop and
produce an elegant code. However, break statements must be used very sparingly
within a loop. An excessive use of these statements in a loop will produce spaghetti-code
(loops with many exit conditions) that can be very hard to understand and manage. You
should be extra careful in using break statements and ensure that the use of the break
statements makes the code more readable and not less readable. If you're not sure, don't
use break statements.

The continue statement is used in while, for, and do...while structures. When the
continue statement is executed in a loop, it skips the remaining statements in the loop and
proceeds with the next iteration of the loop. In a while and do...while structure, the
expression (thatis, the loop-continue test) is evaluated immediately after the continue
statement. In a for structure, the update statement is executed after the continue
statement, and then the Lloop condition (that is, the loop-continue test) executes.

If the previous program segment encounters a negative number, the while loop termi-
nates. If you want to discard the negative number and read the next number rather than
terminate the loop, replace the break statement with the continue statement, as shown
in the following example:

sum = 0;
cin >> num;

296 | Chapter 5: Control Structures Il (Repetition)

(Assume that ch is a variable of type char.) The general loop to process the data is:

infile >> 1ID; //Line 1
while (infile) //Line 2
{ //Line 3
infile.get (ch); //Line 4
getline (infile, name):; //Line 5

//process the numbers in each line //Line 6
//output the name and total votes
infile >> ID; //begin processing the next line

}

The code to read and sum up the voting data is:

sum = 0; //Line 6 a\e _C
number

infile >> num; //Line 7; re
while (num != =-999) //L:Ln

{ @ 202
sum = sum + num, ne 10, upd e %‘Jhn
infile >> nu ‘(O /Llne h ext number
W@@Mnte t}ﬁ)m%t gop to process data as follows:

o ¥

infile >> ID; //Line 1
while (infile) //Line 2
{ //Line 3
infile.get (ch); //Line 4
getline(infile, name); //Line 5
sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9
sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number
}
cout << "Name: " << name
<< ", Votes: " << sum
<< endl; //Line 12
infile >> ID; //Line 13; begin processing the next line
}

Avoiding Bugs by Avoiding Patches

Debugging sections in the previous chapters illustrated how to debug syntax and logical
errors, and how to avoid partially understood concepts. In this section, we illustrate how
to avoid a software patch to fix a code. A software patch is a piece of code written on top
of an existing piece of code and intended to fix a bug in the original code.

Debugging Loops | 299

program closely, we can see that the four lines are produced because the outer loop executes
four times. The values assigned to loop control variable 1 are 1, 2, 3, and 4. This is an example
of the classic “off-by-one” problem. (In an “off-by-one problem,” either the loop executes
one too many or one too few times.) We can eliminate this problem by correctly setting the
values of the loop control variable. For example, we can rewrite the loops as follows:

for (i = 1; 1 <= 3; i++)
{

sum = 0;

for (3 = 1; j <= 4; j++)

| K
infile >> num; u
cout << num << " "; \e CO -

: sum = sum + num; esa
cout << "sum = " << sum mdNO 392

ThlS code ﬁx a&roblem &@ o tware patch. It also represents
ractlce T plEd fied program is available at the Web site
ng thlS b

Ch5 _LoopWithBugsCorrectedProgram. cpp.

Debugging Loops

As we have seen in the earlier debugging sections, no matter how careful a program is
designed and coded, errors are likely to occur. If there are syntax errors, the compiler will
identify them. However, if there are logical errors, we must carefully look at the code or
even maybe at the design and try to find the errors. To increase the reliability of the
program, errors must be discovered and fixed before the program is released to the users.

Once an algorithm is written, the next step 1s to verify that it works properly. If the algorithm
is a simple sequential flow or contains a branch, it can be hand traced or you can use the
debugger, if any, provided by the IDE. Typically, loops are harder to debug. The correctness
of a loop can be verified by using loop invariants. A loop invariant is a set of statements that
remains true each time the loop body is executed. Let p be a loop invariant and q be the
(logical) expression in a loop statement. Then p && q remains true before each iteration of the
loop and p && not(q) is true after the loop terminates. The full discussion of loop invariants is
beyond the scope of the book. However, you can learn about loop invariants in the book:
Discrete Mathematical Structures: Theory and Applications, D.S. Malik and M.K. Sen, Course
Technology, 2004. Here, we give a few tips that you can use to debug a loop.

As discussed in the previous section, the most common error associated with loops is oft-
by-one. If a loop turns out to be an infinite loop, the error is most likely in the logical
expression that controls the execution of the loop. Check the logical expression carefully
and see if you have reversed an inequality, an assignment statement symbol appears in place
of the equality operator, or && appears in place of | |. If the loop changes the values of

Exercises | 301

16. Putting a semicolon at the end of the for loop (before the body of the for
loop) is a semantic error. In this case, the action of the for loop is empty.

17. The syntax of the do...while statement is:
do

statement
while (expression);

statement is called the body of the do...while loop.

18. Both while and for loops are called pretest loops. A do...while loop is
called a posttest loop.

19. The while and for loops may not execute at all, but the do. . .while 106 \)K

always executes at least once

20. Executing a break statement in the body of a \‘Qrmmates
the loop. {é

21. Executing a continue state N y of al p’g %oop s
remaining statements & 1th the n era&

22. When a statement e

2 e or do...while loop,
0 y of the loop may not execute.

gupdate stat
2; fter a contJ.n texecutes in a for loop, the update statement

is the next state ! ent executed.

EXERCISES

1. Mark the following statements as true or false.
a. In a counter-controlled while loop, it is not necessary to initialize the
loop control variable.
b. It is possible that the body of a while loop may not execute at all.

c. Inan infinite while loop, the while expression (the decision maker) is
initially false, but after the first iteration it is always true.

d. The while loop:

j=0;
while (§ <= 10)
J++;

terminates if § > 10.

e. A sentinel-controlled while loop is an event-controlled while loop
whose termination depends on a special value.

. A loop is a control structure that causes certain statements to execute
over and over.

g. To read data from a file of an unspecified length, an EOF-controlled
loop is a good choice.

302 | Chapter 5: Control Structures Il (Repetition)

h. When a while loop terminates, the control first goes back to the
statement just before the while statement, and then the control goes
to the statement immediately following the while loop.

2. What is the output of the following C++ code?

int count = 1;
int y = 100;
while (count < 100)

{
y=y -1
count++;
}
cout << "y =" << y << " and count = " << count << enle K
3. What is the output of the following C++ code? :

int num = 5; 5 \

while (num > 5)

num = num + 2; NO 92
cout << num << e {9 _‘ l

4. What is the o %1(0W1§ \30(:1

pre¥age

cout <<
num = num + 2;

}
cout << endl;

5. When does the following while loop terminate?
ch = 'D';
while ('A' <= ch && ch <= '2")
ch = static_cast<char>(static cast<int>(ch) + 1);
6. Suppose that the inputis 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> sum;
cin >> num;

for (§J = 1; j <= 3; j++)

{
cin >> num;
sum = sum + num;
}
cout << "Sum = " << sum << endl;

7. Suppose that the inputis 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> sum;
cin >> num;

while (num != -1)

PV a0

Exercises

{
sum = sum + num;
cin >> num;
}
cout << "Sum = " << sum << endl;

Suppose that the inputis 38 35 71 14 -1. Whatis the output of the
following code? Assume all variables are properly declared.
cin >> num;

sum = num;

while (num != -1)

{
cin >> num; CO
sum = sum + num; \

}

cout << "Sum = " << sum << endl;

Suppose that the input is 38 & 1. Wha % f the
following code? Assurﬁ l@m are properl cle?&_

sum = 07 \N

XA 3A

sum = sum + num;
cin >> num;

}
cout << "Sum = " << sum << endl;

Correct the following code so that it finds the sum of 20 numbers.
sum = 0;
while (count < 20)

cin >> num;

sum = sum + num;
count++;

What 1s the output of the following program?

#include <iostream>
using namespace std;

int main()

{ int x, y, z;
x = 4; y =5;
z =y + 6;
while(((z - x) % 4) != 0)
{ cout << z << " ";

z =z + 7;

303

uk

304

| Chapter 5: Control Structures Il (Repetition)

cout << endl;

return 0;

}
Suppose that the input is:
58 23 46 75 98 150 12 176 145 -999

What is the output of the following program?

#include <iostream>

using namespace std;

o U

J{.nt main () _CO .
ST oS
Whileém;;ﬁ%(g é 3A6 0" l

P(e\f} >>§

cout << endl;

return 0;

}

The following program is designed to input two numbers and output their
sum. It asks the user if he/she would like to run the program. If the answer
is Y or y, it prompts the user to enter two numbers. After adding the
numbers and displaying the results, it again asks the user if he/she would
like to add more numbers. However, the program fails to do so. Correct the
program so that it works properly.

#include <iostream>
#include <iomanip>

using namespace std;

int main ()

{
char response;
double numl;
double num2;

cout << "This program adds two numbers." << endl;
cout << "Would you like to run the program: (Y/y) ";
cin >> response;

cout << endl;

40.

41.

Exercises |

Given the following program segment:

J=2;
for (1 = 1; 1 <= 5; 1i++);
{
cout << setw(4) << j;
j =3+ 5;
}

cout << endl;

write a while loop and a do...while loop that have the same output.
What is the output of the following program?

#include <iostream>

O-
using namespace std; \e ‘C

o 2\
int main(O‘es
ot o139

z =

PV opge

42.

while (((z - x) % 4) !'= 0);
cout << endl;

return 0;
}
To learn how nested for loops work, do a walk-through of the following
program segments and determine, in each case, the exact output.

a. int i, j;

for (i = 1; i <= 5; i++)
{
for (J = 1; j <= 5; j++)
cout << setw(3) << i;
cout << endl;

b. int i, J;
for (1 = 1; i <= 5; i++)

for (J = (1 + 1); j <= 5; j++)
cout << setw(5) << j;
cout << endl;

311

20.

21.
22,

Programming Exercises

that prompts the user to enter the number of lockers in a school. After the
game is over, the program outputs the number of lockers that are opened.
Test run your program for the following inputs: 1000, 5000, 10000. Do
you see any pattern developing?

(Hint: Consider locker number 100. This locker is visited by student
numbers 1, 2, 4, 5, 10, 20, 25, 50, and 100. These are the positive divisors
of 100. Similarly, locker number 30 is visited by student numbers 1, 2, 3, 5,
6, 10, 15, and 30. Notice that if the number of positive divisors of a locker
number is odd, then at the end of the game, the locker is opened. If the
number of positive divisors of a locker number is even, then at the end of
the game, the locker is closed.)

When you borrow money to buy a house, a car, or for so @Q
you repay the loan by making periodic payments over a a& time
Of course, the lending company will_c he lo very
periodic payment consists of the in $ By and th %Ward
the principal amount. g i§cNsuppose that at the
interest rate of 7.2 %j the p ar@o thl uppose that your
mont y@ﬂ@ZS Now, th % o per year and the payments
so the 1ntere 15 7.2/12 = 0.6%. The first month’s
erest on $10 006 = 6. Because the payment is $25 and
interest for the fi month 13 $6, the payment toward the principal amount is
25 — 6 = 19. This means after making the first payment, the loan amount is
1000 — 19 = 981. For the second payment, the interest is calculated on $981.
So the interest for the second month is 981 x 0.006 = 5.886, that is,
approximately $5.89. This implies that the payment toward the principal is
25-5.89 = 19.11 and the remaining balance after the second payment is 981 —
19.11 = 961.89. This process is repeated until the loan is paid. Write a
program that accepts as input the loan amount, the interest rate per year,
and the monthly payment. (Enter the interest rate as a percentage. For
example, if the interest rate is 7.2% per year, then enter 7.2.) The program
then outputs the number of months it would take to repay the loan. (Note
that if the monthly payment is less than the first month’s interest, then after
each payment, the loan amount will increase. In this case, the program

must warn the borrower that the monthly payment is too low, and with
this monthly payment, the loan amount could not be repaid.)

Enhance your program from Exercise 19 by first telling the user the
minimum monthly payment and then prompting the user to enter the
monthly payment. Your last payment might be more than the remaining
loan amount and interest on it. In this case, output the loan amount before
the last payment and the actual amount of the last payment. Also, output the
total interest paid.

Write a complete program to test the code in Example 5-21.
Write a complete program to test the code in Example 5-22.

317

328 | Chapter 6: User-Defined Functions |

In C++, return is a reserved word.

When a return statement executes in a function, the function immediately terminates
and the control goes back to the caller. Moreover, the function call statement is replaced
by the value returned by the return statement. When a return statement executes in
the function main, the program terminates.

To put the ideas in this discussion to work, let us write a function that determines the
larger of two numbers. Because the function compares two numbers, it follows that this
function has two parameters and that both parameters are numbers. Let us assume that the
data type of these numbers is floating-point (decimal)—say, double. Because the larggr
number is of type double, the function’s data type is also double. Let us nam
function larger. The only thing you need to complete this funcgion is tﬁl

function. Thus, following the syntax of a function, you can Wr \ as follows

double larger (double x, double vy) "e
{ N7 92
double max; ’X‘B
if (x >= Q\N
pre] » P9

return max;

}

Note that the function larger requires that you use an additional variable max (called a
local declaration, in which max is a variable local to the function larger). Figure 6-1
describes various parts of the function larger.

Function Function Formal
return type name parameters

Function —» double Iarger(ldouble X, double yl)

heading™ -
double max; Formal parameters list
if (x >= ;)\Local variable
Function max = X;
body else
max = Y; Function return value

return max;

Bz

FIGURE 6-1 Various parts of the function larger

332 | Chapter 6: User-Defined Functions |

Syntax: Function Prototype

The general syntax of the function prototype of a value-returning function is:

functionType functionName (parameter list);

(Note that the function prototype ends with a semicolon.)
For the function larger, the prototype is:
double larger (double x, double vy);

NOTE When writing the function prototype, you do not have to specify the var%@w \%

parameter list. However, you must specify the data type of eac [em er

You can rewrite the function prototype of tge fu‘l@%@‘ as follows:

double larger (ii‘ou(bla 392
3’(

Cw know enou e entlre program, compile it, and run it. The following

program uses the func ns larger, compareThree, and main to determine the larger/
largest of two or three numbers.

//Program: Largest of three numbers
#include <iostream>
using namespace std;

double larger (double x, double y);
double compareThree (double x, double y, double z);

int main ()
{

double one, two; //Line 1

cout << "Line 2: The larger of 5 and 10 is "

<< larger (5, 10) << endl; //Line 2
cout << "Line 3: Enter two numbers: "; //Line 3
cin >> one >> two; //Line 4
cout << endl; //Line 5

cout << "Line 6: The larger of " << one
<< " and " << two << " is "
<< larger (one, two) << endl; //Line 6

342 | Chapter 6: User-Defined Functions |

2. For each remaining number in the list:

a. Read the next number. Store it in a variable called num.

b. Compare num and max. If max < num, then num is the new
largest number, so update the value of max by copying num into
max. If max >= num, discard num; that is, do nothing.

3. Because max now contains the largest number, print it.

To find the larger of two numbers, the program uses the function larger.

COMPLETE PROGRAM LISTING

//** a\e*"**
// Author: D.S. Malik g

// C 2
// This program find t er o %9
// numbers.
//************ 'k* *'k*** %’k*@ ***********'k**
l@N\stream ge
using namespace
double larger (double x, double y);
int main ()
{
double num; //variable to hold the current number
double max; //variable to hold the larger number

int count; //loop control variable

cout << "Enter 10 numbers." << endl;

cin >> num; //Step 1
max = num; //Step 1
for (count = 1; count < 10; count++) //Step 2
{
cin >> num; //Step 2a
max = larger (max, num); //Step 2b
}

cout << "The largest number is " << max
<< endl; //Step 3

return 0;
}//end main

344 | Chapter 6: User-Defined Functions |

c. Calculate the bill.

d. Return the amount due.

This function contains a statement to prompt the user to enter the number of premium
channels (Step a) and a statement to read the number of premium channels (Step b). Other
items needed to calculate the billing amount, such as the cost of basic service connection
and bill-processing fees, are defined as named constants (before the definition of the
function main). Therefore, to calculate the billing amount, this function does not need to
get any value from the function main. This function, therefore, has no parameters.

Local From the previous discussion, it follows that the function residential re?ulra EK

Variables wvariables to store both the number of premium channels and the bllhng
(Function function needs only two local variables to calculate the b1111

residential) a
int noOfPChannels; //number of ;ﬁ:@ nels 92

double bAmount; //billi

The definition of W &&1 sildent 1%3(3& &Vrltten as follows:
doub ﬂ&i@tl 1
; (1nt noOfPCh %umber of premium channels
double bAmo 5 //billing amount
cout << "Enter the number of premium "
<< "channels used: ";

cin >> noOfPChannels;
cout << endl;

bAmount = RES BILL PROC_FEES +
RES BASIC SERV COST +
noOfPChannels * RES _COST_PREM CHANNEL;

return bAmount;

}

Function To compute the business bill, you need to know the number of both the basic service
business connections and the premium channels to which the customer subscribes. Then, based
on these numbers, you can calculate the billing amount. The billing amount is then
returned using the return statement. The following six steps describe this function:

a. Prompt the user for the number of basic service connections.
b. Read the number of basic service connections.

c. Prompt the user for the number of premium channels.

d. Read the number of premium channels.

e. Calculate the bill.

™

Return the amount due.

Quick Review

Enter the number of basic service connections: 25

Enter the number of premium channels used: 9

Account number = 21341
Amount due = $615.00

QUICK REVIEW

349

H W DN

Functions are like miniature programs and are called modules.

Functions enable you to divide a program into manageable isé CO .u

The C++ system provides the standard (predeﬁneég

To use a standard function, you mustw 25
i. Know the name o hit contams ﬁﬁk‘u g cation,
ii. Inclyde tw @1 the p g

ii. me and ty of g n and number and types of the

(meters
There are two t pe r-defined functions: value-returning functions
and void functions.

Variables defined in a function heading are called formal parameters.

Expressions, variables, or constant values used in a function call are called
actual parameters.

In a function call, the number of actual parameters and their types must
match with the formal parameters in the order given.

To call a function, use its name together with the actual parameter list.

A value-returning function returns a value. Therefore, a value-returning
function is used (called) in either an expression or an output statement or as
a parameter in a function call.

The general syntax of a user-defined function is:

functionType functionName (formal parameter list)

{

statements
}
The line functionType functionName (formal parameter list) is
called the function heading (or function header). Statements enclosed
between braces ({ and }) are called the body of the function.

The function heading and the body of the function are called the definition
of the function.

360 | Chapter 6: User-Defined Functions |

Your program must contain at least the following functions: a function that
calculates and returns the mean and a function that calculates the standard
deviation.

11. When you borrow money to buy a house, a car, or for some other purposes,
then you typically repay it by making periodic payments. Suppose that the
loan amount is L, r is the interest rate per year, m is the number of payments
in a year, and the loan is for f years. Suppose that i = (r / m) and r is in
decimal. Then the periodic payment is:

Li

1— (144" O u\(
You can also calculate the unpaid loan balance after mak &6 ents.

For example, the unpaid balance after m ﬁ é%

PR] lggl

A\ ol
me@z\l !e p;gmé‘ge NASQ};&I@ payments are monthly, then

Write a program that prompts the user to input the values of L, r, m, t, and k.
The program then outputs the apropriate values. Your program must contain
at least two functions, with appropriate parameters, to calculate the periodic
payments and the unpaid balance after certain payments. Make the program
menu driven and use a loop so that the user can repeat the program for
difterent values.

R=

L'=R

12. During the tax season, every Friday, J&J accounting firm provides assistance
to people who prepare their own tax returns. Their charges are as follows.

a. Ifa person has low income (<= 25,000) and the consulting time is less
than or equal to 30 minutes, there are no charges; otherwise, the service
charges are 40% of the regular hourly rate for the time over 30 minutes.

b. For others, if the consulting time is less than or equal to 20 minutes, there
are no service charges; otherwise, service charges are 70% of the regular
hourly rate for the time over 20 minutes.

(For example, suppose that a person has low income and spent 1 hour and 15 minutes, and
the hourly rate is $70.00. Then the billing amount is 70.00 x 0.40 x (45 / 60) = $21.00.)

Write a program that prompts the user to enter the hourly rate, the total consulting time,
and whether the person has low income. The program should output the billing amount.
Your program must contain a function that takes as input the hourly rate, the total
consulting time, and a value indicating whether the person has low income. The function
should return the billing amount. Your program may prompt the user to enter the
consulting time in minutes.

Value Parameters | 367

Value Parameters

The previous section defined two types of parameters—value parameters and reference
parameters. Example 7-3 shows a program that uses a function with parameters. Before
considering more examples of void functions with parameters, let us make the following
observation about value and reference parameters. When a function is called, the value of
the actual parameter is copied into the corresponding formal parameter. It the formal
parameter is a value parameter, then after copying the value of the actual parameter,
there is no connection between the formal parameter and actual parameter; that is, the
formal parameter has its own copy of the data. Therefore, during program execution, t
formal parameter manipulates the data stored in its own memory space. The progr l\(
Example 7-4 further illustrates how a value parameter works.

A\E -

EXAMPLE 7-4 ‘_65
The tfollowing program shaﬁ?@ﬁ‘r}ﬁd paramfﬁ-‘f ,&3% data type works.
// Exampl
? ‘.\Qratlng evAEQarameter works.
: pad

clude <1ostre

using namespace std;
void funcValueParam(int num);

int main ()

{
int number = 6; //Line 1
cout << "Line 2: Before calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 2
funcValueParam (number) ; //Line 3
cout << "Line 4: After calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 4
return 0;
}
void funcValueParam(int num)
{
cout << "Line 5: In the function funcValueParam, "
<< "before changing, num = " << num
<< endl; //Line 5
num = 15; //Line 6

Value and Reference Parameters and Memory Allocation | 377

FIGURE 7-11 Values of the variables when control goes back to Line 6

Line 6 produces the following output: O u\(
.

Line 6: After funOne: numl = 10, num2 = 30, and
The statement in Line 7 is a function call to x' Now nTwo has three
parameters: x, y, and w. Also, x and W ar meters alue parameter.
Thus, x receives the addres 3 i&m 1ng actual ra 1s num2, and w
receives the adﬂressm ng a 1ch is ch. The variable y
copies theq‘ its memory — shows the values before the 7
w:&x 4 executesg

main funTwo

FIGURE 7-12 Values of the variables before the statement in Line 14 executes

After the statement in Line 14, x++;, executes, the variables are as shown in Figure 7-13.
(Note that the variable x changed the value of num2.)

main funTwo

FIGURE 7-13 Values of the variables after the statement in Line 14 executes

Scope of an Identifier | 385

Table 7-1 summarizes the scope (visibility) of the identifiers.

TABLE 7-1 Scope (Visibility) of the Identifiers

RATE (before main) Y Y Y Y
z (before main) Y Y N N N
t (before main) Y Y Y Y \)K
main Y Y Y \e ‘Cé :
local variables of main N N t’eSaN Y
one (function name) m NO 3’9 Y
x (one’s formal pa r)"(O 6 O“ l N N
\f&@eﬂr) Y AJ@ N N N
? before function t@ g Y Y Y N
two (function name) Y Y Y Y Y
a (two’s formal parameter) N Y N N N
b (two’s formal parameter) N Y N N N
x (two’s formal parameter) N Y N N N
local variables of two N Y N N N
three (function name) Y Y Y Y Y
one (three's formal N N y v N
parameter)
y (three’s formal N N v v N
parameter)
Fz)af':rl;lqzzs),s formal N N v v N
\c/:al':ia(ltt';ll':)cee’s local N N y y N
a (three’s local variable) N N Y N N
:/{aEiBalt())l(;'; four’s local N N N y N
a (Block four's local N N N v N

variable)

Global Variables, Named Constants, and Side Effects |

387

global variables in one area of a program might be misunderstood as problems caused in

another area.

For example, consider the following program:

//Global variable

#include <iostream>

using namespace std;

int t;

void funOne (int& a);

int main ()

{
t = 15;
cout <<

funO

prey

"Line 2:

<fieWN

"Lln
" t_

return 0;

void funOne (inté& a)

}
{
cout <<
<<
a=at
cout <<
<<
t =t +
cout <<
<<
}

This program

Because none

parameter.

"Line 6: In
"and t ="

12;
"Line 8: In
"and t ="

13;

"Line 10:
"and t ="

29F

In funOne:

endl;

funOne: a =

after funOne:

"< a

<< t << endl;

funOne: a =

"< a

<< t << endl;

a =

" << a

<< t << endl;

//Line

//Line

//Line
//Line
//Line

//Line

//Line

10

has a variable t that is declared before the definition of any function.

of the functions has an identifier t, the variable t is accessible any-
where in the program. Also, the program consists of a void function with a reference

In Line 3, the function main calls the function funOne, and the actual parameter passed
to funOne is t. So, a, the formal parameter of funOne, receives the address of t. Any
changes that a makes to its value immediately change t. Because t can be directly
accessed anywhere in the program, in Line 9, the function funOne changes the value of t

do

Global Variables, Named Constants, and Side Effects | 389

showChoices() ;
cin >> choice;
cout << endl;

switch (choice)

{
case 1:
cout << "Enter feet and inches: ";
cin >> feet >> inches;
cout << endl;
feetAndInchesToMetersAndCent (feet, inches, uK
meters, centimet (:)
cout << feet << " feet (foot), " e ﬁ
<< inches << " inch(es) = a\
<< meters << " mete 5
<< centimeters <<& er(s) %dl
break; O lgg
case ﬁ(“

prevt

meter§An

cout <<
<<
<<
<<
<<

break;

case 99:
break;

default:
cout <<
}
}

while (choice

return 0;

}

void showChoices ()
{

<<
<<
<<
<<
<<
<<

cout
cout "l:
cout

cout "99: To

@\N

"Enter metﬁ_
n >> mete lec imeters;

entlmeters: ",

ergofeetAndInches (meters,
feet,
meters << " meter(s), "
centimeters << " centimeter(s) ="
feet << " feet(foot), "
inches << " inch(es)."
endl;

centimeters,
inches) ;

"Invalid input." << endl;

'= 99);

"Enter--" << endl;

To convert from feet and inches to meters "
"and centimeters.
"2: To convert from meters and centimeters to feet "
"and inches." << endl;

" << endl;

quit the program." << endl;

394 | Chapter 7: User-Defined Functions Il

void poolFillTime (double len, double wid, double dep,
double fRate, inté& fTime)

{
double poolWaterCapacity;
poolWaterCapacity = poolCapacity(len, wid, dep):;
fTime = static cast<int> (poolWaterCapacity / fRate + 0.5);
}
void print (int fTime)
{
cout << "The time to fill the pool is approximately: "
<< ftime / 60 << "™ hour(s) and " << ftime % 60 K
<< " minute(s)." << endl; .
) G

Sample Run: In this sample run, the user inp, @Sa
Enter the length, width, and de$ the p j g% 30 15 10

Enter the rate o ﬁxo $s @"
px &,A the pool Aga ely: 5 hour(s) and 37 minute(s).
you can see, the p glns the function poolCapacity to find the amount of

water needed to fill th pool the function poolFillTime to find the time to fill the pool,
and some other functions. Now, to calculate the time to fill the pool, you must know the
amount of the water needed and the rate at which the water is released in the pool. Because
the results of the function poolCapacity are needed in the function poolFillTime, the
function poolFillTime cannot be tested alone. Does this mean that we must write the
functions in a specific order? Not necessarily, especially when difterent people are working
on different parts of the program. In situations such as these, we use function stubs.
A function stub is a function that is not fully coded. For a void function, a function stub
might consist of only a function header and a set of empty braces, {}, and for a value-
returning function it might contain only a return statement with a plausible return value. For
example, the function stub for the function poolCapacity can be:

double poolCapacity (double len, double wid, double dep)

{
return 1000.00;

This allows the function poolCapacity to be called while the program is being coded.
Ultimately, the stub for function poolCapacity is replaced with a function that properly
calculates the amount of water needed to fill the pool based on the values of the parameters.
In the meantime, the function stub allows work to continue on other parts of the program
that call the function poolCapacity.

Before we look at some programming examples, another concept about functions is
worth mentioning: function overloading.

404 | Chapter 7: User-Defined Functions Il

In the previous program, because the data is assumed to be input from the standard
input device (the keyboard) and the function getNumber returns only one value, you
can also write the function getNumber as a value-returning function. If written as a
value-returning function, the definition of the function getNumber is:

int getNumber ()

{
int num;
cin >> num; K
return num; CO u

} a\S

getNumber (number) ,

in the fu d be re‘%ed@ﬁe stertment:
\,ﬁ.¥€= getNumberg

P (Of course%g

In this case, the statement (ﬁlnCUOﬁca"es 2

to change the function prototype.

PROGRAMMING EXAMPLE: Data Comparison

This programming example illustrates:

e How to read data from more than one file in the same program.

e How to send output to a file.

e How to generate bar graphs.

e With the help of functions and parameter passing, how to use the
same program segment on different (but similar) sets ot data.

e How to use structured design to solve a problem and how to perform
parameter passing.

This program is broken into two parts. First, you learn how to read data from more
than one file. Second, you learn how to generate bar graphs.

Two groups of students at a local university are enrolled in certain special courses
during the summer semester. The courses are offered for the first time and are taught
by different teachers. At the end of the semester, both groups are given the same tests
for the same courses, and their scores are recorded in separate files. The data in each
file is in the following form:

408 | Chapter 7: User-Defined Functions Il

The definition of the function printResult follows:

void printResult (ofstream& outp, string courseID, int groupNo,
double avg)

{
if (groupNo == 1)
outp << " " << courseID << " Dg
else
outp << " Wg
outp << setw(8) << groupNo << setw(l7) << avg << endl;
} //end printResult K

Now that we have designed and defined the functions calculgt veG
printResult, we can describe the algorithm for the fug@é ore out-
lining the algorithm, however, we note the fgll é p0551ble that in both
input files, the data is ordered accordi W\J Ds, b might have
fewer courses than the ot scover thi

r er\ig we have
processed both files N d that ogegv io sed data. Make sure to

check for t S\e@ cYore printing th =~that is, the averages for group 1

MAIN 1. Declare t}Eariables (local declaration).

ALGORITHM:
Function main

i

Open the input files.

3. Print a message if you are unable to open a file and terminate the
program.

Open the output file.

5. To output floating-point numbers in a fixed decimal format with
the decimal point and trailing zeros, set the manipulators fixed
and showpoint. Also, to output floating-point numbers to two
decimal places, set the precision to two decimal places.

Initialize the course average for group 1 to 0.0.
Initialize the course average for group 2 to 0. 0.

Initialize the number of courses to 0.

AT o)

Print the heading.

10. Get the course ID, courseIdl, for group 1.
11. Get the course ID, courseId?2, for group 2.
12, For each course in group 1 and group 2,

a. if (courseIdl != courseld2)
{
cout << "Data error: Course IDs do not match.\n";
return 1;

418 | Chapter 7: User-Defined Functions Il

cin >> num;
cout << endl;

cout << "Take ";

if (num == 1)
funcl ():;
else if (num == 2)
func2 () ;
else
cout << "Invalid input. You must enter a 1 or 2" << endl;

} s\e . CO v

void funcl ()

{ reS
cout << "Programming I." <NO

}

void fumc “(Om
P {Y Qut\g\g"ﬁg@ IA5< endl;

a. What is the output if the input is 1?
b. What is the output if the input is 2?
c. What is the output if the input is 3?
d. What is the output if the input is -1?

5. Write the definition of a void function that takes as input a decimal number
and as output 3 times the value of the decimal number. Format your output
to two decimal places.

6. Write the definition of a void function that takes as input two decimal
numbers. If the first number is nonzero, it outputs second number divided
by the first number; otherwise, it outputs a message indicating that the second
number cannot be divided by the first number because the first number is 0.

7. Werite the definition of a void function with three reference parameters of type
int, double, and string. The function sets the values of the int and double
variables to 0 and the value of the string variable to the empty string.

8. Write the definition of a void function that takes as input two parameters
of type int, say sum and testScore. The function updates the value of
sum by adding the value of testScore. The new value of sum is reflected
in the calling environment.

9. What is the output of the following program?

#include <iostream>
using namespace std;

previ

void find(int a, int& b, int& c,)
int main()
{
int one, two, three;
one = 5;
two = 10;
three = 15;
find (one, two, three);
cout << one <K ", " K two <K ", " KL

find(two, one, three);
cout << one <K ", " K

find(three, two,
cout << one << ",

one) ;
" <<

o\
z;z?tw (e o "

ge

56004+

void find(int a, int& b, int& c)
{

int temp;

c=a + b;

temp = a;

a = b;

b=2%* temp;
}

What is the output of the following program?

#include <iostream>
using namespace std;

int x;
void summer (inté&, int);
void fall (int, inté&);
int main ()
{
int intNuml = 2;
int intNum2 = 5;

X = 6;

summer (intNuml, intNum2);
cout << intNuml << " " << intNum2 <<

Exercises

three << endl;

two << ", " K three‘ tGO

thre,zg%

three << endl;

" <L x << endl;

419

uk

420

| Chapter 7: User-Defined Functions Il

fall (intNuml, intNum2);
cout << intNuml << " " << intNum2 << " " << x << endl;
return 0;

}
void summer (int& a, int Db)
{
int intNuml;
intNuml = b + 12;
a=2%Db+ 5;
b = intNuml + 4;
}

\{roid fall (int u, int§ v) \e _CO .

int intNum2;
intNum2= x;

v = 1ntNum2 * 4; m N 392
In the follg numbe ﬁfr}g ments to show the order
‘ 111 execu rder of execution).

; chlude < 1o

using namespace std;
void func(int vall, int wval2);

int main ()

{
int numl, num2;
___ cout << "Please enter two integers."” << endl;
- cin >> numl >> num2;
_ func (numl, num2);
____ cout << " The two integers are " << numl
<< ", " << num2 << endl;
_ return 0;
}
void func(int vall, int val2)
{
int val3, val4;
_ wval3 = vall + val2;
_ vald = vall * val2;
___ cout << "The sum and product are " << val3
<< " and " << val4 << endl;
}

Consider the following program:

#include <iostream>
#include <cmath>
#include <iomanip>

432 | Chapter 7: User-Defined Functions Il

Write a program that prompts the user to enter:

a. The width of the river
b. The distance of the factory downstream on the other side of the river
c. The cost of laying the power line under water
d. The cost of laying the power line over land
The program then outputs the length of the power line that should run
under water and the length that should run over land so the cost of

constructing the power line is at the minimum. The program should

also output the total cost of constructing the power line. }K

16. (Pipe problem, requires trigonometry) A pipe is to be @ .
around the right-angled corner of two intersecting coxd G@Sﬁ
that the widths of the two intersecting corr nd 8 feet

(see Figure 7-22). Your objective isp§o e gth of ongest
pipe, rounded to the nearest mth e carn d the
right- angled corner. ﬁ(3 0

% pa 5

FIGURE 7-22 Pipe problem

Write a program that prompts the user to input the widths of both of the
hallways. The program then outputs the length of the longest pipe, rounded to
the nearest foot, that can be carried level around the right-angled corner. (Note
that the length of the pipe is given by [= AB+ BC =8 /sin 8 + 5 / cos 6,
where 0 < 0 < 1/2.)

436 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

These are illegal enumeration types because none of the values is an identifier. The
following, however, are legal enumeration types:

enum grades {A, B, C, D, F};
enum places {FIRST, SECOND, THIRD, FOURTH};

If a value has already been used in one enumeration type, it cannot be used by any other
enumeration type in the same block. The same rules apply to enumeration types declared
outside of any blocks. Example 8-4 illustrates this concept.

e S coB¥

Consider the following statements:

enum mathStudent {JOHN, ILL, ﬂ RON} 9 Z

enum compStudent {SUS OH WILLI}‘U, /

Suppose that thew re in t Krog the same block. The second
pStudent,4 because the value JOHN was used in the

enume e
@‘ umeranor@aa‘ dent

Declaring Variables

Once a data type is defined, you can declare variables of that type. The syntax for
declaring variables of an enum type is the same as before:

dataType identifier, identifier,...;

The statement:

enum sports {BASKETBALL, FOOTBALL, HOCKEY, BASEBALL, SOCCER,
VOLLEYBALL};

defines an enumeration type called sports. The statement:
sports popularSport, mySport;

declares popularSport and mySport to be variables of type sports.

Assignment

Once a variable is declared, you can store values in it. Assuming the previous declaration,
the statement:

popularSport = FOOTBALL;

444 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

typedef int Boolean; //Line 1
const Boolean TRUE = 1; //Line 2
const Boolean FALSE = 0; //Line 3
Boolean flag; //Line 4

The statement in Line 1 creates an alias, Boolean, for the data type int. The
statements in Lines 2 and 3 declare the named constants TRUE and FALSE and initialize
them to 1 and 0, respectively. The statement in Line 4 declares £1lag to be a variable of
type Boolean. Because £lag is a variable of type Boolean, the following statement is
legal:

flag = TRUE;

ok
o’tes 2\
% ISSOrS

PROGRAMMING EXAMPLE: The (?(1@ P e
Chlldren ofty ame of rock s ors. This game has two players,

ooses one Jects rock, paper, or scissors. If player 1
1

s paper player 2 wins the game because paper
ayed according to the following rules:

o se rock and
covers the rock. Th g
e If both players choose the same object, this play is a tie.

e If one player chooses rock and the other chooses scissors, the player
choosing the rock wins this play because the rock breaks the scissors.

e If one player chooses rock and the other chooses paper, the player
choosing the paper wins this play because the paper covers the rock.

e [f one player chooses scissors and the other chooses paper, the player
choosing the scissors wins this play because the scissors cut the paper.

Write an interactive program that allows two people to play this game.
Input This program has two types of input:

e The users’ responses when asked to play the game.

e The players’ choices.

Output The players’ choices and the winner of each play. After the game is over,
the total number of plays and the number of times that each player won
should be output as well.

PROBLEM Two players play this game. Players enter their choices via the keyboard. Each
ANALYSIS player enters R or r for Rock, P or p for Paper, or S or s for Scissors. While the
AND first player enters a choice, the second player looks elsewhere. Once both entries

ALGORITHM are in, if the entries are valid, the program outputs the players’ choices and declares
DESIGN the winner of the play. The game continues until one of the players decides to quit

Programming Example: The Game of Rock, Paper, and Scissors | 445

the game. After the game ends, the program outputs the total number of plays and

the number of times that each player won. This discussion translates into the
following algorithm:

Provide a brief explanation of the game and how it is played.

Ask the users if they want to play the game.

Get plays for both players.

If the plays are valid, output the plays and the winner.

Update the total game count and winner count. K

A

Repeat Steps 2 through 5 while the users agree to play the game. O
Output the number of plays and times that each player\vxe

We will use the enumeration type to describe the.te

enum objectType {ROCK, PAPEWCI?Q&Q 9 2
Variables It is clear that you, \nﬁlﬁ t&(vag v g n@%ung‘bn main:

(Function main)
t‘g@&l\t //VarJ.
% ?

the number of

t winCountl; to store the number of games

won by player 1

int winCount2; //variable to store the number of games
//won by player 2

int gamewinner;

char response; //variable to get the user's response to
//play the game

char selectionl;

char selection2;

objectType playl; //playerl's selection

objectType play2; //player2's selection

This program is divided into the following functions, which the ensuing sections
describe in detail.

e displayRules: This function displays some brief information about the game
and its rules.

e validSelection: This function checks whether a player’s selection is valid.
The only valid selections are R, r, P, p, S, and s.

e retrievePlay: Because enumeration types cannot be read directly, this func-
tion converts the entered choice (R, r, P, p, S, or s) and returns the
appropriate object type.

e gameResult: This function outputs the players’ choices and the winner of
the game.

448 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

b. else
{
1. Determine the winning object. (Call function winningObject)
2. Output each player's choice.
3. Determine the winning player.
4. Return the winning player via a reference parameter to the

functionmain so that the function main can update the
winning player's win count.

}

The definition of this function is:

void gameResult (objectType playl, objectType play2,
int& winner) CO s
: \e.

objectType winnerObject; tesa
if (playl == play2) NO
{ Om

winner =, (; "(
cQl th® players %%1
\Szx num (pla A—
P(e ut <<_K 3 is a tie." << endl;
) P

winnerObject = winningObject (playl, play2):;

else

{

//Output each player's choice
cout << "Player 1 selected ";
convertEnum (playl) ;
cout << " and player 2 selected ";
convertEnum(play?2) ;
cout << ". ";

//Decide the winner

if (playl == winnerObject)
winner = 1;
else if (play2 == winnerObject)

winner = 2;

//Output the winner
cout << "Player " << winner << " wins this game."
<< endl;

}

Function Because enumeration types cannot be output directly, let’s write the function
convertkEnum convertEnum to output objects of the enum type objectType. This function
has one parameter, of type objectType. It outputs the string that corresponds to the

objectType. In pseudocode, this function is:

Programming Example: The Game of Rock, Paper, and Scissors | 451

PROGRAM LISTING

//***
// Author: D.S. Malik

//

// Program: Rock, Paper, and Scissors

// This program plays the game of rock, paper, and scissors.
//***

#include <iostream>

using namespace std;

enum objectType {ROCK, PAPER, SCISSORS};

void displayRules();
objectType retrleve

bool valldﬁele lectl
void conv jectType o %
e playl,

pre

id dlsplayRes

//Function prototypes

‘-Qlectlon) 5

ca\eCO"

e
’t‘ 202

objectType play2):;

nlngObj
eResult ayl objectType play2, int& winner);

int main ()

{

//Step 1

Count, int wCountl,

int wCount2);

int gameCount; //variable to store the number of

//games played

int winCountl; //variable to store the number of games

//won by player 1

int winCount2; //variable to store the number of games

//won by player 2
int gamewinner;

char response; //variable to get the user's response to

//play the game
char selectionl;
char selection2;

objectType playl; //playerl's selection
objectType play2; //player2's selection

//Initialize variables; Step 2
gameCount = 0;
winCountl = 0;
winCount2 0;

displayRules () ;

cout << "Enter Y/y to play the game:

cin >> response;
cout << endl;

’

//Step 3

//Step 4
//Step 5

B\

456 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

y = std::pow(x, 2);

}

This example accesses the function pow of the header file cmath.

EXAMPLE 8-11

Consider the following C++ code: ‘u\(

#include <iostream>

int main ()

(O
e @AY
‘?‘e\ﬂ pag®

In this example, the function main can refer to the global identifiers of the header file
iostream without using the prefix std:: before the identifier name. The using
statement appears inside the function main. Therefore, other functions (if any) should
use the prefix std: : before the name of the global identifier of the header file iostream
unless the function has a similar using statement.

EXAMPLE 8-12

Consider the following C++ code:

#include <iostream>

using namespace std; //Line 1
int t; //Line 2
double u; //Line 3

namespace expN

{
int x; //Line
char t; //Line

U

Namespaces

double u; //Line 6
void printResult(); //Line 7
}
using namespace expN;
int main ()
{
int one; //Line 8
double t; //Line 9
double three; //Line 10
} ca\e:

{

oM
\6\'\' v 709 ©

? AR Y- (¢ A

To refer to the variable t in Line 2 in main, use the scope resolution
operator, which is :: (that is, refer to t as ::t), because the function
main has a variable named t (declared in Line 9). For example, to copy
the value of % into t, you can use the statement ::t = x;.

To refer to the member t (declared in Line 5) of the namespace expN
in main, use the prefix expN: : with t (that is, refer to t as expN: : t)
because there is a global variable named t (declared in Line 2) and a
variable named t in main.

To refer to the member u (declared in Line 6) of the namespace expN
in main, use the prefix expN: : with u (that is, refer to u as expN: :u)
because there is a global variable named u (declared in Line 3).

You can reference the member x (declared in Line 4) of the namespace
expN in main as either x or expN::x because there is no global
identifier named x and the function main does not contain any identifier
named x.

The definition of a function that is a member of a namespace, such
as printResult, is usually written outside the namespace as in
the preceding program. To write the definition of the function
printResult, the name of the function in the function heading
can be either printResult or expN::printResult (because no
other global identifier is named printResult).

void expN::printResult () //Deflnltﬁ func%gg%tResult

457

uk

462 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

TABLE 8-1 Some string functions

strVar.at (index)
strVar[index]

strVar.append(n, ch)

strVar.append (str)

strVar.clear ()

strVar.compare (str)

strvz empté\N ‘(O
P;ﬁ ase() ? 996

strVar.erase (pos,
strVar.find (str)

strVar.find(str, pos)

strvar.find first of
(str, pos)

strvar.find first not of
(str, pos)

strVar.insert (pos, n, ch);

strVar.insert (pos, str);

strVar.length ()

Returns the element at the position specified by
index.

Returns the element at the position specified by
index.

Appends n copies of ch to strVar, in which ch

is a char variable or a char constant. \(
Appends str to strVar. O .
Deletes aII the C PVar.

@ rand s is operation
m ed in Ch;&v g

Ret% ar is empty; otherwise,
Deletes all the characters in strvar.

Deletes n characters from strVar starting at
position pos.

Returns the index of the first occurrence of str
in strVar. If str is not found, the special value
string: :npos is returned.

Returns the index of the first occurrence at or
after pos where str is found in strVar.

Returns the index of the first occurrence of any
character of strVar in str. The search starts
at pos.

Returns the index of the first occurrence of any
character of str not in strVar. The search
starts at pos.

Inserts n occurrences of the character ch at index
pos into strVar; pos and n are of type
string::size type; ch is a character.

Inserts all the characters of str at index pos
into strVar.

Returns a value of type string::size type
giving the number of characters strvar.

Quick Review | 475

cout << endl;

cout << "The pig Latin form of "™ << str << " is: "
<< piglatinString(str) << endl;

return 0;

}

//Place the definitions of the functions isVowel, rotate, and
//piglatinString and as described previously here.

Sample Runs: In these sample runs, the user input is shaded. K
Sample Run 1: e CO .
Enter a string: eye tes \ :
The pig Latin form of eye 1myeNO 92
of 13

Sample Rut\ \N “(l6
? r ng: Therege 6
he pig Latin fg a ere is: ere-Thay

Sample Run 3:

Enter a string: why

The pig Latin form of why is: y-whay

Sample Run 4:

Enter a string: 123456

The pig Latin form of 123456 is: 123456-way

QUICK REVIEW

1. An enumeration type is a set of ordered values.
2. C++’s reserved word enum is used to create an enumeration type.
3. The syntax of enum is:

enum typeName {valuel, value2,...};

in which valuel, value?2,... are identifiers, and valuel < value2<

4. No arithmetic operations are allowed on the enumeration type.

This page intentionally left blank

486 | Chapter 9: Arrays and Strings

In previous chapters, you worked with simple data types. In Chapter 2, you learned that
C++ data types fall into three categories. One of these categories is the structured data
type. This chapter and the next few chapters focus on structured data types.

Recall that a data type is called simple if variables of that type can store only one value at
a time. In contrast, in a structured data type, each data item is a collection of other data
items. Simple data types are building blocks of structured data types. The first structured
data type that we will discuss is an array. In Chapters 11 and 12, we will discuss other
structured data types.

Before formally defining an array, let us consider the following problem. We want
write a C++ program that reads five numbers, finds their sum, and prints the num 1
reverse order.

In Chapter 5, you learned how to read numbers, pr1 X;%a the sum. The

difference here is that we want to prmt th 1 se orde his means we

cannot print the first four numbers u e a ted the fi % on. To do this,

we need to store all of the r& we start prl gt 63 verse order. From
;Kt e Yollowin, plishes this task.

what we have lear f:
\Qd five n -'p s, iy their sum, and print the

@i@ﬁ v revzga

#include <iostre
using namespace std;

int main ()

{
int item0O, iteml, item2, item3, item4;
int sum;
cout << "Enter five integers: ";
cin >> item0 >> iteml >> item2 >> item3 >> item4;
cout << endl;
sum = itemO + iteml + item2 + item3 + item4;
cout << "The sum of the numbers = " << sum << endl;
cout << "The numbers in the reverse order are: ";
cout << itemd4d << " " << jtem3 << " " << item2 << " "
<< iteml << " " << item0 << endl;
return 0;
}

This program works fine. However, if you need to read 100 (or more) numbers and
print them in reverse order, you would have to declare 100 variables and write many
cin and cout statements. Thus, for large amounts of data, this type of program is not
desirable.

Arrays | 487

Note the following in the previous program:

1. Five variables must be declared because the numbers are to be printed in
reverse order.

All variables are of type int—that is, of the same data type.

3. The way in which these variables are declared indicates that the variables
to store these numbers all have the same name—except the last char-
acter, which is a number.

Statement 1 tells you that you have to declare five variables. Statement 3 tells you
that it would be convenient if you could somehow put the last character, which is
number, into a counter variable and use one for loop to count from 0 K
reading and another for loop to count from 4 to 0 for printi inaily atise all

variables are of the same type, you should be able to @ *many variables
must be declared—and their data type—vﬁ g ent

than the one we
used earlier.
The data structure t}<i\hits ese thmﬁ% ﬁled an array.

An array is a collectlon of a fixed number of components all of the same data type. A
one-dimensional array is an array in which the components are arranged in a list form.
This section discusses only one-dimensional arrays. Arrays of two dimensions or more are
discussed later in this chapter.

The general form for declaring a one-dimensional array is:

dataType arrayName[intExp];

in which intExp is any constant expression that evaluates to a positive integer. Also,
intExp specifies the number of components in the array.

The statement:

int num[5];

declares an array num of five components. Each component is of type int. The compo-
nents are num[0], num([1], num[2], num[3], and num[4]. Figure 9-1 illustrates the
array num.

Arrays | 497

The statement in Line 1 declares and initializes the array myList, and the statement in
Line 2 declares the array yourList. Note that these arrays are of the same type and have
the same number of components. Suppose that you want to copy the elements of
myList into the corresponding elements of yourList. The following statement is
illegal:

yourList = myList; //illegal

In fact, this statement will generate a syntax error. C++ does not allow aggregate
operations on an array. An aggregate operation on an array is any operation that

manipulates the entire array as a single unit
To copy one array into another array, you must copy it component- Wlse—ﬁ is k >
component at a time. This can be done using a loop, such as the\

for (int index = 0; index < 5; index ++ es
yourList[index] = myList[inde

Next, suppose that you w;, Mtﬁ) the a ’3‘ QZ‘he following
statement is illegal arw gene %sy ﬁro
cin >> /1llegale g

re!i ata into yo@a Must read one component at a time, using a loop such

as the following;:

for (int index = 0; index < 5; index ++)
cin >> yourList[index];

Similarly, determining whether two arrays have the same elements and printing the
contents of an array must be done component-wise. Note that the following statements
are illegal in the sense that they do not generate a syntax error; however, they do not give
the desired results.

cout << yourlist;

if (myList <= yourList)

We will comment on these statements in the section Base Address of an Array and Array
in Computer Memory later in this chapter.

Arrays as Parameters to Functions

Now that you have seen how to work with arrays, a question naturally arises: How are
arrays passed as parameters to functions?

By reference only: In C++, arrays are passed by reference only.

Because arrays are passed by reference only, you do not use the symbol & when declaring
an array as a formal parameter.

Arrays

//Find and output the sum of the elements
//of listA
cout << "Line 14: The sum of the elements of "
<< "1listA is: "
<< sumArray (listA, ARRAY SIZE) << endl
<< endl; //Line 14

//Find and output the position of the largest
//element in listA
cout << "Line 15: The position of the largest "
<< "element in listA is: "
<< indexLargestElement (1istA, ARRAY SIZE)
<< endl; //Line 15

//in listA 5
cout << "Line 16: The largest el ﬁe

<< "listA is: "
<< listA[indexlar mm llstA 6%
<< endl << eﬁ% 6 //Line 16
g:sc lements of%A@to listB using the
xq tion co
P rray (1li g‘gﬁ , 0, ARRAY SIZE); //Line 17

cout << "Line 18: After copying the elements "
<< "of listA into 1listB," << endl
<< " listB elements are: "; //Line 18

//Find and output the largest element \e C
(SAN

A

//Output the elements of listB
printArray(listB, ARRAY SIZE); //Line 19
cout << endl; //Line 20

return 0;

}

//Place the definitions of the functions initializeArray,
//£fillArray, and so on here. Example 9-6 gives the definitions
//of these functions.

Sample Run: In this sample run, the user input is shaded.

Line 1: listA elements:

00000O0O0OO0OO0DO
Line 5: ListB elements: 0 0 0 0 0 0 0 0 0 O
Line 8: Enter 10 integers: 33 77 25 63 56 48 98 39 5 12
Line 11: After filling listA, the elements are:

33 77 25 63 56 48 98 39 5 12

Line 14: The sum of the elements of listA is: 456

505

Two- and Multidimensional Arrays | 525

for (row = 0; row < NUMBER OF ROWS; row++)
for (col = 0; col < NUMBER OF COLUMNS; col++)
matrix[row][col] = 0;

Print

By using a nested for loop, you can output the components of matrix. The following
nested for loops print the components of matrix, one row per line:

for (row = 0; row < NUMBER_OF ROWS; row++)

{
for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cout << setw(5) << matrix[row][col] << " ";

O.
cout << endl; \e ‘C

So
o\e
|Tnh|: l;:]]owlng £or loo N &(@mr%mﬁ‘m&?% fifth row of matrix:

row =

?¥£= 0; 3@%@ (éUMNS col++)
cin >> matri

As before, by putting the row number in a loop, you can input data into each component
of matrix. The following for loop inputs data into each component of matrix:

for (row = 0; row < NUMBER OF ROWS; row++)
for (col = 0; col < NUMBER_OF COLUMNS; col++)
cin >> matrix[row] [col] ;

Sum by Row

The following for loop finds the sum of row number 4 of matrix; that is, it adds the
components of row number 4.

sum 0;

row 4;

for (col = 0; col < NUMBER_OF COLUMNS; col++)
sum = sum + matrix[row][col];

Once again, by putting the row number in a loop, we can find the sum of each row
separately. Following is the C++ code to find the sum of each individual row:

//Sum of each individual row
for (row = 0; row < NUMBER _OF ROWS; row++)
{
sum = 0;
for (col = 0; col < NUMBER_OF COLUMNS; col++)
sum = sum + matrix[row][coll];

cout << "Sum of row " << row + 1 << " = " << sum << endl;

Programming Example: Code Detection | 537

if (length != length2) //Step d
{
cout << "The original code and its copy "
<< "are not of the same length."

<< endl;
return;
}
outfile << "Code Digit Code Digit Copy"
<< endl;
for (count = 0; count < length; count++) //Step e K

: O
infile >> digit; s@ e
outfile << setw(5) << llst[count] S

<< setw(l7) << dlﬁo a’ //Step e.2

1f (digit != lis om]) ,}‘ e.3
Wei " code6d7 &1 he same"

<< endl;

eyl
preY=gage

else
outfile << endl;
}

if (codeOk) //Step £
outfile << "Message transmitted OK."
<< endl;
else
outfile << "Error in transmission.
<< "Retransmit!!" << endl;

}
Following is the algorithm for the function main.
Main 1. Declare the variables.
Algorithm Open the files.
Call the function readCode to read the secret code.
if (length of the secret code <= 250)

= 2N

Call the function compareCode to compare the codes.
else

Output an appropriate error message.

538 | Chapter 9: Arrays and Strings

//**
// Author: D.S. Malik

//

// Program: Check Code

// This program determines whether a code is transmitted

// correctly.
//**

#include <iostream>
#include <fstream>

#include <iomanip> CO -u
.
using namespace std; tesa,\
const int MAX CODE SIZE = 250; NO ,39 2
void readCode(J.f lee, 1n :|_ ﬁ l
th b
v01d ﬂ* (1fstream 1 stream& outfile,

], int length);

int maln()
{
//Step 1
int codeArray[MAX CODE_SIZE]; //array to store the secret
//code
int codelLength; //variable to store the

//length of the secret code
bool lengthCodeOk; //variable to indicate if the length
//of the secret code is less than or
//equal to 250

ifstream incode; //input file stream variable
ofstream outcode; //output file stream variable

char inputFile[51]; //variable to store the name of the
//input file
char outputFile[51]; //variable to store the name of
//the output file

cout << "Enter the input file name: ";
cin >> inputFile;
cout << endl;

//Step 2

incode.open (inputFile) ;

if (!incode)

{
cout << "Cannot open the input file." << endl;
return 1;

540 | Chapter 9: Arrays and Strings

PROGRAMMING EXAMPLE: Text Processing

(Line and letter count) Let us now write a program that reads a given text, outputs
the text as is, and also prints the number of lines and the number of times each letter
appears in the text. An uppercase letter and a lowercase letter are treated as being the
same; that 1s, they are tallied together.

Because there are 26 letters, we use an array of 26 components to perform the letter
count. We also need a variable to store the line count. ‘

stored in a file, which we will call textout.out.

The text 1s stored in a file, which we will call textin.txt. The otéLUlll b

Input A file containing the text to be processed. 5 \
Output A file containing the text, N and the erZof times a
letter appears in th text ﬁ }
PROBLEM Based on thedes' gea%%m @‘tiu text as is. That is, if the

ANALYSIS text c@ pace characte t be output as well. Furthermore, we
he num

AND xt. Therefore, we must know where the line
ALGORITHM ds which means trap the newline character. This requirement suggests
DESIGN that we cannot use the extraction operator to process the input file. Because we also

need to perform the letter count, we use the get function to read the text.

Let us first describe the variables that are necessary to develop the program. This will
simplify the discussion that follows.

Variables We need to store the line count and the letter count. Therefore, we need a variable
to store the line count and 26 variables to perform the letter count. We will use an
array of 26 components to perform the letter count. We also need a variable to read
and store each character in turn, because the input file is to be read character by
character. Because data is to be read from an input file and output is to be saved in a
file, we need an input stream variable to open the input file and an output stream
variable to open the output file. These statements indicate that the function main
needs (at least) the following variables:

int lineCount; //variable to store the line count
int letterCount[26]; //array to store the letter count
char ch; //variable to store a character
ifstream infile; //input file stream variable
ofstream outfile; //output file stream variable

In this declaration, letterCount[0] stores the A count, letterCount[1]
stores the B count, and so on. Clearly, the variable 1ineCount and the array
letterCount must be initialized to 0.

550

| Chapter 9: Arrays and Strings

Determine whether the following array declarations are valid. If a declara-
tion is invaid, explain why.
a. int 1ist75;

b. int size;
double list[size];

c. int test[-10];

d. double sales[40.5];

What would be a valid range for the index of an array of size 50?
Write C++ statements to do the following:

a. Declare an array alpha of 15 components of type int. CO .

b. Output the value of the tenth component of the

c. Set the value of the fifth component éﬁ to

d. Set the value of the ninth c n ¢ array Zm of
the sixth and thlr MCnts of the ar

Set theeNN urth t oagyarray alpha to three
altie of the e t minus 57.

P x utput al ag components per line are printed.
o

What is the ou the tollowing program segment?

int temp[5];

for (int 1 = 0;

;1< 5; i++)
temp[i] = 2 * i

- 3;
for (int 1 = 0; i < 5; i++)

cout << temp[i] << " ";
cout << endl;

temp[0] temp[4];
temp[4] = temp[l];
temp[2] temp[3] + temp[O0];

for (int 1 = 0; i < 5; i++)
cout << temp[i] << "™ ";
cout << endl;

Suppose 1ist is an array of five components of type int. What is stored in
list after the following C++ code executes?
for (int 1 = 0; 1 < 5; i++)
{
list[i] = 2 * i + 5;
if (1 % 2 == 0)
list[i] = list[4i] - 3;

Uk

556

29.

30.

31.

32.

33.

Chapter 9: Arrays and Strings

Given the declaration:

char strl[21];
char str2[211];

a.

b.

Assume the following declarations:

char name[21];
char yourName[21];

char studentName[31]; tes

Write a C++ statement that stores "Sunny Day" in strl.

Write a C++ statement that stores the length of strl into the int
variable 1length.

Write a C++ statement that copies the value of name into str2.

Write C++ code that outputs strl if strl is less than or equal to
str2, and otherwise outputs str2.

a\e €O

uk

Mark the following statemeéM1 nvahd { %%ZVahd explain
. A\!

<< stu aﬁe 5
yourName[
yourName = studentName;

if (yourName == name)
studentName = name;

int x = strcmp (yourName, studentName) ;
strcpy (studentName, Name) ;

for (int § = 0; J < 21; j++)
cout << namel[j];

Define a two-dimensional array named temp of three rows and four
columns of type int such that the first row is initialized to 6, 8, 12, 9;
the second row is initialized to 17, 5, 10, 6; and the third row is initialized
to 14, 13, 16, 20.

Suppose that array temp is as defined in Exercise 31. Write C++ statements
to accomplish the following:

a.
h.
c.

d.

Output the contents of the first row and first column element of temp.
Output the contents of the first row and last column element of temp.
Output the contents of the last row and first column element of temp.

Output the contents of the last row and last column element of temp.

Consider the following declarations:

const int CAR TYPES = 5;
const int COLOR_TYPES = 6;

’P

Programming Exercises

at least, contain a function to read and store a number into an array and
another function to output the sum of the numbers. (Hint: Read numbers as
strings and store the digits of the number in the reverse order.)

Jason, Samantha, Ravi, Sheila, and Ankit are preparing for an upcoming
marathon. Each day of the week, they run a certain number of miles and
write them into a notebook. At the end of the week, they would like to
know the number of miles run each day, the total miles for the week, and
average miles run each day. Write a program to help them analyze their
data. Your program must contain parallel arrays: an array to store the names
of the runners and a two-dimensional array of five rows and seven columns
to store the number of miles run by each runner each day. Furthermo
your program must contain at least the following functlons a @
read and store the runners’ names and the numbers of c ch ay; a

function to find the total miles run by eac 1&6 erage number
t the re,

of miles run each day, and a fun th u may

assume that the mput file and e 1n the

followmg for mlle milesDay3
ay mllesDa iZa

ou may assum ng input data:

mlle
gram to %@ s’ average test scores and their grades.

Johnson 85 83 77 91 76
Aniston 80 90 95 93 48
Cooper 78 81 11 90 73
Gupta 92 83 30 69 87
Blair 23 45 96 38 59
Clark 60 85 45 39 67
Kennedy 77 31 52 74 83
Bronson 93 94 89 77 97
Sunny 79 85 28 93 82
Smith 85 72 49 75 63

Use three arrays: a one-dimensional array to store the students’ names, a
(parallel) two-dimensional array to store the test scores, and a parallel one-
dimensional array to store grades. Your program must contain at least the
following functions: a function to read and store data into two arrays, a
function to calculate the average test score and grade, and a function to
output the results. Have your program also output the class average.

(Airplane Seating Assignment) Write a program that can be used to
assign seats for a commercial airplane. The airplane has 13 rows, with six
seats in each row. Rows 1 and 2 are first class, rows 3 through 7 are business
class, and rows 8 through 13 are economy class. Your program must prompt
the user to enter the following information:

a. Ticket type (first class, business class, or economy class)

b. Desired seat

561

Uk

List Processing | 565

Suppose that you have a list with 1000 elements. If the search item is the second item in the
list, the sequential search makes two key (also called item) comparisons to determine whether
the search item is in the list. Similarly, if the search item is the 900th item in the list, the
sequential search makes 900 key comparisons to determine whether the search item is in the
list. If the search item is not in the list, the sequential search makes 1000 key comparisons.

Therefore, if searchItemis always at the bottom of the list, it will take many comparisons to
find it. Also, if searchItem is not in list, then we compare searchItem with every
element in list. A sequential search is therefore not very efficient for large lists. In fact, it
can be proved that, on average, the number of comparisons (key comparisons, not index
comparisons) made by the sequential search is equal to half the size of the list. So, for a liﬁK

of 1000, on average, the sequential search makes about 500 key comparisons,

O.
ef dﬁist is sorted,

in the section Binary

Bubble Sort ﬁ(Om 6.0 'X—
There ar \blalgorlthms Tl@g descnbes the sorting algorithm, called

W sort 2 9
Suppose 1ist[0]. J.stg =11 is a list of n elements, indexed 0 to n - 1. We want to

rearrange, that is, sort, the elements of list in increasing order. The bubble sort
algorithm works as follows:

The sequential search algorithm does not assume that the hst is

then you can significantly improve the search al§orlt

Search of this chapter. However, first, we

In a series of n - 1 iterations, the successive elements 1ist[index] and list[index + 1] of
list are compared. If 1ist[index] is greater than list[index + 11, then the elements
list[index] and list[index + 1] are swapped, that is, interchanged.

It follows that the smaller elements move toward the top (beginning), and the larger
elements move toward the bottom (end) of the list.

In the first iteration, we consider 1ist[0]...list[n - 171; in the second iteration,
we consider 1list[0]...list[n - 2]; in the third iteration, we consider
1list[0]...list[n - 3], and so on. For example, consider 1ist[0]...list[4], as
shown in Figure 10-1.

list

1ist[0]
list[1]
list[2]
list[3]
list[4]

FIGURE 10-1 List of five elements

List Processing | 573

describes the sorting algorithm called insertion sort, which tries to improve—that is,
reduce—the number of key comparisons.

The insertion sort algorithm sorts the list by moving each element to its proper place.
Consider the list given in Figure 10-9.

[0 [@ @©B1 (4 61 6 (7
- K EI I
FIGURE 10-9 1list \ CO u

The length of the list is 8. Moreover, the lis e% llst[list[2], and
1ist[3] are already in (ascendlng m tﬁcllst[o,x‘lg is sorted (see

Figure 10- 10).
O
P (e P_a_@ﬁ[4,{47 unsorted list —>‘

[0] (2] 4 BB 61 7]

N1 - EAE

FIGURE 10-10 Sorted and unsorted portion of 1ist

Next, we consider the element 1ist[4], the first element of the unsorted list. Because
list[4] < 1ist[3], we need to move the element 1ist[4] to its proper location. It
thus follows that element 1ist[4] should be moved to 1ist[2] (see Figure 10-11).

}47 sorted list —>}<— unsorted list —»‘

[0] [2] 4 B . [

- > (v (e [

move

FIGURE 10-11 Move 1ist[4] into 1ist[2]

List Processing | 575

We now copy temp into 1ist[2]. Figure 10-15 shows the resulting list.

%7 sorted list I Un?iosrtted ‘
(1] (2] [3] [4] [5] [6] 7]
&l 0| 8] 2]] o SR
temp %‘opy \(

FIGURE 10-15 1ist after copying temp into 1ist[2] \ C

Now 1list[0]...list[4] is sorted, and lﬁ@‘w Tst[7 opted. We repeat
the Tirst ele)39

this process on the resultmi d list into the

proper place in the sorte

From thj e see t rln g phase the array containing the list is
c?] 0 subl rted Elements in the sorted sublist are sorted;
ents in the unso are to be moved to their proper places in the sorted

sublist one at a time. We use an index—say, firstOutOfOrder—to point to the first
element in the unsorted sublist. Initially, firstOutOfOrder is initialized to 1.

This discussion translates into the following pseudocode:

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;
firstOutOfOrder++)
if (list[firstOutOfOrder] is less than list[firstOutOfOrder - 11])

{
copy list[firstOutOfOrder] into temp

initialize location to firstOutOfOrder
do

a. copy list[location - 1] into list[location]
b. decrement location by 1 to consider the next element
in the sorted portion of the array

while (location > 0 && the element in the upper list at
location - 1 is greater than temp)

}

copy temp into list[location]

The tfollowing C++ function implements the previous algorithm:

void insertionSort (int list[], int listLength)

576 | Chapter 10: Applications of Arrays (Searching and Sorting) and the vector Type

int firstOutOfOrder, location;
int temp;

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;
firstOutOfOrder++)
if (list[firstOutOfOrder] < list[firstOutOfOrder - 11])
{
temp = list[firstOutOfOrder];
location = firstOutOfOrder;

¢ \e cO-
list[location] = llst[loc{es
location—--; NO

wh:.leq{‘o%ﬁ@ &6& 17 aﬁlo%_—??] > temp) ;

\,\l@ oeats @
pie pale

We leave it as an exercise to write a program to test the insertion sort algorithm.

. . . . 2 _
It is known that for a list of length n, on average, insertion sort makes about %

key comparisons and about 20D tem assignments. Therefore, if n = 1000, to sort
the list, insertion sort makes about 250,000 key comparisons and about 250,000 item

assignments.

This chapter presented three sorting algorithms. In fact, these are not the only sorting
algorithms. You might be wondering why there are so many different sorting algo-
rithms. The answer is that the performance of each sorting algorithm is different. Some
algorithms make more comparisons, whereas others make fewer item assignments. Also,
there are algorithms that make fewer comparisons, as well as fewer item assignments.
The previous sections give the average number of comparisons and item assignments for
the three sorting algorithms covered in this chapter. Analysis of the number of key
comparisons and item assignments allows the user to decide which algorithm to use in a
particular situation.

Binary Search

A sequential search is not very efficient for large lists. It typically searches about half of
the list. However, if the list is sorted, you can use another search algorithm called binary
search. A binary search is much faster than a sequential search. In order to apply a binary
search, the list must be sorted.

582 | Chapter 10: Applications of Arrays (Searching and Sorting) and the vector Type

Now that we know how to declare a vector object, let us discuss how to manipulate the
data stored in a vector object. To do so, we must know the following basic operations:
* Jtem insertion
® [tem deletion
e Stepping through the elements of a vector container
The type vector provides various operations to manipulate data stored in a vector

object. Each of these operations is defined in the form of a function. Table 10-2 describes

some of these functions and how to use them with a vector object. (Assume that vecList
is a vector object. The name of the function is shown in bold.) \(

O-
TABLE 10-2 Operations on a vector Object \e -C

. . (0 et ﬁe e at the position
VeCLlst-itéﬁﬁl‘" ezfgemd
X @\, . e Returns the element at the position
vaclist[inde 0 :
specified by index.

el et et a) Returns the first element. (Does not check
: whether the object is empty.)

. Returns the last element. (Does not check

TRELIEE 2) whether the object is empty.)

vecList.clear () Deletes all elements from the object.

vecList.push_back (elem) Qtiﬁzye%fdelem is inserted into vecList

vecList.pop back () Delete the last element of vecList.

vecList ty () Returns true if the object vecList is
- empty empty and false otherwise.

Returns the number of elements currently

veclist.size() in the object vecList. The value returned

is an unsigned int value.

Returns the maximum number of elements
veclList.max size() that can be inserted into the object
vecList.

Exercises | 603

EXERCISES

1. Mark the following statements as true or false.
a. A sequential search of a list assumes that the list elements are sorted in
ascending order.
b. A binary search of a list assumes that the list is sorted.
c. A binary search is faster on ordered lists and slower on unordered lists.

d. A binary search is faster on large lists, but a sequential search is faster on
small lists.

e. When you declare a vector object and specify its size as 10, then o UK
10 elements can be stored in the object. \ C

2. Consider the following list:

63 45 32 98 46 57 28 100 O‘_es 2
Using a sequential seﬁ% any comparlso ar% ® 9 deter-

mine Wh§ther t ot? (Recall that

items age
mév\ em comparls ex Comparlsons
3. a.

Write a Vers equentlal search algorithm that can be used to
search a sorted hst.

b. Consider the following list:
51217 3546 6578 8593 110 115

Using a sequential search on ordered lists, which you designed in (a), how
many comparisons are required to determine whether the following items
are in the list or not? (Recall that comparisons mean item comparisons, not
index comparisons.)
i. 35 i. 60 iii. 78 iv. 120

4. Consider the following list:
2 10 17 45 49 55 68 85 92 98 110

Using the binary search, how many comparisons are required to determine

whether the following items are in the list or not? Show the values of
first, last, and middle and the number of comparisons after each

iteration of the loop.

a. 15 h. 49 ¢ 98 d. 99

5. Sort the following list using the bubble sort algorithm as discussed in this
chapter. Show the list after each iteration of the outer for loop.

26, 45, 17, 65, 33, 55, 12, 18

606

21.

22.

| Chapter 10: Applications of Arrays (Searching and Sorting) and the vector Type

Suppose that you have the following C++ code:
vector<int> myList (5);

unsigned int length;

myList[0] = 3;
for (int 1 = 1;

;1< 4; i++4)
myList[i] = 2 *

myList[i - 1] - 5;

myList.push_back(46);
myList.push_back(57);

myList.push back(35); \(
AS
c

a. Write a C++ statement that outputs the first and the last elemGs@
myList. (Do not use the array subscripting operator @e@(t

elements.) es

bh. Worite a C++ statement that stores @& myList fg%th.
c. Write a for loop ty the elements o y%@

What is the dj ceﬁe ween théiﬁﬂi cﬁ: of a vector?

e

XR@M\I,VI\IN 6 ?@'@@

Write a program to test the function seqorderedSearch. Use either the
function bubbleSort or selectionSort to sort the list before the search.

Write a program to test the function binarySearch. Use either the function
bubbleSort or selectionSort to sort the list before the search.

Write a function, remove, that takes three parameters: an array of integers,
the number of elements in the array, and an integer (say, removeItem). The
function should find and delete the first occurrence of removeItem in the
array. If the value does not exist or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in
the array is reduced by 1.) Assume that the array is unsorted.

Write a function, removeAt, that takes three parameters: an array of
integers, the number of elements in the array, and an integer (say,
index). The function should delete the array element indicated by
index. If index is out of range or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in
the array is reduced by 1.) Assume that the array is unsorted.

Write a function, removeAll, that takes three parameters: an array of integers,
the number of elements in the array, and an integer (say, removeItem). The
function should find and delete all of the occurrences of removeItem in the
array. If the value does not exist or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in the
array is reduced.) Assume that the array is unsorted.

Records (structs) | 613

In C++, struct is a reserved word. The members of a struct, even though they
are enclosed in braces (that is, they form a block), are not considered to form a
compound statement. Thus, a semicolon (after the right brace) is essential to end the
struct statement. A semicolon at the end of the struct definition is, therefore, a
part of the syntax.

The statement:

struct employeeType
{

string firstName;
string lastName; K
string addressl;
string address2; \e CO .
L)

double salary;

string deptID; es
. k\ o\ 2
defines a struct emplo membe 1 % firstName,
lastName, addres g and ; tring, and the member

salary is W @
p definit; g s a definition, not a declaration. That is, it defines
a data type; no @na located.

Once a data type is defined, you can declare variables of that type. Let us first define a
struct type, studentType, and then declare variables of that type.

struct studentType

{
string firstName;
string lastName;
char courseGrade;
int testScore;
int programmingScore;
double GPA;

};

//variable declaration
studentType newStudent;
studentType student;

These statements declare two struct variables, newStudent and student, of type
studentType. The memory allocated is large enough to store firstName, lastName,
courseGrade, testScore, programmingScore, and GPA (see Figure 11-1).

Records (structs) | 615

The structVariableName.memberName is just like any other variable. For example,
newStudent . courseGrade is a variable of type char, newStudent . firstName is a
string variable, and so on. As a result, you can do just about anything with struct
members that you normally do with variables. You can, for example, use them in assign-
ment statements or input/output (where permitted) statements.

In C++, the dot (.) is an operator called the member access operator.

Suppose you want to initialize the member GPA of newStudent to 0.0. The following
statement accomplishes this task:

newStudent.GPA = 0.0; K
Similarly, the statements: \ CO u

newStudent.firstName = "John";
newStudent.lastName = "Brown"; ;

store "John" in the member f

own " %gllastName of
newStudent. WS_

After th g\f‘%\ﬁh‘s assignment %e%v@execute newStudent is as shown in

newStudent

firstName ~ John
lastName ~ Brown
courseGrade
testScore
programmingScore

GPA

FIGURE 11-2 struct newStudent

The statement:

cin >> newStudent.firstName;

reads the next string from the standard input device and stores it in:
newStudent.firstName

The statement:

cin >> newStudent.testScore >> newStudent.programmingScore;

622 | Chapter 11: Records (structs)

Suppose that a struct has several data members requiring a large amount of memory to
store the data, and you need to pass a variable of that struct type by value. The
corresponding formal parameter then receives a copy of the data of the variable. The
compiler must then allocate memory for the formal parameter in order to copy the value
of the actual parameter. This operation might require, in addition to a large amount of
storage space, a considerable amount of computer time to copy the value of the actual
parameter into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only

the address of the actual parameter. Therefore, an efficient way to pass a variable as a

parameter is by reference. If a variable is passed by reference, then when the for K

parameter changes, the actual parameter also changes. Sometlrnes however

want the function to be able to change the values of the actual 94 you

can pass a variable by reference and still prevent the fé angmg its value.
eter dec

This is done by using the keyword const 1 tion, as shown
in the definition of the function se %
Likewise, we can alsW "ﬁ(@ blnaryglrcbﬁ ,&‘ t-processing functions.

w@&”?

ppose a company g time employees. We need to print their monthly
paychecks and keep track of how much money has been paid to each employee in the
year-to-date. First, let’s define an employee’s record:

struct employeeType

{
string firstName;
string lastName;
int personlD;
string deptID;
double yearlySalary;
double monthlySalary;
double yearToDatePaid;
double monthlyBonus;

}i

Each employee has the following members (components): first name, last name, personal
ID, department ID, yearly salary, monthly salary, year-to-date paid, and monthly bonus.

Because we have 50 employees and the data type of each employee is the same, we can
use an array of 50 components to process the employees’ data.

employeeType employees[50];

This statement declares the array employees of 50 components of type employeeType (see
Figure 11-7). Every element of employees is a struct. For example, Figure 11-7 also shows
employees[2].

626 | Chapter 11: Records (structs)

middle name, as well as an address and a way to be contacted. You can, therefore, quickly
put together a customer’s record by using the structs nameType, addressType,
contactType, and the members specific to the customer.

Next, let us declare a variable of type employeeType and discuss how to access its members.
Consider the following statement:
employeeType newEmployee;

This statement declares newEmployee to be a struct variable of type employeeType
(see Figure 11-8).

newEmployee

hireDate month
day
year

quitDate month
day
year

: -

FIGURE 11-8 struct variable newEmployee

Function
initialize

Programming Example: Sales Data Analysis | 631

The next step is to process the sales data. Processing the sales data is quite straightfor-
ward. For each entry in the file containing the sales data:
1. Read the salesperson’s ID, month, and sale amount for the month.

2. Search the array salesPersonList to locate the component
corresponding to this salesperson.

3. Determine the quarter corresponding to the month.

4. Update the sales for the quarter by adding the sale amount for the month.

Once the sales data file is processed: K
1. Calculate the total sales by salesperson. O .
2. Calculate the total sales by quarter. \ _C

3. Print the report.

eSo
This discussion translates into the f N 92
1. Initialize the a ra& @ sonLigt. O“ lg
1O, \M ta. ’(
P g @t&ate the total Q q@t

Calculate t by salesperson.

Print the report
6. Calculate and print the maximum sales by salesperson.
7. Calculate and print the maximum sales by quarter.

To reduce the complexity of the main program, let us write a separate function for
each of these seven steps.

This function reads the salesperson’s ID from the input file and stores the salesperson’s ID
in the array salesPersonList. It also initializes the quarterly sales amount and the
total sales amount for each salesperson to 0. The definition of this function is:

void initialize(ifstream& indata, salesPersonRec list[],
int listSize)
{
int index;
int quarter;

for (index = 0; index < listSize; index++)

{
indata >> list[index].ID; //get salesperson's ID
for (quarter = 0; quarter < 4; quarter++)
list[index].saleByQuarter[quarter] = 0.0;
list[index].totalSale = 0.0;
}

} //end initialize

632 | Chapter 11: Records (structs)

Function This function reads the sales data from the input file and stores the appropriate
getData information in the array salesPersonList. The algorithm for this function is:

1. Read the salesperson’s ID, month, and sales amount for the month.

2. Search the array salesPersonList to locate the component
corresponding to the salesperson. (Because the salespeople’s IDs
are not sorted, we will use a sequential search to search the array.)

3. Determine the quarter corresponding to the month.

4. Update the sales for the quarter by adding the sales amount for the
month.

Suppose that the entry read is:

57373 2 350 esa\
Here, the salesperson’s ID is 5737 and 9%‘& is 350.
Suppose that the array sﬁf@ LY st is as 56‘3% in 1-1

P (saIesPersonLl g saleByQuarter totalSale

¥e

salesPersonlist[o] M 12345 WM 15080 00 00 65492 [00 |

salesPersonList[1] 32214 0.0 . 0.0 0.0

salesPersonList[2] 23422 0.0 0.0 0.0 564.76
salesPersonList[3] 57373 354.80 0.0 0.0 0.0
salesPersonList[4] 35864 0.0 0.0 763.90 0.0

salesPersonList[5] 783.45 0.0 0.0 563.80

FIGURE 11-11 Array salesPersonList

Now, ID 57373 corresponds to the array component salesPersonList [3], and
month 2 corresponds to quarter 1. Therefore, you add 350 to 354.80 to get the
new amount, 704 .80. After processing this entry, the array salesPersonList is
as shown in Figure 11-12.

644

1.

| Chapter 11: Records (structs)

Consider the following statements (nameType is as defined in Exercise 6):

struct employeeType

{
nameType name;
int performanceRating;
int pID;
string dept;
double salary;
};

employeeType employees[100];
employeeType newEmployee;

Mark the following statements as valid or invalid. If a statement is inva fi

why
a. newEmployee.name = "John Smith"; \

b. cout << newEmployee.name; NO‘_@S 2

c. employees[35] 39

d. if (emplo 4& == 5553 44
xem[4 perfo

vg es.salar
Assume the decla erc1ses 6 and 7. Write C++ statements that do

9.

the following:

a. Store the following information in newEmployee:

name: Mickey Doe
pID: 111111111
performanceRating: 2
dept: ACCT

salary: 34567.78

b. In the array employees, initialize each performanceRating to 0.

c. Copy the information of the 20th component of the array employees
into newEmployee.

d. Update the salary of the 50th employee in the array employees by
adding 5735.87 to its previous value.

Assume that you have the following definition of a struct.

struct partsType
{ string partName;

int partNum;

double price;

int quantitiesInStock;
}:

Declare an array, inventory, of 100 components of type partsType.

WK

10.

11.

12.

Programming Exercises

Assume the definition of Exercise 9.

a. Write a C++ code to initialize each component of inventory as
follows: partName to null string, partNum to -1, price to 0.0, and
quantitiesInStock to 0.

h. Worite a C++ code that uses a loop to output the data stored in
inventory. Assume that the variable length indicates the number
of elements in inventory.

Assume the definition and declaration of Exercise 9. Write the definition of
a void function that can be used to input data in a variable of type

partsType. Also write a C++ code that uses your function to input data
in inventory.

.
Suppose that you have the following definitions: a\e ,CO

struct timeType ru

{
int hr; &rlng o] %92
double min; (O :|.nt d %
int ,seé\N tridvelTime;

P (%eclare the@%@nation of type tourType.

Write C++ Statements to store the following data in destination:

cityName—Chicago, distance—550 miles, travelTime—9 hours
and 30 minutes.

c. Write the definition of a function to output the data stored in a variable
of type tourType.

d. Write the definition of a value-returning function that inputs data into
a variable of type tourType.

e. Write the definition of void function with a reference parameter of
type tourType to input data in a variable of type tourType.

PROGRAMMING EXERCISES

645

Uk

1.

Assume the definition of Exercise 4, which defines the struct movieType.
Write a program that declares a variable of type movieType, prompts the
user to input data about a movie, and outputs the movie data.

Write a program that reads students’ names followed by their test scores.
The program should output each student’s name followed by the test scores
and the relevant grade. It should also find and print the highest test score
and the name of the students having the highest test score.

Programming Exercises

e Function printCheck: This function calculates and prints the check.

(Note that the billing amount should include a 5% tax.)
A sample output is:

Welcome to Johnny's Restaurant
Bacon and Egg $2.45

Muffin $0.99
Coffee $0.50
Tax $0.20
Amount Due $4.14

Format your output with two decimal places. The name of each item in

output must be left justified. You may assume that the user sgle @3 u
item of a particular type. a’ é
5. Redo Exercise 4 so that the customer cgt@a e 1t}25 of a

particular type. A sample outp ‘ﬁh

oo B e o
P(e\weﬁ‘t B0

lg

Coff, $0 50
Tax ? $0.25
Amount Due $5.18

6. Write a program whose main function is merely a collection of variable
declarations and function calls. This program reads a text and outputs the
letters, together with their counts, as explained below in the function
printResult. (There can be no global variables! All information must
be passed in and out of the functions. Use a structure to store the informa-
tion.) Your program must consist of at least the following functions:

Function openFile: Opens the input and output files. You must pass
the file streams as parameters (by reference, of course). If the file does not
exist, the program should print an appropriate message and exit. The
program must ask the user for the names of the input and output files.

Function count: Counts every occurrence of capital letters A-Z and
small letters a-z in the text file opened in the function openFile. This
information must go into an array of structures. The array must be
passed as a parameter, and the file identifier must also be passed as a
parameter.

Function printResult: Prints the number of capital letters and small
letters, as well as the percentage of capital letters for every letter A-Z and
the percentage of small letters for every letter a-z. The percentages
should look like this: “25%”. This information must come from an array
of structures, and this array must be passed as a parameter.

647

650 | Chapter 12: Classes and Data Abstraction

In Chapter 11, you learned how to group data items that are of different types by using a
struct. The definition of a struct given in Chapter 11 is similar to the definition of a
C-struct. However, the members of a C++ struct can be data items as well as functions.
C++ provides another structured data type, called a class, which is specifically designed to
group data and functions. This chapter first introduces classes and explains how to use them
and then discusses the similarities and differences between a struct and a class.

NOTE Chapter 11 is not a prerequisite for this chapter. In fact, a struct and a class have similar
capabilities, as discussed in the section “A struct versus a class” in this chapter.

Classes o CO ‘u\(

Chapter 1 introduced the problem-solving methodo \a dj‘ct—orlented design
(OOD). In OOD, the first step is to 1dent1 Ents, call Jpcts. An object
combines data and the operatlon a smg e mechanism
that allows you to combipe a perat}S;s %t da single unit is called a

class. Now that y, to sto data in computer memory and
Xar own func 1 @ y to learn how objects are constructed.
'@ sequent ’ mplement programs using OOD. This chapter
fist explains how to s and use it in a program.

A class 1s a collection of a fixed number of components. The components of a class are
called the members of the class.

The general syntax for defining a class is:

class classIdentifier

{

classMembersList
Y

in which classMembersList consists of variable declarations and/or functions. That is,
a member of a class can be either a variable (to store data) or a function.

e If a member of a class is a variable, you declare it just like any other
variable. Also, in the definition of the class, you cannot initialize a
variable when you declare it.

e If a member of a class is a function, you typically use the function
prototype to declare that member.

e Ifamember ofa class is a function, it can (directly) access any member of the
class—member variables and member functions. That is, when you write
the definition of a member function, you can directly access any member
variable of the class without passing it as a parameter. The only obvious
condition is that you must declare an identifier before you can use it.

658 | Chapter 12: Classes and Data Abstraction

Functions and Classes

The following rules describe the relationship between functions and classes:

e C(Class objects can be passed as parameters to functions and returned as
function values.

e As parameters to functions, class objects can be passed either by value or
by reference.

e Ifa class object is passed by value, the contents of the member variables of
the actual parameter are copied into the corresponding member variables

of the formal parameter. uK
cO-
Reference Parameters and Class Objects (Varj
Recall that when a variable is passed by value t eter copies the value of
the actual parameter. That is, memory S e Value @ al parameter is
ra eter a cl ct

allocated for the formal par assed by value.
Suppose that a daw mber V rge amount of memory to store
data, a av 0 pass a varia e correspondmg formal parameter then
py of the le at is, the compiler must allocate memory for the

al parameter, so a e value of the member variables of the actual parameter.

ThlS operation might require, in addition to a large amount of storage space, a considerable
amount of computer time to copy the value of the actual parameter into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only the
address of the actual parameter. Therefore, an efficient way to pass a variable as a parameter is
by reference. If a variable is passed by reference, then when the formal parameter changes, the
actual parameter also changes. Sometimes, however, you do not want the function to be able
to change the values of the member variables. In C++, you can pass a variable by reference
and still prevent the function from changing its value by using the keyword const in the
formal parameter declaration. As an example, consider the following function definition:

void testTime (const clockTypeé& otherClock)

{
clockType dClock;

}

The function testTime contains a reference parameter, otherClock. The parameter
otherClock is declared using the keyword const. Thus, in a call to the function
testTime, the formal parameter otherClock receives the address of the actual para-
meter, but otherClock cannot modify the contents of the actual parameter. For example,
after the following statement executes, the value of myClock will not be altered:

testTime (myClock) ;

Classes | 661

Next, let us give the definitions of the other member functions of the class clockType.
The definitions of these functions are simple and easy to follow:

void clockType::getTime (int& hours, int& minutes,
int& seconds) const

{
hours = hr;
minutes = min;
seconds = sec;
}
void clockType::printTime () const
{ U
if (hr < 10) O .
cout << "0"; e _C
cout << hr << ":"; a

if (min < 10)

cout << min < n‘(Om

<L sec;

void clockType::incrementHours ()

{
hr++;
if (hr > 23)
hr = 0;
}
void clockType::incrementMinutes ()
{
min++;
if (min > 59)
{
min = 0;
incrementHours () ; //increment hours
}
}

void clockType::incrementSeconds ()
{

sec++;

if (sec > 59)
{
sec = 0;
incrementMinutes () ; //increment minutes

664 | Chapter 12: Classes and Data Abstraction

Accessor and Mutator Functions

Let us look at the member functions of the class clockType. The function setTime
sets the values of the member variables to the values specified by the user. In other
words, it alters or modifies the values of the member variables. Similarly, the functions
incrementSeconds, incrementMinutes, and incrementHours also modify the
member variables. On the other hand, functions such as getTime, printTime, and
equalTime only access the values of the member variables. They do not modify the
member variables. We can, therefore, categorize the member functions of the class
clockType into two categories: member functions that modify the member variables

and member functions that only access, and do not modify, the member variables. K
This is typically true for any class. That is, every class has member funcg@ \!él

access and do not modify the member variables, called access
functions that modify the member variables, called

Accessor function: A member functi rKa't onl&g@@t is, does not

modify) the value(s) of the itrn' afja le S). _S
Mutator fun \cti\ne unctlona?aﬂgat ifies the value(s) of the member

tcax an accessor ly accesses the values of the member variables, as a
safeguard, we typicall 1nc1ude the reserved word const at the end of the headings of
these functions. Moreover, a constant member function of a class cannot modify the
member variables of that class. For example, see the headings of the member functions
getTime, printTime, and equalTime of the class clockType.

ember

A member function of a class is called a constant function if its heading contains the reserved
word const at the end. For example, the member functions getTime, printTime, and
equalTime of the class clockType are constant functions. A constant member function
of a class cannot modify the member variables of that class, so these are accessor functions.
One thing that should be remembered about constant member functions is that a constant
member function of a class can only call other constant member functions of that class.
Therefore, you should be careful when you make a member function constant.

Example 12-2 shows how to use the class clockType in a program. Note that we
have combined the definition of the class, the definition of the member functions, and the
main function to create a complete program. Later in this chapter, you will learn how to
separate the definition of the class clockType, the definitions of the member func-
tions, and the main program, using three files.

//The program listing of the program that defines
//and uses the class clockType

676 | Chapter 12: Classes and Data Abstraction

arrivalTimeEmp

arrivalTimeEmp[O
arrivalTimeEmp[1] Fmmes
]

arrivalTimeEmp[49]

arrivalTimeEmp[49] III

[0]

arrivalTimeEmp[98] Fs
arrivalTimeEmp[99] Fmmmmmny

FIGURE 12-8 Array arrivalTimeEmp e CG

You can now use the functlons of the clal x&)e to % e the time for

each employee. For examp g ta em ent e, that is, hr,
min, and sec, oft e’to 8, 57d

(see Figure 12-9).
srewiol e

arrivalTimeEmp

arrivalTimeEmp 0
arrivalTimeEmp[1

//Line 2

arrivalTimeEnp[49] arrivalTimeEmp[49]

arrivalTimeEmp[98
arrivalTimeEmp

FIGURE 12-9 Array arrivalTimeEmp after setting the time of employee 49

To output the arrival time of each employee, you can use a loop, such as the following:

for (int j = 0; j < 100; j++) //Line 3
{
cout << "Employee " << (j + 1)
<< " arrival time: ";
arrivalTimeEmp[j].printTime () ; //Line 4
cout << endl;
}

The statement in Line 4 outputs the arrival time of an employee in the form
hr:min:sec.

688

| Chapter 12: Classes and Data Abstraction

The following program shows how to use the class die in a program.

//The user program that uses the class die

#inc
#inc

usin

lude <iostream>
lude "die.h"

g namespace std;

int main ()

{

v

}//end main

Sample Run:

Line 4: diel: 1

Line 5: die2: 1

Line 6: After rolling diel:
Line 7: After rolling die2:
Line 8:

Line 9:

die diel;
die die2;

cout << "Line 4: diel:

cout << "Line 5: die2:

cout << "Line 6: Afte

< 5e

//Line 1
//Line 2

//Line 3 \)K
" << diel.getNum() << enﬁ @D

" << die2.g esai //Line 5
WO 1297

<< diel. rollg .‘
cout < &1@ ter rol 2 0
q roll //Line 7

g "Lin
" by
<< diel. tNum (

of the numbers rolled"

+ d1e2 getNum() << endl; //Line 8

cout << "Line 9: After again rolling, the sum of "
<< "the numbers rolled is: "

<< diel.roll() +

return 0;

die2.roll () << endl; //Line 9

//Line 10
//Line 11

3
4

The sum of the numbers rolled by the dice is: 7
: After again rolling, the sum of the numbers rolled is: 5

The preceding program works as follows. The statements in Lines 2 and 3 create the
objects diel and die2, and, using the default constructor, set both the dice to 1. The
statements in Lines 4 and 5 output the number of both the dice. The statement in Line 6
rolls diel and outputs the number rolled. Similarly, the statement in Line 7 rolls die2 and
outputs the number rolled. The statement in Line 8 outputs the sum of the numbers rolled
by diel and die2. The statement in Line 9 again rolls both the dice and outputs the sum
of the numbers rolled.

694 | Chapter 12: Classes and Data Abstraction

The output of the statement:
illusObjectl.print();

is:

x =3, y=1, count =1
Similarly, the output of the statement:

illusObject2.print();

1s:

x =5, y=1, count =1 Ouk'\
.

Now consider the statement: \e -C

illustrate: :count++; tes
After this statement executes 6«& &9 %9;2215 shown in
Figure 12-14. \N " 6 Ofﬁ “ﬁ—

preV pagc

e - e -

FIGURE 12-14 illusObjectl and i1lusObject?2 after the statement illustrate::
count++; executes

The output of the statements:

illusObjectl.print () ;
illusObject2.print();

1s:

N

X =
X =

=1, count =

3, v
5, vy =1, count =

|
N

The program in Example 12-11 further illustrates how static members of a class work.

Dispenser

Programming Example: Candy Machine

I 699

definition of the class, in the heading of the definition of the constructor, we do not
specify the default value. The definition of the constructor is as follows:

cashRegister: :cashRegister (int cashIn)

{
if (cashIn >= 0)
cashOnHand = cashlIn;
else
cashOnHand = 500;
}

Note that the definition of the constructor checks for valid values of the param
cashIn. If the value of cashIn is less than 0, the value assigned to thec@e

ﬁ& show the number

variable cashOnHand is 500.

The dispenser releases the selected item 1f it 1

of items in the dispenser and the cost

properties of a dispenser. ‘ﬁet(

class dlspené\TNe

\9‘{@ getie0 m%@

the number of items in the machine.
The value of numberOfItems is returned.

//Functio
//Postcondition:

1A0°

int getCost () const;
//Function to show the cost of the item.

//Postcondition:

void makeSale();

The value of cost is returned.

//Function to reduce the number of items by 1.

//Postcondition:

numberOfItems--;

dispenserType (int setNoOfItems = 50, int setCost = 50);

//Constructor

//Sets the cost and number of items in the dispenser
//to the values specified by the user.

//Postcondition:
//
//
//
//
//

private:
int numberOfItems;

numberOfItems = setNoOfItems;

cost = setCost;

If no value is specified for a
parameter, then its default value is
assigned to the corresponding member
variable.

//variable to store the number of
//items in the dispenser

int cost; //variable to store the cost of an item

}s

L\

efbﬂo eﬁnesthe
cPass dlS

depo

Programming Example: Candy Machine | 703

sited by the customer, the cash register is updated by adding the money

entered by the user.)

From this discussion, it is clear that the function sellProduct must have access to
the dispenser holding the product (to decrement the number of items in the dispenser

by 1

and to show the cost of the item) as well as the cash register (to update the cash).

Therefore, this function has two parameters: one corresponding to the dispenser and
the other corresponding to the cash register. Furthermore, both parameters must be
referenced.

In ps

1.

eudocode, the algorithm for this function is:

If the dispenser is not empty, CO .

a. Show and prompt the customer to en eréga\tg item.

b. Get the amount entered by l@&; zf

c. Ifthe amoun“e%te@me chistomer is less t’Xri%% the
of

product
6\Nr and prompqv mer to enter the additional

oY eNYer g
il ﬁ:la' total amount entered by the customer.

d. If the amount entered by the customer is at least the cost of the
product,
1. Update the amount in the cash register.

ii. Sell the product—that is, decrement the number of items
in the dispenser by 1.

iii. Display an appropriate message.
e. If the amount entered by the user is less than the cost of the
item, return the amount.

2. If the dispenser is empty, tell the user that this product is sold out.

This
void

{

definition of the function sellProduct is:

sellProduct (dispenserType& product,
cashRegister& pCounter)

int amount; //variable to hold the amount entered
int amount2; //variable to hold the extra amount needed

if (product.getNoOfItems() > 0) //if the dispenser is not
//empty
{
cout << "Please deposit " << product.getCost ()
<< " cents" << endl;
cin >> amount;

B\

718 | Chapter 12: Classes and Data Abstraction

myClass: :incrementCount () ;

myObjectl.printCount () ;

cout << endl;

myObject2.printCount () ;

cout << endl;

myObject2.printX() ;

cout << endl;

myObjectl.setX(14);

myObjectl.incrementCount () ;

myObjectl.printX();

cout << endl;

myObjectl.printCount () ;

cout << endl; \)K
myObject2.printCount () ; O .
cout << endl;

14. In Example 12-8, we designed the class dle als declare an
array named rolls, of 100 componm ert state-
ments to roll each die of the n d u% Zghest
number rolled and h“ times led, and find
and oﬁ\&e[\ P‘I:'nb r that is 5@ um number of times

P fgé s count. Alsoent’? to test your statements.

PROGRAMMING EXERCISES

1. Write a program that converts a number entered in Roman numerals to

decimal. Your program should consist of a class, say, romanType. An
object of type romanType should do the following:

a. Store the number as a Roman numeral.
h. Convert and store the number into decimal form.

c. Print the number as a Roman numeral or decimal number as requested

by the user.

The decimal values of the Roman numerals are:
M 1000

D 500

C 100

L 50

X 10

\Y 5

I 1

d. Test your program using the following Roman numerals: MCXIV,
CCCLIX, MDCLXVT.

720 | Chapter 12: Classes and Data Abstraction

i. Include the member functions to perform the various operations on
objects of type bookType. For example, the usual operations that
can be performed on the title are to show the title, set the title, and
check whether a title is the same as the actual title of the book.
Similarly, the typical operations that can be performed on the
number of copies in stock are to show the number of copies in stock,
set the number of copies in stock, update the number of copies in
stock, and return the number of copies in stock. Add similar opera-
tions for the publisher, ISBN, book price, and authors. Add the
appropriate constructors and a destructor (if one is needed).

b. Write the definitions of the member functions of the class bookTy \)K
c. Write a program that uses the class bookType an E € bQ
operations on the objects of the class book dn array
of 100 components of type bookTy, peratlon at you
should perform are to search %A

s 1tle sear, l@
update the numbe book. ;&‘
pe:

7. In this exesci ugn ac ©$—
%c 9 of memb T he name of a person, member
Pa(number Eﬁw and amount spent.
mb

Include the er functions to perform the various operations on the
objects of memberType—for example, modify, set, and show a person’s
name. Similarly, update, modify, and show the number of books bought
and the amount spent.

c. Add the appropriate constructors.
d. Write the definitions of the member functions of memberType.
e. Write a program to test various operations of your class memberType.

8. Using the classes designed in Programming Exercises 6 and 7, write a
program to simulate a bookstore. The bookstore has two types of customers:
those who are members of the bookstore and those who buy books from the
bookstore only occasionally. Each member has to pay a $10 yearly member-
ship fee and receives a 5% discount on each book purchased.

For each member, the bookstore keeps track of the number of books
purchased and the total amount spent. For every eleventh book that a
member buys, the bookstore takes the average of the total amount of the
last 10 books purchased, applies this amount as a discount, and then resets the
total amount spent to 0.

‘Write a program that can process up to 1000 book titles and 500 members. Your
program should contain a menu that gives the user different choices to effectively
run the program; in other words, your program should be user driven.

9. The method sellProduct of the Candy Machine programming example
gives the user only two chances to enter enough money to buy the product.

Inheritance | 725

base classes. The derived classes inherit the properties of the base classes. So rather than
create completely new classes from scratch, we can take advantage of inheritance and
reduce software complexity.

Each derived class, in turn, becomes a base class for a future derived class. Inheritance
can be either single inheritance or multiple inheritance. In single inheritance, the
derived class is derived from a single base class; in multiple inheritance, the derived
class is derived from more than one base class. This chapter concentrates on single
inheritance.

Inheritance can be viewed as a tree-like, or hierarchical, structure wherein a base classgs
shown with its derived classes. Consider the tree diagram shown in Figure 13-1. K

a\e CO

S
S 20?2

- 1
pad
FIGURE 13-1 Inheritance hierarchy
In this diagram, shape is the base class. The classes circle and rectangle are
derived from shape, and the class square is derived from rectangle. Every

circle and every rectangle is a shape. Every square is a rectangle.

The general syntax of a derived class is:

class className: memberAccessSpecifier baseClassName
{

member list

}i

in which memberAccessSpecifier is public, protected, or private. When no
memberAccessSpecifier is specified, it is assumed to be a private inheritance. (We
discuss protected inheritance later in this chapter.)

760 | Chapter 13: Inheritance and Composition

PROBLEM
ANALYSIS

AND
ALGORI
DESIGN

THM

Course

points, B is equivalent to three points, C is equivalent to two points, D is equivalent to
one point, and F is equivalent to zero points.

Input A file containing the data in the form given previously. For easy reference,
let us assume that the name of the input file is stData.txt.

Output A file containing the output in the form given previously.

We must first identify the main components of the program. The university has
students, and every student takes courses. Thus, the two main components are the
student and the course.

Let us first describe the course component. O u k '

The main characteristics of a course are the course n Ber and
number of credit hours.

Some of the basic operati %‘x (h(ﬂmﬁperforrrfi 1%%2‘(the course

type are:

1nformat10n

P e)rmt the 9@@
3. Show the c;ed;a'

4. Show the course number.

The following class defines the course as an ADT:

class courseType
{
public:
void setCourseInfo(string cName, string cNo, int credits);
//Function to set the course information.
//The course information is set according to the

//parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseCredits = credits;

void print (ostream& outF) ;
//Function to print the course information.
//This function sends the course information to the
//output device specified by the parameter outF. If the
//actual parameter to this function is the object cout,
//then the output is shown on the standard output device.
//If the actual parameter is an ofstream variable, say,
//outFile, then the output goes to the file specified by
//outFile.

int getCredits():
//Function to return the credit hours.
//Postcondition: The value of courseCredits is returned.

768 | Chapter 13: Inheritance and Composition

The definition of the function print is as follows:

void studentType: :print (ostream& outF, double tuitionRate)

{

int i;
outF << "Student Name: " << getFirstName ()
<< " " << getlastName () << endl; //Step 1
outF << "Student ID: " << sId << endl; //Step 2
outF << "Number of courses enrolled: " K
<< numberOfCourses << endl; //st O u
outF << endl; é

outF << left; "@ a'\
outF << "Course No" << setw(<6 urse N
<< setw(8) << "Cr " 59

<< setw(6) < endl /Step 4

P(%\n@? i eefc%&) s 3

courses].print (outF) ; //Step 5a

if (isTuitionPaid) //Step 5b
outF <<setw(4) << coursesGrade[i] << endl;

else

outF << setw(4) << "*** " << endl;

}
outF << endl;

outF << "Total number of credit hours: "
<< getHoursEnrolled() << endl; //Step 6

outF << fixed << showpoint << setprecision(2); //Step 7

if (isTuitionPaid) //Step 8
outF << "Mid-Semester GPA: " << getGpa/()
<< endl;
else
{
outF << "*** Grades are being held for not paying "
<< "the tuition. ***" << endl;
outF << "Amount Due: $" << billingAmount (tuitionRate)
<< endl;
}

outF << LIS U S L NS N S P D S N L N S L NS S S e L)
<< Mk k% _x_" << andl << endl;
} //end print

780

| Chapter 13: Inheritance and Composition

If in the heading of the definition of a derived class’s constructor, no call to
a constructor (with parameters) of a base class is specified, then during the
derived class’s object declaration and initialization, the default constructor
(if any) of the base class executes.

When initializing the object of a derived class, the constructor of the base
class is executed first.

Review the inheritance rules given in this chapter.
In composition (aggregation), a member of a class is an object of another class.

In composition (aggregation), a call to the constructor of the member
objects is specified in the heading of the definition of the class’s constructor.

The three basic principles of OOD are encapsulation, in erltan
polymorphism.

An easy way to identify classes, objects, %ab descrlbe the
problem in English and then identi all s and ve .g%e your
classes (objects) from t‘ﬁe a d operatlc*s fi verbs.

u\k

Mark the follov«@ s&&ts as true or false.

The constructor of a derived class can specify a call to the constructor of
the base class in the heading of the function definition.

b. The constructor of a derived class can specify a call to the constructor of
the base class using the name of the class.

c. Suppose that x and y are classes, one of the member variables of x is an
object of type y, and both classes have constructors. The constructor of x
specifies a call to the constructor of y by using the object name of type y.

Draw a class hierarchy in which several classes are derived from a single base

class.

Suppose that a class employeeType is derived from the class
personType (see Example 12-9 in Chapter 12). Give examples of
members—data and functions—that can be added to the class
employeeType.

Consider the following statements:

class dog: public animal

{
}i

In this declaration, which class is the base class, and which class is the derived class?

788 | Chapter 13: Inheritance and Composition

check whether the date is valid before storing the date in the member
variables. Rewrite the definitions of the function setDate and the con-
structor so that the values for the month, day, and year are checked before
storing the date into the member variables. Add a member function,
isLeapYear, to check whether a year is a leap year. Moreover, write a
test program to test your class.

3. A point in the x-y plane is represented by its x-coordinate and y-coordinate.
Design a class, pointType, that can store and process a point in the x-y
plane. You should then perform operations on the point, such as setting the
coordinates of the point, printing the coordinates of the point, returning the
x-coordinate, and returning the y-coordinate. Also, write a program to \)K
various operations on the point. 6

the circle’s area and circumference. G1v n ne its
position in the x-y plane. The ce 1s a poi t lane.
Design a class, circ mcan store the dl& ter of the
circle. Becguse imomt 1 you demgned the
class t Wropertles of rogrammmg Exercise 3, you
the clas rom the class pointType. You

; shEuld be able to? usual operations on the circle, such as setting
the radius, printing the radius, calculating and printing the area and circum-

I , 1 u usu rati . , Wrl
ference, and carrying out the usual operations on the center. Also ite a
program to test various operations on a circle.

4. Every circle has a center and a radius. Given the ra 1!5 efermme
é can det

5. Every cylinder has a base and height, wherein the base is a circle. Design a
class, cylinderType, that can capture the properties of a cylinder and
perform the usual operations on the cylinder. Derive this class from the
class circleType designed in Programming Exercise 4. Some of the
operations that can be performed on a cylinder are as follows: calculate and
print the volume, calculate and print the surface area, set the height, set the
radius of the base, and set the center of the base. Also, write a program to test
various operations on a cylinder.

6. Using classes, design an online address book to keep track of the names,
addresses, phone numbers, and dates of birth of family members, close
friends, and certain business associates. Your program should be able to
handle a maximum of 500 entries.

a. Define a class, addressType, that can store a street address, city,
state, and ZIP code. Use the appropriate functions to print and store the
address. Also, use constructors to automatically initialize the member
variables.

b. Define a class extPersonType using the class personType (as
defined in Example 12-9, Chapter 12), the class dateType (as designed
in this chapter’s Programming Exercise 2), and the class addressType.
Add a member variable to this class to classify the person as a family

794 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

In Chapter 2, you learned that C++’s data types are classified into three categories:
simple, structured, and pointers. Until now, you have studied only the first two data
types. This chapter discusses the third data type called the pointer data type. You will first
learn how to declare pointer variables (or pointers, for short) and manipulate the data to
which they point. Later, you will use these concepts when you study dynamic arrays and
linked lists. Linked lists are discussed in Chapter 18.

Pointer Data Type and Pointer Variables

Chapter 2 defined a data type as a set of values together with a set of operations. Recall
the set of values is called the domain of the data type. In addition to these two P&t

until now, all of the data types you have encountered have one mo g ss ed with
them: the name of the data type. For example, there is a d ‘ *int. The set of
values belonging to this data type includes 1 te een 47483648 and
2147483647, and the operatlons allo values 2 e etlc operators
described in Chapter 2. To ol menc 1nte at& tJewdnge —2147483648

he name of the data type

to 2147483647 you ables ug
allows you \r able Next the pomter data type.
belongin %ﬁ types are the memory addresses of your computer.
in many other lan¥Tag e is no name associated with the pointer data type in
C++. Because the domai i i

addresses (memory locations), a pointer variable is a variable whose content is an address,
that is, a memory location.

Pointer variable: A variable whose content is an address (that is, a memory address).

Declaring Pointer Variables

As remarked previously, there is no name associated with pointer data types. Moreover,
pointer variables store memory addresses. So the obvious question is: If no name is
associated with a pointer data type, how do you declare pointer variables?

The value of a pointer variable is an address. That is, the value refers to another memory
space. The data is typically stored in this memory space. Therefore, when you declare a
pointer variable, you also specify the data type of the value to be stored in the memory
location pointed to by the pointer variable.

In C++, you declare a pointer variable by using the asterisk symbol (*) between the data
type and the variable name. The general syntax to declare a pointer variable is:

dataType *identifier;

As an example, consider the following statements:

int *p;
char *ch;

796 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

the statement:
P = &x;

assigns the address of x to p. That is, x and the value of p refer to the same memory
location.

Dereferencing Operator (*)

Every chapter until now has used the asterisk character, *, as the binary multiplication
operator. C++ also uses * as a unary operator. When used as a unary operator, *, commo
referred to as the dereferencing operator or indirection operator, refers to the obj “x(
which its operand (that is, the pointer) points. For example, given t‘e state

int x = 25;

El>m=: T&z: //store the address of xﬁotesa 92

the statement: ‘ Om O-‘ lg

cout << *p W 1

g@ \[stored@ @ space pomted to by p, which is the value of x. Also,
t

atement:
*p = 55;

stores 55 in the memory location pointed to by p—that is, in x.

Let us consider the following statements:

int *p;
int num;

In these statements, p is a pointer variable of type int, and num is a variable of type int.
Let us assume that memory location 1200 is allocated for p, and memory location 1800 is
allocated for num. (See Figure 14-1.)

1200 1800
p num

FIGURE 14-1 Variables p and num

Dereferencing Operator (*) | 799

Let us note the following:

1. pis a pointer variable.
2. The content of p points only to a memory location of type int.

3. Memory location x exists and is of type int. Therefore, the assignment
statement:
P = &x;
is legal. After this assignment statement executes, *p is valid and
meaningful.

The program in Example 14-3 further illustrates how a pointer variable worlb u\(

The following program illustrates h mln&@n‘e's wo&gg

//Chapter 14: Ex *0
#inclu Y,J\T%\&“ 8A¢0

uPnX hespace 4D age

int main ()

{

int *p;
int x = 37;

cout << "Line 1: x = " << x << endl; //Line 1
p = &x; //Line 2
cout << "Line 3: *p = " << *p

<< ", x =" < x << endl; //Line 3
*p = 58; //Line 4
cout << "Line 5: *p = " << *p

<< ", x =" <K x << endl; //Line 5
cout << "Line 6: Address of p = " << §&p << endl; //Line 6
cout << "Line 7: Value of p = " << p << endl; //Line 7

cout << "Line 8: Value of the memory location "

<< "pointed to by *p = " << *p << endl; //Line 8
cout << "Line 9: Address of x = " << &x << endl; //Line 9
cout << "Line 10: Value of x = " << x << endl; //Line 10

return 0;

822 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

Before describing how to overcome this deficiency, let us describe one more situation that
could also lead to a shallow copying of the data. The solution to both these problems is the same.

Recall that as parameters to a function, class objects can be passed either by reference or
by value. Remember that the class ptrMemberVarType has the destructor, which
deallocates the memory space pointed to by p. Suppose that objectOne is as shown in
Figure 14-19.

objectOne

FIGURE 14- 1 O“
P (ce der t ‘ n%g?e)
Y“l

void destroylList (ptrMemberVarType paramObiject) ;

The function destroyList has a formal value parameter, paramObject. Now consider
the following statement:

destroylList (objectOne) ;

In this statement, objectOne is passed as a parameter to the function destroyList.
Because paramObject is a value parameter, the copy constructor copies the member
variables of objectOne into the corresponding member variables of paramObject. Just
as in the previous case, paramObject.p and objectOne.p would point to the same
memory space, as shown in Figure 14-20.

destroyList

objectOne paramObject

i 5 362415 .|

FIGURE 14-20 Pointer member variables of objects objectOne and paramObject pointing to the
same array

824 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

When the function destroyList exits, the formal parameter paramObject goes
out of scope, and the destructor for the object paramObject deallocates the memory space
pointed to by paramObject . p. However, this deallocation has no effect on objectOne.

The general syntax to include the copy constructor in the definition of a class is:

className (const classNameé& otherObject);

Notice that the formal parameter of the copy constructor is a constant reference parameter.

Example 14-7 illustrates how to include the copy constructor in a class and how it works.

N\ \
EXAMPLE 14-7
Consider the following class: NO"

class ptrMemberVarTypi(Om65 O.‘

{ -
public: a
ﬁwl\t const; a
PY unction ﬁ@ e data stored in the array p.
void insertAt{int index, int num);

//Function to insert num into the array p at the
//position specified by index.

//If index is out of bounds, the program is terminated.
//If index is within bounds, but greater than the index
//of the last item in the list, num is added at the end
//of the list.

ptrMemberVarType (int size = 10);
//Constructor
//Creates an array of the size specified by the
//parameter size; the default array size is 10.

~ptrMemberVarType () ;
//Destructor
//deallocates the memory space occupied by the array p.

ptrMemberVarType (const ptrMemberVarType& otherObject) ;
//Copy constructor

private:
int maxSize; //variable to store the maximum size of p
int length; //variable to store the number elements in p
int *p; //pointer to an int array

}i

Suppose that the definitions of the members of the class ptrMemberVarType are as
follows:

Classes and Pointers: Some Peculiarities | 825

void ptrMemberVarType: :print () const
{

for (int i = 0; i < length; i++)
cout << p[i]l << " ";

}

void ptrMemberVarType::insertAt (int index, int num)

{

//if index is out of bounds, terminate the program
assert(index >= 0 && index < maxSize);

if (index < length)

plindex] = num; ¥
else
{ \e CO ’

pllength] = num; *

| } length++; N O‘esagtl
ptrMemberVaﬂI‘Wrbi;&erVarTg%%]@" l

{P f@‘l\’e\:

cout << "Rhe rg size must be positive." << endl;
cout << "Creating an array of the size 10." << endl;

maxSize = 10;
}
else
maxSize

size;
length = 0;
p = new int[maxSizel];
}

ptrMemberVarType: : ~ptrMemberVarType ()
{

}

delete [] ps

//copy constructor
ptrMemberVarType: :ptrMemberVarType
(const ptrMemberVarType& otherObject)
{
maxSize = otherObject.maxSize;
length = otherObject.length;

828 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

the default array size. The for loop in Line 5 reads and stores five integers in 1istOne.p.
The statement in Line 9 outputs the numbers stored in 1istOne, that is, the five numbers
stored in p. (See the output of the line marked Line 8 in the sample run.)

The statement in Line 11 declares 1istTwo to be an object of type ptrMemberVarType and
also 1nitializes 1istTwo using the values of 1istOne. The statement in Line 13 outputs the
numbers stored in 1istTwo. (See the output of the line marked Line 12 in the sample run.)

The statements in Lines 15 and 16 modify 1istTwo, and the statement in Line 18 outputs
the modified data of 1istTwo. (See the output of the line marked Line 17 in the sample
run.) The statement in Line 21 outputs the data stored in 1istOne. Notice that the daga
stored in 1istOne is unchanged, even though 1istTwo modified its data. It follovx“
the copy constructor used to initialize listTwo using listOne,(at Li ro
listTwo its own copy of the data. \

The statements in Lines 23 through 28 show 1s passe a parameter by

value to the function testCopyCons t e cor s rmal parameter

temp has its own copy of mat the functl §t§ onst modifies the

object temp; hqwe ﬁx stOne ee the outputs of the lines

marked éﬂg{ eVthe functlon onst is called and Line 25 (after the
opyC

on t sample run. Also notice that when the function
pyConst tern?z estructor of the class ptrMembervVarType deallocates

the memory space occllpied by temp.p, which has no effect on 1istOne.p.

For classes with pointer member variables, three things are normally done:

1. Include the destructor in the class.
2. Opverload the assignment operator for the class.
3. Include the copy constructor.
Chapter 15 discusses overloading the assignment operator. Until then, whenever we

discuss classes with pointer member variables, out of the three items in the previous list,
we will implement only the destructor and the copy constructor.

Inheritance, Pointers, and Virtual Functions

Recall that as a parameter, a class object can be passed either by value or by reference.
Earlier chapters also said that the types of the actual and formal parameters must match.
However, in the case of classes, C++ allows the user to pass an object of a derived class to a
formal parameter of the base class type.

First, let us discuss the case in which the formal parameter is either a reference parameter
or a pointer. To be specific, let us consider the following classes:

class petType

{
public:

Inheritance, Pointers, and Virtual Functions | 831

class petType

{

public:
yirtual void print(); //virtual function
petType (string n = "");

private:
string name;

}s

class dogType: public petType
{

public
void print(); K
dogType (string n = "", string b = "");

a\eco’

Note that we need to decla @ l urkction only‘g %2?
The definitionsof, £Xfunct1 2“ e as before. If we execute the
previou e&, itM these mo éat@m tput is as follows.

Name Lucky

Name: Tommy, Breed. German Shepherd
*** Calling the function callPrint ***
Name: Lucky

Name: Tommy, Breed: German Shepherd

private:

string breed; 5
b ‘_e

This output shows that for the statement in Line 9, the print function of dogType is
executed (see the last two lines of the output).

The previous discussion also applies when a formal parameter is a pointer to a class, and a
pointer of the derived class is passed as an actual parameter. To illustrate this feature,
suppose we have the preceding classes. (We assume that the definition of the class
petType is in the header file petType.h, and the definition of the class dogType is in
the header file dogType.h.) Consider the following program:

#include <iostream>

#include "petType.h"
#include "dogType.h"

using namespace std;
void callPrint (petType *p):

int main()

{

petType *q; //Line 1
dogType *r; //Line 2
q = new petType ("Lucky"); //Line 3
r = new dogType ("Tommy", "German Shepherd"); //Line 4

840 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

private:
double empSalary;
double empBonus;
};

The definitions of the constructor and functions of the class fullTimeEmployee are:

void fullTimeEmployee::set(string first, string last,
long id,
double salary, double bonus)
setName (first, last);
setId(id); K
empSalary = salary; u

} empBonus = bonus; a\e ‘CO .

void fullTimeEmployee::setSalary (dﬁeﬁ

{ 9
empSalary = salar;ﬁ lg

) (O

ol
prefelzge o

void fullTimeEmployee: :setBonus (double bonus)

{
empBonus = bonus;
}
double fullTimeEmployee: :getBonus ()
{
return empBonus;
}
void fullTimeEmployee: :print () const
{
cout << "Id: " << getlId() << endl;
cout << "Name: ";
personType: :print () ;
cout << endl;
cout << "Wages: $" << calculatePay() << endl;
}

double fullTimeEmployee::calculatePay() const
{
return empSalary + empBonus;

}

Abstract Classes and Pure Virtual Functions | 841

fullTimeEmployee: :fullTimeEmployee (string first, string last,
long id, double salary,
double bonus)
employeeType (first, last, id)

empSalary = salary;
empBonus = bonus;

}
The definition of the class partTimeEmployee is:

#include "employeeType.h"

class partTimeEmployee: public employeeType uK
{ O .
public: &

void set(string first, string last, l,‘:e,s le rate,

double hours);

//Function to set the & ast n 92
//payRate, and accordlng a%—

// parameter

PreV©s a;ga 820

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned.

]
[
w
1]
o

]
=2
o
(=}
R
0]

void setPayRate (double rate);
//Function to set the salary.
//Postcondition: payRate = rate;

double getPayRate();
//Function to retrieve the salary.
//Postcondition: returns payRate;

void setHoursWorked (double hours);
//Function to set the bonus.
//Postcondition: hoursWorked = hours

double getHoursWorked() ;
//Function to retrieve the bonus.
//Postcondition: returns empBonus;

void print() const;
//Function to output the id, first name, last name,
//and the wages.
//Postcondition: Outputs
// Id:
// Name: firstName lastName

// Wages: $$$$.5%

18.
20.

Exercises

What is the output of the following code?

int *secret;
int j;

secret = new int[10];
secret[0] = 10;
for (j = 1; j < 10; j++)
secret[j] = secret[]j - 1] + 5;
for (3 = 0; j < 10; j++)
cout << secret[j]l << " ™;
cout << endl;

Consider the following statement:

int *num;
a. Write the C++ statement that dynamlcally cr @&%yq

ess of the array.

andard

input device. ‘1& ,Sm‘j&

ert \éwat t that %@ Ath@x ory space of array to
i

components of type int and num congai
b. Write a C++ code that inp mta array n

nts

& der the fo @ade

:|.nt *p;
p = new int[lO],
for (int J = 0; Jj < 10; Jj+4)
plil =2 * j - 2;
Write the C++ statement that deallocates the memory space occupied by
the array to which p points.
Explain the difference between a shallow copy and a deep copy of data.

What is wrong with the following code?

int *p; //Line 1
int *qg; //Line 2
p = new int[5]; //Line 3
*p = 2; //Line 4
for (int i = 1; 1 < 5; i++4) //Line 5

pli] = pl[i - 11 + i; //Line 6
dq = ps //Line 7
delete [] p; //Line 8
for (int j = 0; j < 5; J++) //Line 9

cout << g[j] << " "; //Line 10

cout << endl; //Line 11

853

vk

Programming Exercises | 857

Rewrite the definition of the class studentType so that the functions print and
calculateGPA are pure virtual functions.

31. Suppose that the definitions of the classes employeeType,
fullTimeEmployee, and partTimeEmployee are as given in Example
14-8 of this chapter. Which of the following statements is legal?

a. employeeType tempEmp;
h. fullTimeEmployee newEmp () ;
c. partTimeEmployee pEmp ("Molly", "Burton", 101, 0.0, 0);

PROGRAMMING EXERCISES pn_\)\(
NG~

1. Redo Programming Exercise 5 of Chapter 9 using d

2. Redo Programming Exercise 6 of Ch Q c array
3. Redo Programming Exerc1se umg d&% You
th

must ask the user for andldates te the appro-

oweve , the program could add only integers of, at
most, 20 dlgits T explams how to work with dynamic integers.
Design a class named largeIntegers such that an object of this class can
store an integer of any number of digits. Add operations to add, subtract,
multiply, and compare integers stored in two objects. Also add constructors
to properly initialize objects and functions to set, retrieve, and print the values
of objects.

priate arr?‘I
P K;@ gxermse 11 pt lams how to add large integers using
H

5. Banks offer various types of accounts, such as savings, checking, certificate
of deposits, and money market, to attract customers as well as meet with
their specific needs. Two of the most commonly used accounts are savings
and checking. Each of these accounts has various options. For example, you
may have a savings account that requires no minimum balance but has a
lower interest rate. Similarly, you may have a checking account that limits
the number of checks you may write. Another type of account that is used
to save money for the long term is certificate of deposit (CD).

In this programming exercise, you use abstract classes and pure virtual
functions to design classes to manipulate various types of accounts. For
simplicity, assume that the bank offers three types of accounts: savings,
checking, and certificate of deposit, as described next.

Savings accounts: Suppose that the bank offers two types of savings
accounts: one that has no minimum balance and a lower interest rate and
another that requires a minimum balance and has a higher interest rate.

Checking accounts: Suppose that the bank ofters three types of checking
accounts: one with a monthly service charge, limited check writing, no

858 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

minimum balance, and no interest; another with no monthly service charge, a
minimum balance requirement, unlimited check writing and lower interest;
and a third with no monthly service charge, a higher minimum requirement, a
higher interest rate, and unlimited check writing.

Certificate of deposit (CD): In an account of this type, money is left for
some time, and these accounts draw higher interest rates than savings or
checking accounts. Suppose that you purchase a CD for six months. Then
we say that the CD will mature in six months. Penalty for early withdrawal
is stiff.

Figure 14-22 shows the inheritance hierarchy of these bank accounts. ¥

| highlnterestChecking

FIGURE 14-22 Inheritance hierarchy of banking accounts

Note that the classes bankAccount and checkingAccount are abstract.
That is, we cannot instantiate objects of these classes. The other classes in
Figure 14-22 are not abstract.

bankAccount: Every bank account has an account number, the name of
the owner, and a balance. Therefore, instance variables such as name,
accountNumber, and balance should be declared in the abstract class
bankAccount. Some operations common to all types of accounts are retrieve
account owner’s name, account number, and account balance; make deposits;
withdraw money; and create monthly statement. So include functions to imple-
ment these operations. Some of these functions will be pure virtual.

checkingAccount: A checking account is a bank account. Therefore, it
inherits all the properties of a bank account. Because one of the objectives of
a checking account is to be able to write checks, include the pure virtual
function writeCheck to write a check.

864 | Chapter 15: Overloading and Templates

Syntax for Operator Functions
The result of an operation is a value. Therefore, the operator function is a value-returning

function.

The syntax of the heading for an operator function is:

returnType operator operatorSymbol (formal parameter list)

In C++, operator is a reserved word.

Recall that the only built-in operations on classes are assighment (=) and mem
selection. To use other operators on class objects, they must be explicit lo

.
Operator overloading provides the same concise expressions for us‘ types as

it does for built-in data types. tes

To overload an operator for a class:

Include the state ﬁx@mhﬁlctlon %‘%% operator
nch

(that 15, éﬁ eﬁnltlon of the class.
é nition of t @ tion.
tax tles must (@\‘% en you include an operator function in a class
1

deﬁmtlon These rule\ are described in the section, “Operator Functions as Member
Functions and Nonmember Functions” later in this chapter.

Overloading an Operator: Some Restrictions

When overloading an operator, keep the following in mind:

1. You cannot change the precedence of an operator.

2. The associativity cannot be changed. (For example, the associativity of
the arithmetic operator addition is from left to right, and it cannot be
changed.)

3. Default parameters cannot be used with an overloaded operator.
You cannot change the number of parameters an operator takes.

5. You cannot create new operators. Only existing operators can be over-

loaded.
6. The operators that cannot be overloaded are:
* i ?: sizeof
7. The meaning of how an operator works with built-in types, such as int,
remains the same.

8. Operators can be overloaded either for objects of the user-defined types,
or for a combination of objects of the user-defined type and objects of
the built-in type.

Operator Overloading |

type rectangleType, the operator function that overloads the insertion operator for

rectangleType must be a nonmember function of the class rectangleType.

Similarly, the operator function that overloads the stream extraction operator for

rectangleType must be a nonmember function of the class rectangleType.

OVERLOADING THE STREAM INSERTION OPERATOR (<<)

The general syntax to overload the stream insertion operator, <<, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend ostream& operator<< (ostream&, const classNameg) ;

e.CO oK
as sN@?:Obj ect)

Function Definition:

ostreamé& operator<<(ostream& 0s0 to
{

//local declar

//Output th)Z
\elin t @je@
return osObpta

}

In this function definition:

® Both parameters are reference parameters.

e The first parameter—that is, 0sObject— is a reference to an ostream
object.

e The second parameter is usually a const reference to a particular class,
because (recall from Chapter 12) the most effective way to pass an object
as a parameter to a class is by reference. In this case, the formal parameter
does not need to copy the member variables of the actual parameter. The
word const appears before the class name because we want to print only
the member variables of the object. That is, the function should not
modify the member variables of the object.

The function return type is a reference to an ostream object.

The return type of the function to overload the operator << must be a reference to an

ostream object for the following reasons.

Suppose that the operator << is overloaded for the class rectangleType. The statement:

cout << myRectangle;
is equivalent to the statement:

operator<<(cout, myRectangle);

890 | Chapter 15: Overloading and Templates

the formal parameter rightObject also refers to the object myRectangle. Therefore,
in the expression:

this != &rightObject

this and &rightObject both mean the address of myRectangle. Thus, the expres-
sion will evaluate to false and, therefore, the body of the if statement will be skipped.

NOTE This note illustrates another reason why the body of the operator function must prevent
self-assignments. Let us consider the following class:

class arrayClass uK

{ O-

public: & C
const arrayClassé& operator= (coné&s

ﬁO
oM
P (e\ﬂt maxPSJ.ze,g

The class arrayClass has a pointer member variable, 1ist, which is used to
create an array to store integers. Suppose that the definition of the function to overload
the assignment operator for the class arrayClass is written without the i f
statement, as follows:

private

const arrayClass & arrayClass::operator=
(const arrayClass& otherList)

{
delete [] list; //Line 1
maxSize = otherList.maxSize; //Line 2
length = otherList.length; //Line 3
list = new int[maxSize]; //Line 4
for (int i = 0; i < length; i++) //Line 5
list[i] = otherList.list[i]; //Line 6
return *this; //Line 7

}

Suppose that we have the following declaration in a user program:
arrayClass mylList;
Consider the following statement:

myList = myList;

894 | Chapter 15: Overloading and Templates

int i; //Line
int number; //Line
cout << "Line 14: Enter 5 integers: "; //Line
for (1 = 0; 1 < 5; i++) //Line
{
cin >> number; //Line
intListl.insertEnd (number) ; //Line
}
cout << endl; //Line
cout << "Line 19: intListl: "; //Line
intListl.print () ; //L1

intList3 = intList2 = intListl; \ﬁlne

cout << "Line 22: intList2: NO‘e g@:

intList2.print () ; l
intList3. déq\l ﬁt). 936 O‘ //Line

x@ //Line
P << "Lln? gl //Line
()7

intList2.prin //Line

cout << "Line 28: After destroying intList2, "

<< "intListl: "; //Line
intListl.print () //Line
cout << "Line 30: After destroying intList2, "

<< "intList3: "; //Line
intList3.print(); //Line
cout << endl; //Line

return 0;

}
Sample Run: In this sample run, the user input is shaded.

Line 14: Enter 5 integers: 8 5 3 7 2

Line 19: intListl: 8 5 3 7 2
Line 22: intList2: 8 5 3 7 2
Line 26: intList2: The list is empty.

Line 28: After destroying intList2, intListl:

8 372
Line 30: After destroying intList2, intList3: 8 372

5
5

12
13

14
15
16
17

18
19

21

24

25
26
27

28
29

30
31
32

u\k

The statement in Line 9 creates intList1 of size 10; the statements in Lines 10 and 11
create intList2 and intList3 of (default) size 50. The statements in Lines 15 through
17 input the data into intList1, and the statement in Line 20 outputs intListl. The

906 | Chapter 15: Overloading and Templates

//Overload the equality operator.
bool clockType: :operator==(const clockType& otherClock) const

{

return (hr == otherClock.hr && min == otherClock.min
&& sec == otherClock.sec);

}

The definition of the function operator<= is given next. The first time is less than
or equal to the second time if:

2. The hours of the first time and the second time are the same, but the

1. The hours of the first time are less than the hours of the second time, or
minutes of the first time are less than the minutes of the se nd ti u

3. The hours and minutes of the first time and the

same, but the seconds of the first tlﬁ 6% Cqual 0 the

seconds of the second time.

The definition of the funﬁvl Atdr<= is: -‘ lgg
//Ove mw less than &4 perator.
@*eb‘l opera g g ockType& otherClock) const

return ((hr ock.hr) ||
(hr %= otherClock hr && min < otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &é&

sec <= otherClock.sec)):;
}

In a similar manner, we can write the definitions of the other relational operator

functions as follows:

//Overload the not equal operator.
bool clockType: :operator!=(const clockType& otherClock) const
{
return (hr != otherClock.hr || min != otherClock.min
|| sec != otherClock.sec):;

//Overload the less than operator.
bool clockType: :operator< (const clockType& otherClock) const
{
return ((hr < otherClock.hr) ||
(hr == otherClock.hr && min < otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec < otherClock.sec));

//Overload the greater than or equal to operator.
bool clockType: :operator>=(const clockType& otherClock) const

910 | Chapter 15: Overloading and Templates

cout << "Line 4: yourClock = " << yourClock
<< endl; //Line 4

cout << "Line 5: Enter the time in the form "

<< "hr:min:sec "; //Line 5
cin >> myClock; //Line 6
cout << endl; //Line 7

cout << "Line 8: The new time of myClock = "
<< myClock << endl; //Line 8

++myClock; /L:.ne 9 \)K

cout << "Line 10: After incrementing the time, e
<< "myClock = " << myClock << endl EE; /Llne 10

yourClock.setTime (13, 35, 38) /Pine 11

cout << "Llne 1 ff@‘.s{}clng the % 53
<g "é Cf&)—cké //Line 12
(@MAOC](== yo g //Line 13
P cout <<P ‘g e times of myClock and "
yo

k are equal." << endl; //Line 14

else //Line 15
cout << "Line 16: The times of myClock and "

<< "yourClock are not equal." << endl; //Line 16

if (myClock <= yourClock) //Line 17
cout << "Line 18: The time of myClock is "
<< "less than or equal to " << endl
<< "the time of yourClock." << endl; //Line 18
else //Line 19
cout << "Line 20: The time of myClock is "
<< "greater than the time of "
<< "yourClock." << endl; //Line 20

return 0;

}

Sample Run: In this sample run, the user input is shaded.

Line 3: myClock = 05:06:23
Line 4: yourClock = 00:00:00
Line 5: Enter the time in the form hr:min:sec 4:50:59

Line 8: The new time of myClock = 04:50:59

Line 10: After incrementing the time, myClock = 04:51:00
Line 12: After setting the time, yourClock = 13:35:38
Line 16: The times of myClock and yourClock are not equal.
Line 18: The time of myClock is less than or equal to

the time of yourClock.

Programming Example: Complex Numbers | 913

To output a complex number in the form:
(a, b)
in which a is the real part and b is the imaginary part, clearly the algorithm is:

Output the left parenthesis, (.
Output the real part.
Output the comma and a space.

Output the imaginary part.

Output the right parenthesis,). K
Therefore, the definition of the function operator<< is: \ CO

ostream& operator<< (ostream& osObject, %
const compleﬂ ‘Eae

o A O

{
osObject << 7 i te 3!
osObj t@N’n I®ex.realk S ep b
8 9 //Step c
J ct << 1n ryPart; //Step d
osObject << //Step e

return osObject; //return the ostream object
}

Next, we discuss the definition of the function to overload the stream extraction
operator, >>.

The input is of the form:
(3, 3)

In this input, the real part of the complex number is 3, and the imaginary part is 5.
Clearly, the algorithm to read this complex number is:

Read and discard the left parenthesis.

Read and store the real part.

Read and discard the comma.

Read and store the imaginary part.

o A O

Read and discard the right parenthesis.
Following these steps, the definition of the function operator>> is:

istream& operator>> (istream& isObject, complexType& complex)

{

char ch;

isObject >> ch; //Step a
1sObject >> complex.realPart; //Step b

Overloading the Array Index (Subscript) Operator ([1) |

Type& operator[](int index);
//Overload the operator for nonconstant arrays
const Type& operator[](int index) const;
//Overload the operator for constant arrays

private:
Type *list; //pointer to the array
int arraySize;

}i
in which Type is the data type of the array elements.

The definitions of the functions to overload the operator [] for ‘@TG@

//Overload the operator [] for noncon
flh

Type& classTest::operator[] (int 1nﬁ
{
assert (0 <= index ar aySlze)

return list[ind ﬁ turn a ‘o
//ar

preV©l e 950"

erload the? [] for constant arrays
const Type& classBest::operator[] (int index) const

assert (0 <= index && index < arraySize);
return list[index]; //return a pointer of the
//array component

917

uk

NOTE The preceding function definitions use the assert statement. (For an explanation of the

assert statement, see Chapter 4 or the Appendix.)

Consider the following statements:

classTest listl;
classTest list2;
const classTest 1list3;

In the case of the statement:

listl[2] = 1list2[3];

the body of the operator function operator[] for nonconstant arrays is executed. In the

case of the statement:

listl[2] = 1list3[5];

first, the body of the operator function operator[] for constant arrays is executed
because 1ist3 is a constant array. Next, the body of the operator function operator[]
for nonconstant arrays is executed to complete the execution of the assignment statement.

920 | Chapter 15: Overloading and Templates

//Default constructor to store the null string
newString: :newString ()

{
strLength = 0;
strPtr = new char[1l];
strcpy (strPtx, "");

}

newString: :newString (const newString& rightStr) //copy constructor

{
strlength = rightStr.strLength;
strPtr = new char[strlLength + 1];

strcpy (strPtr, rightStr.strPtr); O ‘u
} \e G
.

newString: :~newString() //destructo O‘esa
{

delete [] strPtr; m ﬁ
) £xO

//ove i E\Nslgnment op@@
wc ngé& newStr (const newStringé& rightStr)

if (this != & g//avoz.d self-copy
{
delete [] strPtr;
strLength = rightStr.strlLength;
strPtr = new char[strlLength + 1];
strcpy (strPtr, rightStr.strPtr);

}

return * this;

}

charg& newString: :operator[] (int index)

{
assert (0 <= index && index < strLength);
return strPtr[index];

}

const charg newString: :operator[] (int index) const

{
assert (0 <= index && index < strLength) ;
return strPtr[index];

}

//Overload the relational operators.
bool newString: :operator==(const newString& rightStr) const
{
return (strcmp (strPtr, rightStr.strPtr) == 0);
}

922 | Chapter 15: Overloading and Templates

Most of these functions are quite straightforward. Let us explain the functions that over-
load the conversion constructor, the assignment operator, and the copy constructor.

The conversion constructor is a single-parameter function that converts its argu-
ment to an object of the constructor’s class. In our case, the conversion constructor
converts a string to an object of the newString type.

Note that the assignment operator is explicitly overloaded only for objects of the
newString type. However, the overloaded assignment operator also works if we
want to store a C-string into a newString object. Consider the declaration:

newString str; O uK
.
and the statement: \e _C

str = "Hello there"; O‘esa
The compiler translates this statenm N

str. operator— ("\Hﬂl ﬁ(3 O‘ l

e\# ompller autopmti o es the conversion constructor

P o create a ewStrlng type to temporarily store the
string “Hel

2. Second, the compller invokes the overloaded assignment operator to
assign the temporary newString object to the object str.

Hence, it is not necessary to explicitly overload the assignment operator to store a
C-string into an object of type newString.

Next, we write a C++ program that tests some of the operations of the class
newString.

//**
// Author: D.S. Malik

// This program shows how to use the class newString.
A)

#include <iostream>
#include "myString.h"

using namespace std;

int main ()
{
newString strl = "Sunny"; //initialize strl using
//the assignment operator
const newString str2 ("Warm"); //initialize str2 using the
//conversion constructor

924 | Chapter 15: Overloading and Templates

Line 6: Enter a string with a length of at least 7: 123456789
Line 9: The new value of strl = 123456789

Line 11: str3 = Birth Day, str4 = Birth Day

Line 13: The new value of str3 = 123456789

Line 16: After replacing the second character of str3 = 1t3456789
Line 18: After replacing the third character of str3 1tW456789
Line 20: After replacing the sixth character of str3 1twW45g789

The preceding program works as follows. The statement in Line 1 outputs the values
of strl, str2, and str3. Notice that the value of str3 is to be printed between
*** and ###. Because str3 is empty, nothing is printed between *** and ###; see
Line 1 in the sample run. The statements in Lines 2 through 5 compare

str2 and output the result. The statement in Line 7 inputs a strlx ét&@l

least 7 into strl, and the statement in Line 9 outputs th

that in the statement (see Line 10): O‘,e 2

strd4 = str3 = "Birth Day" g-(\ N
Because the associativ ent ﬂﬁ f&d right to left, first the
statement s E;@Mh Day"; e the statement str4 = str3;

g tement in ts the values of str3 and str4. The
ts in Lmes use the array subscripting operator [] to indivi-
dually manipulate t ch Tacf®Ts of str3. The meanings of the remaining statements
are straightforward.

rl. Note

Function Overloading

The previous section discussed operator overloading. Operator overloading provides the
programmer with the same concise notation for user-defined data types as the operator
has for built-in types. The types of parameters used with an operator determine the action
to take. Similar to operator overloading, C++ allows the programmer to overload a
function name. Chapter 7 introduced function overloading. For easy reference in the
following discussion, let us review this concept.

Recall that a class can have more than one constructor, but all constructors of a class have
the same name, which is the name of the class. This is an example of overloading a
function. Further recall that overloading a function refers to having several functions
with the same name but different parameter lists. The parameter list determines which
function will execute.

For function overloading to work, we must give the definition of each function. The
next section teaches you how to overload functions with a single code segment and leave
the job of generating code for separate functions for the compiler.

928 | Chapter 15: Overloading and Templates

void insert (const elemType& newElement) ;
//Function to insert newElement in the list.
//Precondition: Prior to insertion, the list must

// not be full.
//Postcondition: The list is the old list plus
// newElement.

void remove (const elemType& removeElement);
//Function to remove removeElement from the list.
//Postcondition: If removeElement is found in the list,

// it is deleted from the list, and the

// list is the old list minus removeElement.

// If the list is empty, output the messa u
// "Cannot delete from the empty 1:|.st é

void destroyList();

//Function to destroy the llStNO‘,esa

//Postcondition: length = 0;
void printList() m ‘&e }_
//FunctzéN i‘t theg%@ C@'— ist.
m% T oa0f
efault
A 245

//Sets the the list to O.
//Postcondition: length = 0;

protected:
elemType 1list[100]; //array to hold the list elements
int length; //variable to store the number of

//elements in the list
}i

This definition of the class template 1istType is a generic definition and includes only
the basic operations on a list. To derive a specific list from this list and to add or rewrite
the operations, we declare the array containing the list elements and the length of the list
as protected.

Next, we describe a specific list. Suppose that you want to create a list to process integer
data. The statement:

listType<int> intList; //Line 1

declares intList to be an object of ListType. The protected member list is an array
of 100 components, with each component being of type int. Similarly, the statement:

listType<newString> stringList; //Line 2

declares stringList to be an object of ListType. The protected member list is
an array of 100 components, with each component being of type newString.

938 | Chapter 15: Overloading and Templates

e. The precedence of an operator cannot be changed, but its associativity
can be changed.

. Every instance of an overloaded function has the same number of
parameters.

g. It is not necessary to overload relational operators for classes that have
only int member variables.

h. The member function of a class template is a function template.

i. When writing the definition of a friend function, the keyword
friend must appear in the function heading.

ji. Templates provide the capability for software reuse. @ uK
.

k. The function heading of the operator function to ov
increment operator (++) and the post- 1ncremen

same because both operators have ﬁﬁw

+') 1S the

2. Whatis a friend functlon?

3. What is the dlfference end functj f &39 member
function @f lqiﬁl
%e&’ nition of lg at Type given in Chapter 13.
v a* Write the sta a&g d

es a friend function named before in the
class date¥ype that takes as parameters two objects of type dateType
and returns true if the date represented by the first object comes before the
date represented by the second object; otherwise the function returns false.

b. Worite the definition of the function you defined in part a.

5. Suppose that the operator << is to be overloaded for a user-defined class
mystery. Why must << be overloaded as a £riend function?

6. Suppose that the binary operator + is overloaded as a member function for a
class strange. How many parameters does the function operator+ have?

7. When should a class overload the assignment operator and define the copy
constructor?

8. Consider the following declaration:

class strange

{

a. Write a statement that shows the declaration in the class strange to
overload the operator >>.

b. Write a statement that shows the declaration in the class strange to
overload the operator =.

c. Write a statement that shows the declaration in the class strange to
overload the binary operator + as a member function.

Programming Exercises | 943

4. a. The increment and relational operators in the class clockType are
overloaded as member functions. Rewrite the definition of the class
clockType so that these operators are overloaded as nonmember func-
tions. Also, overload the post-increment operator for the class
clockType as a nonmember.

b. Write the definitions of the member functions of the class clockType
as designed in part a.

c. Write a test program that tests various operations on the class as designed
in parts a and b.

5. a. Extend the definition of the class complexType so that it performs \(
the subtraction and division operations. Overload the operators 51&6 u

tion and division for this class as member functions.

If (a, b) and (¢, d) are complex numbers:
o’tes

(a,b) - (c,d)=(a-¢ b-4d).

o ,‘L mg\% poof 32

erload the operators -and / as

b. xg itions of the fu
P (din par
c. Write a test¥pr hat tests various operations on the class

complexType. Format your answer with two decimal places.

6. a. Rewrite the definition of the class complexType so that the arith-
metic and relational operators are overloaded as nonmember functions.

b. Write the definitions of the member functions of the class complexType
as designed in part a.

c. Write a test program that tests various operations on the class
complexType as designed in parts a and b. Format your answer with
two decimal places.

7. a. Extend the definition of the class newString as follows:
i. Overload the operators + and += to perform the string concatena-
tion operations.
i. Add the function length to return the length of the string.

b. Worite the definition of the function to implement the operations defined
in part a.

c. Write a test program to test various operations on the newString objects.

8. a. Rewrite the definition of the class newString as defined and
extended in Programming Exercise 7 so that the relational operators
are overloaded as nonmember functions.

b. Write the definition of the class newString as designed in part a.

c. Write a test program that tests various operations on the class
newString.

946

P

Chapter 15: Overloading and Templates

vert 2 Roman number into its equivalent decimal number.

Modity the definition of the class romanType so that the member
variables are declared as protected. Use the class newString, as
designed in Programming Exercise 7, to manipulate strings. Further-
more, overload the stream insertion and stream extraction operators for
easy input and output. The stream insertion operator outputs the
Roman number in the Roman format.

Also, include a member function, decimalToRoman, that converts the
decimal number (the decimal number must be a positive integer) to an
equivalent Roman number format. Write the definition of the member

function decimalToRoman. O .

For simplicity, we assume that only the letter T a front of
another letter and that it appears only § ers V X. For
example, 4 is represented as IV, 9 1 as IX, sented
as XXXIX, and 49gi m ad XXXXIX. @Alsd) % repre-
sented as X %(Jﬁe repre ﬂT 'g(s

the

O on.

ﬁ% s extRomanTg class romanType to do
llowing; In RomanType, overload the arithmetic

operators +, ? that arithmetic operations can be performed on
Roman numBers. Also, overload the pre- and post-increment and decre-
ment operators as member functions of the class extRomanType.

To add (subtract, multiply, or divide) Roman numbers, add (subtract,
multiply, or divide, respectively) their decimal representations and then
convert the result to the Roman number format. For subtraction, if the
first number is smaller than the second number, output a message saying
that, “Because the first number is smaller than the second,
the numbers cannot be subtracted”. Similarly, for division, the
numerator must be larger than the denominator. Use similar conventions
for the increment and decrement operators.

Write the definitions of the functions to overload the operators
described in part b.

Test your class extRomanType on the following program. (Include
the appropriate header files.)

int main()

{
extRomanType numl ("XXXIV");
extRomanType num2 ("XV");
extRomanType num3;

cout << "Numl " << numl << endl;
cout << "Num2 = " << num2 << endl;
cout << "Numl + Num2 = " << numl + num2 << endl;

Programming Exercises | 949

*kkkkkkkk First Investor's Heaven *xxxkxkkxx

* Kk k k ok ok ok ok ok Financial Report *hkkkkkkkkk
Stock Today Previous Percent
Symbol Open Close High Low Close Gain Volume
ABC 123.45 130.95 132.00 125.00 120.50 8.67% 10000
AOLK 80.00 75.00 82.00 74.00 83.00 -9.64% 5000
CsCO 100.00 102.00 105.00 98.00 101.00 0.99% 25000
IBD 68.00 71.00 72.00 67.00 75.00 -5.33% 15000
MSET 120.00 140.00 145.00 140.00 115.00 21.74% 30920

Closing Assets: $9628300.00

i U G (U UL S L NS L | QR N (T N N U (S QN QU S

Develop this programming exercise in two steps. In the first step (par Q@lg&)ﬁs

implement a stock object. In the second step (part b ment an

object to maintain a list of stocks. %
a. (Stock Object) Design and imgle rﬁ@‘b obﬁ%g% class
r

that captures the v ﬁt rActeristics of a st ype.
The ma of a stg mbol stock price, and
s ares. Moregayer! to output the opening price,

P (s ng pric @ W pr1ce previous price, and the percent
gain/loss fo hese are also all the characteristics of a stock.
Therefore, the stock object should store all this information.

Perform the following operations on each stock object:

i. Set the stock information.
i. Print the stock information.
iii. Show the different prices.
iv. ~ Calculate and print the percent gain/loss.
v. Show the number of shares.
a.l. The natural ordering of the stock list is by stock symbol.

Overload the relational operators to compare two stock
objects by their symbols.

a.2. Overload the insertion operator, <<, for easy output.
a.3. Because the data is stored in a file, overload the stream

extraction operator, >>, for easy input.

For example, suppose infile is an ifstream object and the input file
was opened using the object infile. Further suppose that myStock is
a stock object. Then, the statement:

infile >> myStock;

reads the data from the input file and stores it in the object myStock.
(Note that this statement reads and stores the data in the relevant
components of myStock.)

950 | Chapter 15: Overloading and Templates

b. Now that you have designed and implemented the class stockType
to implement a stock object in a program, it is time to create a list of
stock objects.

Let us call the class to implement a list of stock objects stockListType.

The class stockListType must be derived from the class
listType, which you designed and implemented in the previous
exercise. However, the class stockListType is a very specific
class, designed to create a list of stock objects. Therefore, the class
stockListType is no longer a template.

Add and/or overwrite the operations of the class listType uK
implement the necessary operations on a stock list. 6
\L%pe from

The following statement derives the cla 1%
the class 1listType. ﬁ ié 2
class stockLlstTﬁ @“\mt e<st0ck,‘yp&39
e @M\!lst ggl
P The membgaéﬂgto hold the list elements, the length of the list,

and the max 1istSize were declared as protected in the class
listType. Therefore, these members can be directly accessed in the
class stockListType.

Because the company also requires you to produce the list ordered by the
percent gain/loss, you need to sort the stock list by this component. How-
ever, you are not to physically sort the list by the component percent gain/
loss. Instead, you will provide a logical ordering with respect to this compo-
nent.

To do so, add a member variable, an array, to hold the indices of the
stock list ordered by the component percent gain/loss. Call this array
sortIndicesGainLoss. When printing the list ordered by the com-
ponent percent gain/loss, use the array sortIndicesGainLoss to
print the list. The elements of the array sortIndicesGainLoss will
tell which component of the stock list to print next.

c. Write a program that uses these two classes to automate the company’s
analysis of stock data.

Handling Exceptions within a Program

957

Suppose there is a statement that can generate an exception, for example, division by 0.
Usually, before executing such a statement, we check whether certain conditions are met.
For example, before performing the division, we check whether the divisor is nonzero. If
the conditions are not met, we typically generate an exception, which in C++ terminology
is called throwing an exception. This is typically done using the throw statement, which
we will explain shortly. We will show what is typically thrown to generate an exception.

Let us now note the following about try/catch blocks.

If no exception is thrown in a try block, all catch blocks associated
with that try block are ignored and program execution resumes after the
last catch block.

If an exception is thrown in a try block, the remaining sta ntsq
try block are ignored. The program searches the gﬁ the
o)

order they appear after the try block a priate excep-
tion handler. If the type of thrown eﬁ es th efer type
in one of the catchibl ﬁ of that ¢ chﬂ%@ s, and
the remaml “Rf atter thi aﬁ(nored.

is
Th e ock that has ghree dots) is designed to catch

gg ﬁ& xception
nsider the followué g)

catch (int x)

{
}

//exception-handling code

In this catch block:

The identifier x acts as a parameter. In fact, it is called a catch block parameter.

The data type int specifies that this catch block can catch an exception
of type int.

A catch block can have af most one catch block parameter.

\)\4

Essentially, the catch block parameter becomes a placeholder for the value thrown. In
this case, x becomes a placeholder for any thrown value that is of type int. In other
words, if the thrown value is caught by this catch block, then the thrown value is stored
in the catch block parameter. This way, if the exception-handling code wants to do
something with that value, it can be accessed via the catch block parameter.

Suppose in a catch block heading only the data type is specified, that is, there is no
catch block parameter. The thrown value then may not be accessible in the catch block
exception-handling code.

THROWING AN EXCEPTION

In order for an exception to occur in a try block and be caught by a catch block, the
exception must be thrown in the try block. The general syntax to throw an exception is:

throw expression;

Creating Your Own Exception Classes | 973

void doDivision ()

{

int dividend, divisor, quotient; //Line 3

try

{
cout << "Line 4: Enter the dividend: "; //Line 4
cin >> dividend; //Line 5
cout << endl; //Line 6
cout << "Line 7: Enter the divisor: "; //Line 7
cin >> divisor; //Line 8
cout << endl; //Line 9

if (divisor == 0) //L:Ln uK
throw divisionByZero():; g .
quotient = dividend / divisor; ﬁa\ ine 12
cout << "Line 13: Quotientg= "
<< endl; 3@. 13
}
catch (lelslon %@MroObj l /Line 14
iYe 15 In e@ A’l
e "dODl i
P(<<p gﬁ% at () << endl; //Line 15
Sample Run 1: In this sample run, the user input is shaded.
Line 4: Enter the dividend: 34

Line 7: Enter the divisor: 5

Line 13: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 56
Line 7: Enter the divisor: 0

Line 15: In the function doDivision: Division by zero

Rethrowing and Throwing an Exception

When an exception occurs in a try block, control immediately passes to one of the
catch blocks. Typically, a catch block either handles the exception or partially processes
the exception and then rethrows the same exception, or it rethrows another exception in
order for the calling environment to handle the exception. The catch block in Examples
16-4 through 16-13 handles the exception. The mechanism of rethrowing or throwing
an exception is quite useful in cases in which a catch block catches the exception but
cannot handle the exception, or if the catch block decides that the exception should be

Creating Your Own Exception Classes | 975

int main()

{
try //Line 1
{
doDivision () ; //Line 2
}
catch (divisionByZero divByZeroObj) //Line 3
{

cout << "Line 4: In main: "
<< divByZeroObj.what () << endl; //Line 4
}

return 0; //Line 5
! uk

void doDivision() throw (divisionByZero) C
{ \
int dividend, divisor, quotient; esa //Line 6
try NO 39 ZKLine 7
{
cout << "Lipe (he dl en l //Line 8
cin .>> en //Line 9
} //Line 10
P(out << _BrLi -@1t the divisor: "; //Line 11
cin >> ? //Line 12
cout << ¥ndl; //Line 13
if (divisor == 0) //Line 14
throw divisionByZero ("Found division by 0!"); //Line 15
quotient = dividend / divisor; //Line 16
cout << "Line 17: Quotient = " << quotient
<< endl; //Line 17
}
catch (divisionByZero) //Line 18
{
throw; //Line 19
}
}

Sample Run 1: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 34

Line 11: Enter the divisor: 5

Line 17: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.
Line 8: Enter the dividend: 56

Line 11: Enter the divisor: 0

Line 4: In main: Found division by 0!

Exception-Handling Techniques | 979

cout << endl; //Line 10
if (!cin) //Line 11
throw str; //Line 12
done = true; //Line 13
cout << "Line 14: Number = " << number
<< endl:; //Line 14
} //Line 15
catch (string messageStr) //Line 16
{ //Line 17
cout << "Line 18: " << messageStr
<< endl; //Line 18
cout << "Line 19: Restoring the " K
<< "input stream." << endl; //Line D u
.

cin.clear(): g
cin.ignore (100, '\n'); ‘ Re
} a ine 22
while (!done); l 23

return 0; \N ﬁ(0 /Line 24
1s sample th %t is shaded.
L¥ne 8: Enter a Le

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: d45

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: hw3

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: 48

Line 14: Number = 48

This program prompts the user to enter an integer. If the input is invalid, the standard
input stream enters the fail state. In the try block, the statement in Line 12 throws an
exception, which is a string object. Control passes to the catch block, and the
exception is caught and processed. The statement in Line 20 restores the input stream
to its good state, and the statement in Line 21 clears the rest of the input from the line.
The do...while loop continues to prompt the user until the user inputs a valid
number.

984

| Chapter 16: Exception Handling

QUICK REVIEW

1.

12.
13.

An exception is an occurrence of an undesirable situation that can be
detected during program execution.

Some typical ways of dealing with exceptions are to use an if statement or
the assert function.

The function assert can check whether an expression meets the required
condition(s). If the conditions are not met, it terminates the program.

The try/catch block is used to handle exceptions within a program.

Statements that may generate an exception are placed in a try block. The
try block also contains statements that should not be executedd@

exception occurs. \e
The try block is followed by one or more catt
an catch :@@%s an

exception handler. 'ﬁ]
If the heagdin atﬁhﬁ@c contalnj&al‘ place of parameters,

all types.

A catch block specifies the type of e

then K’ ck can catcliX‘t
? eXceptions aw ry block, all catch blocks associated

with that try
last catch blo

nored and program execution resumes after the

If an exception is thrown in a try block, the remaining statements in the try
block are ignored. The program searches the catch blocks, in the order they
appear after the try block, and looks for an appropriate exception handler. If
the type of the thrown exception matches the parameter type in one of the
catch blocks, then the code in that catch block executes and the remaining
catch blocks after this catch block are ignored.

The data type of the catch block parameter specifies the type of exception
that the catch block can catch.

A catch block can have, at most, one catch block parameter.

If only the data type is specified in a catch block heading, that is, if there is
no catch block parameter, then the thrown value may not be accessible in
the catch block exception-handling code.

In order for an exception to occur in a try block and be caught by a catch
block, the exception must be thrown in the try block.

The general syntax to throw an exception is:
throw expression;

in which expression is a constant value, variable, or object. The object
being thrown can be either a specific object or an anonymous object.

C++ provides support to handle exceptions via a hierarchy of classes.

uk

19.

20.

21.

22.

23.

Quick Review

The class exception is the base class of the exception classes provided by
CH++.

The function what returns the string containing the exception object
thrown by C++’s built-in exception classes.

The class exception is contained in the header file exception.

The two classes that are immediately derived from the class exception
are logic_error and runtime_error. Both of these classes are defined in
the header file stdexcept.

The class invalid argument is designed to deal with illegal arguments
used in a function call.

The class out of range deals with the string subscript qut _of ﬁ‘

erTor.
class length error deals w1t occurs ngth

greater than the maxigau e for the ob 6}— ipulated
1s used. [' %m
If theﬂ cannot allo pace, thls operator throws a
ocC exceptlon

If a length greater than the maximum allo e %aéct is uiz the

E ¥he class r E or is demgned to deal with errors that can be
ri

26.

27.

28.

29.

30.

detected only ng program execution. For example, to deal with arith-
metic overflow and underflow exceptions, the classes overflow error
and underflow error are derived from the class runtime error.

A catch block typically handles the exception or partially processes the
exception and then either rethrows the same exception or rethrows another
exception in order for the calling environment to handle the exception.
C++ enables programmers to create their own exception classes to handle
both the exceptions not covered by C++’s exception classes and their own
exceptions.

C++ uses the same mechanism to process the exceptions you define as it
uses for built-in exceptions. However, you must throw your own excep-
tions using the throw statement.

In C++, any class can be considered an exception class. It need not be
inherited from the class exception. What makes a class an exception is
how it is used.

The general syntax to rethrow an exception caught by a catch block is:
throw;

(in this case, the same exception is rethrown) or:

throw expression;

in which expression is a constant value, variable, or object. The object
being thrown can be either a specific object or an anonymous object.

985

uk

992 | Chapter 17: Recursion

In previous chapters, to devise solutions to problems, we used the most common
technique called iteration. For certain problems, however, using the iterative technique
to obtain the solution is quite complicated. This chapter introduces another problem-
solving technique called recursion and provides several examples demonstrating how
recursion works.

Recursive Definitions

The process of solving a problem by reducing it to smaller versions of itself is called
recursion. Recursion is a very powerful way to solve certain problems for which tlg

solution would otherwise be very complicated. Let us consider a problem that is fa
to most everyone.

In mathematics, the factorial of a nonnegative 1nteger is eg \@yws

gQO 02

n'—nx(n—l if ﬁ 9 _Sl%

In this deﬁmtl(m fin ‘ e @% Qg r greater than 0, first we find
= 1)!

(n — g\t ti ly it by_n. '&' I, we apply the definition again. If
(Pﬁ en w 17 otherwise, we use Equation 17-1. Thus, for an
inkeger n greater th? tained by first finding (n — 1)! (that is, n! is reduced to a
smaller version of itstlf) and then multiplying (n — 1)! by n.

Let us apply this definition to find 3!. Here, n = 3. Because n > 0, we use Equation 17-2
to obtain:

3l =3x2!

Next, we find 2! Here, n = 2. Because n > 0, we use Equation 17-2 to obtain:
20=2x 1!

Now, to find 1!, we again use Equation 17-2 because n = 1 > 0. Thus:

1'=1x0!

Finally, we use Equation 17-1 to find 0!, which is 1. Substituting 0! into 1! gives 1! = 1.
This gives 2! = 2 x 11 = 2 x 1 = 2, which, in turn, gives 3! =3 x 2! =3 X 2 = 6.

The solution in Equation 17-1 is direct—that is, the right side of the equation
contains no factorial notation. The solution in Equation 17-2 is given in terms of a
smaller version of itself. The definition of the factorial given in Equations 17-1 and
17-2 is called a recursive definition. Equation 17-1 is called the base case (that is,
the case for which the solution is obtained directly); Equation 17-2 is called the
general case.

Recursive definition: A definition in which something is defined in terms of a smaller
version of itself.

Problem Solving Using Recursion | 1001

The following recursive function implements this algorithm.

int rFibNum(int a, int b, int n)
{
if (n == 1)
return a;
else if (n == 2)
return b;
else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);
}

Let us trace the execution of the following statement:

cout << rFibNum(2, 3, 5) << endl;

In this statement, the first number is 2, the second nu \r@vant to determine
the fifth Fibonacci number of the sequen ces th Sution of the
expression rFibNum(2,3,5). The 1s 13 W, qz& Fibonacci
number of the sequence w ris 2 d 56 nu

A
Py eN \GP 20€ 10

rFibNum(2,3,4)

rFibNum(2, 3, 3)

rF:LbNum(Z 3,2) rFibNum(2, 3, 2) rFibNum(2,3,1)

rFibNum(2, 3, 2) rFibNum(2,3,1)

FIGURE 17-5 Execution of rFibNum (2, 3, 5)

1002 | Chapter 17: Recursion

The following C++ program uses the function rFibNum:
//Chapter 17: Fibonacci Number

#include <iostream>

using namespace std;

int rFibNum(int a, int b, int n);

int main()

{
int firstFibNum;

int secondFibNum; O ‘\)
int nth; e C

cout << "Enter the first Fibonac esa
cin >> firstFibNum; ﬁé 39‘ 2

cout << endl;
cout << tmheﬁ{cond Fi u%n
c1n >, Xg Num;

E cout << "EHQ agsz.tlon of the desired Fibonacci number: ";
cin >> nth;

cout << endl;

cout << "The Fibonacci number at position " << nth
<< " is: " << rFibNum(firstFibNum, secondFibNum, nth)
<< endl;

return 0;

int rFibNum(int a, int b, int n)

if (n == 1)
return a;
else if (n == 2)
return b;
else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1

Enter the first Fibonacci number: 2

Enter the second Fibonacci number: 5

Programming Example: Converting a Number from Decimal to Binary | 1013

Because the if statement in call 5 fails, this call does not print anything. The first
output is produced by call 4, which prints 1; the second output is produced by call 3,
which prints 1; the third output is produced by call 2, which prints 0; and the fourth
output is produced by call 1, which prints 1. Thus, the output of the statement:

decToBin (13, 2);

1s:

1101

The following C++ program tests the function decToBin.

// BAuthor: D. S. Malik

/" | | eS

// Program: Decimal to binary

// This program uses recursgj to& the }-oﬁn 392

//***‘ CO

// representation of] ve intege

//************W*m******% *x
? ream>
sing namespatPs@.g

void decToBin (int num, int base);

*kkKkhkkkkkkk*x

int main ()

{
int decimalNum;
int base;

base = 2;

cout << "Enter number in decimal: ";

cin >> decimalNum;

cout << endl;

cout << "Decimal " << decimalNum << " = ";
decToBin (decimalNum, base);

cout << " binary" << endl;

return 0;

}

void decToBin (int num, int base)

{
if (num > 0)
{
decToBin (num / base, base);
cout << num % base;
}

Exercises | 1015

17. To design a recursive function, you must do the following:

a. Understand the problem requirements.

b. Determine the limiting conditions. For example, for a list, the limiting
condition is the number of elements in the list.

c. Identify the base cases and provide a direct solution to each base case.

d. Identify the general cases and provide a solution to each general case in
terms of smaller versions of itself.

EXERCISES

1. Mark the following statements as true or false. e CO

a. Every recursive definition must have one or,m &&
b. Every recursive function must hav @& ase cases. 2
The general case s ﬁ‘&‘;\ }‘ 9
In the ‘genera c se% tion to %@bl@&ob ed directly.

10n always
ésgrbase case?
3.% What is a recur@ ag

What is direct recursion?

gw

4
5. What is indirect recursion?
6. What is tail recursion?

7

Consider the following recursive function:

int mystery(int number) //Line 1
{

if (number == 0) //Line 2

return number; //Line 3

else //Line 4

return (number + mystery(number — 1)); //Line 5

a. Identity the base case.
b. Identify the general case.
c. What valid values can be passed as parameters to the function mystery?
d. If mystery(0) is a valid call, what is its value? If not, explain why.
e. Ifmystery(5) is a valid call, what is its value? If not, explain why.
. If mystery(-3) is a valid call, what is its value? If not, explain why.
8. Consider the following recursive function:

void funcRec(int u, char v) //Line 1

{
if (u == 0) //Line 2
cout << v; //Line 3

1026 | Chapter 18: Linked Lists

This linked list has four nodes. The address of the first node is stored in the pointer head.
Each node has two components: info, to store the info, and 1ink, to store the address of
the next node. For simplicity, we assume that info is of type int.

Suppose that the first node is at location 2000, the second node is at location 2800,
the third node is at location 1500, and the fourth node is at location 3600. Therefore,
the value of head is 2000, the value of the component 1ink of the first node is 2800,
the value of the component 1ink of the second node is 1500, and so on. Also, the
value 0 in the component link of the last node means that this value is NULL, which
we indicate by drawing a down arrow. The number at the top of each node is the
address of that node. The following table shows the values of head and some ot K

nodes in the list shown in Figure 18-4. O
.
val Expl 5 \e ‘C
alue xpla @
head 2000 { f !
e info of

. ecause
head->info ,‘(}iloc 2ooo is 17
head->1ink = 2800
Q 0 cause head->1ink is 2800 and the

P(‘ew_ P agé info of the node at location 2800 is 92

Suppose that current is a pointer of the same type as the pointer head. Then, the

statement:
current = head;

copies the value of head into current (see Figure 18-5).

- O - Eo - O - [

info 1link info 1link info 1link info 1link

current

FIGURE 18-5 Linked list after the statement current = head; executes

Clearly, in Figure 18-5:

Value
current 2000
current->info 17
current->1link 2800

current—>link->info 92

Linked Lists | 1031

TABLE 18-2 Inserting a Node in a Linked List Using Two Pointers

head m!fﬂ . ;l"mh

newNode l

Bead l——EIE:E l"-l—v
newNode->1link = qg; u
.

newNode l_>-

\(o2=
eletion No 2
(Djorllsu:er the hpked &x ngure 184? 2 O‘ l g

p—>1link = newNode;

FIGURE 18-10 Node to be deleted is with info 34

Suppose that the node with info 34 is to be deleted from the list. The following
statement removes the node from the list.

p—>link = p—>1link->1link;

Figure 18-11 shows the resulting list after the preceding statement executes.

-»!fmm

FIGURE 18-11 List after the statement newNode->1ink = g; executes

From Figure 18-11, it is clear that the node with info 34 is removed from the list.
However, the memory is still occupied by this node, and this memory is inaccessible; that
is, this node is dangling. To deallocate the memory, we need a pointer to this node. The

Linked List as an ADT | 1041

template <class Type>
bool linkedListIterator<Type>::operator!=

(const linkedListIterator<Type>& right) const
{

}

return (current != right.current);

Now that we have defined the classes to implement the node of a linked list and an
iterator to a linked list, next we describe the class linkedListType to implement the
basic properties of a linked list.

The following abstract class defines the basic properties of a linked list as an ADT.

template <class Type>

class linkedListType O ‘u
{ \e C
S~

public:
const linkedListType<Type>& oper or
(const ll
//Overload the a551gnm l‘gg

void 1n1t1all e 1*‘ Q‘
//In:L he st to

@ i¥ion: fJ.rst = NULL, count = 0;
1sEmpt

//Functlo?sa 1ne whether the list is empty.
//Postcond tion: Returns true if the list is empty,
otherwise it returns false.

void print() const;
//Function to output the data contained in each node.
//Postcondition: none

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

void destroyList():;
//Function to delete all the nodes from the list.
//Postcondition: first = NULL, last = NULL, count = 0;

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be

// empty .

//Postcondition: If the list is empty, the program
// terminates; otherwise, the first

// element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be

// empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last

// element of the list is returned.

Linked List as an ADT | 1043

nodeType<Type> *first; //pointer to the first node of the list
nodeType<Type> *last; //pointer to the last node of the list

private:
void copyList (const linkedListType<Type>& otherList);
//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and
// assigned to this list.
};

Figure 18-20 shows the UML class diagram of the class linkedListType.

linkedListType<Type>

FIGURE 18-20 UML class diagram of the class linkedListType

Note that typically, in the UML diagram, the name of an abstract class and abstract
function is shown in italics.

The instance variables first and last, as defined earlier, of the class
linkedListType are protected, not private, because as noted previously, we will
derive the classes unorderedLinkedList and orderedLinkedList from the
class linkedListType. Because each of the classes unorderedLinkedList

1052 | Chapter 18: Linked Lists

newNode->1link = first; //insert newNode before first

first = newNode; //make first point to the
//actual first node

count++; //increment count

if (last == NULL) //if the list was empty, newNode is also

//the last node in the list
last = newNode;
}//end insertFirst

Insert the Last Node

The definition of the member function insertLast is similar to the deﬁni@x
member function insertFirst. Here, we insert the new node ‘t lagt

the function insertLast is: Sa

template <class Type>

void unorderedLlnkedLlst<Typ e 'n ,S;%%Ztem)

{ &
nodeType<Typ§J\]neﬁl& //po:.g

eT Ty[f)}7 r

% w nod eate the new node
P¥ de- >1n /store the new item in the node
newNode- >ll //set the link field of newNode

//to NULL

e new node

if (first == NULL) //if the list is empty, newNode is
//both the first and last node
{
first = newNode;
last = newNode;
count++; //increment count

}

else //the list is not empty, insert newNode after last
{
last—>1ink = newNode; //insert newNode after last
last = newNode; //make last point to the actual
//last node in the list
count++; //increment count

}
}//end insertlast

DELETE A NODE

'S

eftially,

Next, we discuss the implementation of the member function deleteNode,
which deletes a node from the list with a given info. We need to consider several

cases:

Case 1: The list is empty.

Case 2: The first node is the node with the given info. In this case, we need to adjust

the pointer first.

Unordered Linked Lists | 1055

values of first and last. The link field of the previous node—that is, 17—changes.
After deletion, the node with info 17 contains the address of the node with 24.)

list

}-*H-ﬁ-w

FIGURE 18-26 1ist after deleting 37

coMV

Case 3b: The node to be deleted is the last nqde "esa\
Consider the list shown in Figur6 W\Sl& at th%nﬁ%)g dis 54.

he!eyiormm

FIGURE 18-27 1ist before deleting 54

After deleting 54, the node with info 24 becomes the last node. Therefore, the
deletion of 54 requires us to change the value of the pointer last. After deleting 54,
last contains the address of the node with info 24. Also, count is decremented
by 1. Figure 18-28 shows the resulting list.

list

-"-"E-F-W

FIGURE 18-28 1ist after deleting 54

Case 4: The node to be deleted is not in the list. In this case, the list requires no
adjustment. We simply output an error message, indicating that the item to be
deleted is not in the list.

1062 | Chapter 18: Linked Lists

Suppose that 10 is to be inserted. After inserting 10 in the list, the node with info 10
becomes the first node of 1ist. This requires us to change the value of first. Also,
count is incremented by 1. Figure 18-32 shows the resulting list.

= -

FIGURE 18-32 1ist after inserting 10 \ CO
Case 3: The list is not empty, and the ite ﬁ@s‘;@éarge t\g first item in
h1 c %

the list. As indicated pre as tw,

Case 3a: The ifem 'n& arger thﬁ?;“ m n the list; that is, it goes at
the

eMist. Conside in Figure 18-33.

‘?‘é\“@p age >

list

[“-ﬁ-w
]

FIGURE 18-33 1ist before inserting 65

Suppose that we want to insert 65 in the list. After inserting 65, the resulting list is as

shown in Figure 18-34.

list

rrlmm

FIGURE 18-34 1ist after inserting 65

1072 | Chapter 18: Linked Lists

Doubly Linked Lists

A doubly linked list is a linked list in which every node has a next pointer and a back
pointer. In other words, every node contains the address of the next node (except the last
node), and every node contains the address of the previous node (except the first node)
(see Figure 18-39).

== - |
0. uk

FIGURE 18-39 Doubly linked list 5

A doubly linked list can be Y@@“e\vher d1rect10 at 1 3%1 traverse the list

starting at the ﬁrst n pofnter to t iven, we can traverse the list

starting at ‘ }
A@ g he typm?la- oubly linked list are:
the lis

Initialize

Destroy the list.

Determine whether the list is empty.
Search the list for a given item.
Retrieve the first element of the list.
Retrieve the last element of the list.
Insert an item in the list.

Delete an item from the list.

Find the length of the list.

Print the list.

11. Make a copy of the doubly linked list.

A BN i

—_
S

Next, we describe these operations for an ordered doubly linked list. The following class
defines a doubly linked list as an ADT.

//Definition of the node
template <class Type>
struct nodeType
{

Type info;

nodeType<Type> *next;

nodeType<Type> *back;
};

Doubly Linked Lists | 1073

template <class Type>
class doublyLinkedList
{
public:
const doublyLinkedList<Type>& operator=

(const doublyLinkedList<Type> &);
//Overload the assignment operator.

void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = O0;

bool isEmptyList() const u
//Function to determine whether the list is empty O
//Postcondition: Returns true if the list 1s

// otherwise returns faées
void destroy(); ﬂ
//Function to delete m odes fromgth %
//Postcondition @ LL; lE &L t =0;
astie
P on to o g j conta:l.ned in each node.
onst;

void revers

//Function to output the info contained in each node
//in reverse order.

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

Type front () const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the first
// element of the list is returned.

Type back () const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in
// the list, otherwise returns false.

Doubly Linked Lists | 1075

of the functions copyList, the copy constructor, overloading the assignment operator,
and the destructor are left as exercises for you. (See Programming Exercise 11 at the end
of this chapter.) Moreover, the function copyList is used only to implement the copy
constructor and overload the assignment operator.

Default Constructor

The default constructor initializes the doubly linked list to an empty state. It sets first
and last to NULL and count to 0.

template <class Type>
doublyLinkedList<Type>::doublyLinkedList ()
{

first= NULL;

last = NULL;

| count = 0; Notesa

i sEmptylL 6h
his OFES!@“ rue 1f the lidt s,&_&— Otherwise, it returns false. The list is

1nt%;?i
template <class Wype>

bool doublyLinkedList<Type>::isEmptyList () const
{

}

return (first == NULL);

Destroy the List

This operation deletes all of the nodes in the list, leaving the list in an empty state. We
traverse the list starting at the first node and then delete each node. Furthermore, count
is set to 0.

template <class Type>
void doublyLinkedList<Type>::destroy ()

{
nodeType<Type> *temp; //pointer to delete the node

while (first != NULL)

{
temp = first;
first = first->next;
delete temp;

}

last = NULL;
count = 0;

1086

PLe

| Chapter 18: Linked Lists

//Postcondition: videoTitle = title; movieStarl = starl;

// movieStar2 = star2; movieProducer = producer;
// movieDirector = director;

// movieProductionCo = productionCo;

// copiesInStock = setInStock;

int getNoOfCopiesInStock () const;
//Function to check the number of copies in stock.
//Postcondition: The value of copiesInStock is returned.

void checkOut () ;
//Function to rent a video.
//Postcondition: The number of copies in stock is CO

// decremented by one. \
//Function to check in a v e f Z
/ / Postcondltlon f cop:.es { 18

n' ed by _on
vo:L ‘@\Ne () const ﬁ
on to S of a movie.

void print! st;
//Functl n to print the details of a video.
//Postcondition: The title of the movie, stars,
// director, and so on are displayed
// on the screen.

void checkIn();

bool checkTitle(string title);
//Function to check whether the title is the same as the
//title of the video.
//Postcondition: Returns the value true if the title
// is the same as the title of the video;
// false otherwise.

void updateInStock (int num);
//Function to increment the number of copies in stock by
//adding the value of the parameter num.
//Postcondition: copiesInStock = copiesInStock + num;

void setCopiesInStock (int num) ;
//Function to set the number of copies in stock.
//Postcondition: copiesInStock = num;

string getTitle () const;
//Function to return the title of the video.
//Postcondition: The title of the video is returned.

videoType (string title "" string starl = "",
string star2 = "", string producer = "",

B\

1094 | Chapter 18: Linked Lists

Now:
current—->info

refers to the info part of the node. Suppose that we want to know whether the title
of the video stored in this node is the same as the title specified by the variable
title. The expression:

current->info.checkTitle (title)

is true if the title of the video stored in this node is the same as the title specified by the
parameter title, and false otherwise. (Note that the member function checkT1“
is a value-returning function. See its declaration in the class videoType O

As another example, suppose that we want to set coples @- % node to 10.
Because copiesInStock is a private member {I@ essed djsectly.
Therefore, the statement: 2
current—>info.copies“t® @

\Nn 116&1‘ e have to use the member

is incorrect &3 erate a co
&l plesInSt foll

urrent >1nfo @InStock(lO) 5

Now that we know how to access a member variable of a video stored in a node, let
us describe the algorithm to search the video list.

while (not found)
if the title of the current video is the same as the desired
title, stop the search
else
check the next node

The following function definition performs the desired search.

void videoListType: :searchVideolList (string title, bool& found,
nodeType<videoType>* ¤t) const

{
found = false; //set found to false

current = first; //set current to point to the first node
//in the list

while (current != NULL && !found) //search the list
if (current->info.checkTitle(title)) //the item is found
found = true;
else
current = current->link; //advance current to
//the next node
}//end searchVideolist

1098 | Chapter 18: Linked Lists

reatevVideoList

displayMenu

list of videos owned by the video store. The data in the input file is in the following
form:

video title (that is, the name of the movie)
movie starl

movie star2

movie producer

movie director

movie production co.

number of copies

We will write a function, createvideoList, to read t \@ the input ﬁle

and create the list of videos. We will also wrjte SplayM to show

the different choices—such as check 1 \'ﬁ ec out a ?Zat the user
ain is:

c
can make. The algonth @m

1. Open tﬁ

1le does not ﬁ‘ program.
P ﬁ areate d@ a@ eatevideolist).

Show th

4. While not done
Perform various operations.

playMenu).

Opening the input file is straightforward. Let us describe Steps 2 and 3, which
are accomplished by writing two separate functions: createvideoList and
displayMenu.

This function reads the data from the input file and creates a linked list of videos.
Because the data will be read from a file and the input file was opened in the function
main, we pass the input file pointer to this function. We also pass the video list pointer,
declared in the function main, to this function. Both parameters are reference
parameters. Next, we read the data for each video and then insert the video in the
list. The general algorithm is:

a. Read the data and store it in a video object.

b. Insert the video in the list.

c. Repeat steps a and b for each video’s data in the file.

This function informs the user what to do. It contains the following output statements:
Select one of the following:

1. To check whether the store carries a particular video

2. To check out a video

Programming Example: Video Store | 1101

//process the requests

while (choice != 9)
{
switch (choice)
{
case 1:

cout << "Enter the title: ";
getline (cin, title);

cout << endl;

if (videolList.videoSearch (title))

cout << "The store carries " << title
<< endl;

cout << "The store does not a'\e S
<< title << en " g
break; 0

R (ter the O-‘
‘?‘e\'\%\%; we

if (videoList.isVideoAvailable(title))

else

{
videoList.videoCheckOut (title) ;
cout << "Enjoy your movie: "
<< title << endl;
)
else

cout << "Currently " << title
<< " is out of stock." << endl;

}
else
cout << "The store does not carry "
<< title << endl;
break;
case 3:

cout << "Enter the title: ";
getline (cin, title);
cout << endl;

if (videoList.videoSearch(title))
{
videoList.videoCheckIn (title);
cout << "Thanks for returning "
<< title << endl;

1102 | Chapter 18: Linked Lists

else
cout << "The store does not carry "
<< title << endl;
break;

case 4:
cout << "Enter the title: ";
getline (cin, title):
cout << endl;

if (videoList.videoSearch (title))
{
if (videoList.isVideoAvailable (title)) CO

cout << title << " is current e
<< "stock." << endl

“Omﬂ g‘@@’l

\,\éWut << "Ti:ll %&ndl not carry "
PreVioage™

videoList.videoPrintTitle () ;
break;

case 6:
videolList.print () ;
break;

default:
cout << "Invalid selection.” << endl;
}//end switch

displayMenu () ; //display menu

cout << "Enter your choice: ";
cin >> choice; //get the next request
cin.get (ch);
cout << endl;
}//end while

return 0;

Kk

1116 | Chapter 19: Stacks and Queues

This chapter discusses two very useful data structures, stacks and queues. Both stacks and
queues have numerous applications in computer science.

Stacks

Suppose that you have a program with several functions. To be specific, suppose that you
have functions A, B, C, and D in your program. Now suppose that function A calls
function B, function B calls function C, and function C calls function D. When function
D terminates, control goes back to function C; when function C terminates, control goes
back to function B; and when function B terminates, control goes back to function
During program execution, how do you think the computer keeps track of the fuﬁ
calls? What about recursive functions? How does the computer kee eofsthe
recursive calls? In Chapter 18, we designed a recursive func ' 1;'9; inked list
backward. What if you want to write a nonrecursj o pnnt a linked list
backward?

This section discusses the s@ alled the st Whl h%eaomputer uses to

implement fun\gtlon also se ert recursive algorithms into

nonrecursnﬂ S, espec1ally re 536‘ hms that are not tail recursive. Stacks
s appli

1cat10ns lence. After developing the tools necessary to
ent a stack, e some applications of stacks.

A stack is a list of homogeneous elements in which the addition and deletion of elements
occur only at one end, called the top of the stack. For example, in a cafeteria, the second
tray in a stack of trays can be removed only if the first tray has been removed. For another
example, to get to your favorite computer science book, which is underneath your math
and history books, you must first remove the math and history books. After removing
these books, the computer science book becomes the top book—that is, the top element
of the stack. Figure 19-1 shows some examples of stacks.

Stack of Stack of
boxes books

Stack of
Stack of trays
coins
. English

FIGURE 19-1 Various types of stacks

1120 | Chapter 19: Stacks and Queues

Implementation of Stacks as Arrays

Because all of the elements of a stack are of the same type, you can use an array to
implement a stack. The first element of the stack can be put in the first array slot, the
second element of the stack in the second array slot, and so on. The top of the stack is the
index of the last element added to the stack.

In this implementation of a stack, stack elements are stored in an array, and an array is a
random access data structure; that is, you can directly access any element of the array.
However, by definition, a stack is a data structure in which the elements are accessed
(popped or pushed) at only one end—that is, a Last In First Out data structure. Thu K
stack element is accessed only through the top, not through the bottom me“&

feature of a stack is extremely important and must be recognlzed‘
1

To keep track of the top position of the array, we are another variable

called stackTop. 9

The following class, st m ements the &tlo % ¢ abstract class
stackADT. By,usmg Tﬂo ﬁ Ve can illy e arrays, so we will leave it
for the u q the size of th & the stack size). We assume that the
@]&@(ze is 100. Be S stackType has a pointer member variable
(the pdinter to the e stack elements), we must overload the assignment
operator and includd the copy constructor and destructor. Moreover, we give a generic
definition of the stack. Depending on the specific application, we can pass the stack
element type when we declare a stack object.

template <class Type>
class stackType: public stackADT<Type>
{
public:
const stackType<Type>& operator=(const stackType<Type>&);
//Overload the assignment operator.

void initializeStack();
//Function to initialize the stack to an empty state.
//Postcondition: stackTop = 0;

bool isEmptyStack() const;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty,
// otherwise returns false.

bool isFullStack() const;
//Function to determine whether the stack is full.
//Postcondition: Returns true if the stack is full,
// otherwise returns false.

void push(const Type& newltem);
//Function to add newlItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem
is added to the top of the stack.

Implementation of Stacks as Arrays | 1125

31

[2] stack
g © lements u\(

FIGURE 19-8 Stqck be{rNUSﬁ(0
Esurx newlItem 11? % push operation, the stack is as shown in Figure 19-9.

[99]

stack

FIGURE 19-9 Stack after pushing v

stack

FIGURE 19- 1§;ack pro&u g 3§h
@@eo Operﬁiéﬁgls :

Implementation of Stacks as Arrays | 1127

E Eg elsefnaecnkts C O u\(
BN o c-
S

own in Figure 19-11.

B o

FIGURE 19-11 Stack after popping D

PROBLEM
ANALYSIS
AND
ALGORITHM
DESIGN

Programming Example: Highest GPA | 1135

Output The highest GPA and all of the names associated with the highest GPA.
For example, for the above data, the highest GPA is 3.9, and the students
with that GPA are Kathy and David.

We read the first GPA and the name of the student. Because this data is the first item
read, it is the highest GPA so far. Next, we read the second GPA and the name of the
student. We then compare this (second) GPA with the highest GPA so far. Three

cases arise:

1. The new GPA is greater than the highest GPA so far. In this case, we:

a. Update the value of the highest GPA so far. L'dco
b. \et ts

Initialize the stack—that is, remove the na
from the stack.

c. Save the name of the s nN he e (@%’L
the stack. Q i ;&‘

2. Thesn W 1&&3 to the g? @

é of the new f}({&t‘ tack.

e new, the highest GPA so far. In this case,
we disca of the student having this grade.

We then read the next GPA and the name of the student and repeat Steps 1 through 3.
We continue this process until we reach the end of the input file.

r. In this case, we

From this discussion, it is clear that we need the following variables:

double GPA; //variable to hold the current GPA
double highestGPA; //variable to hold the highest GPA
string name; //variable to hold the name of the student

stackType<string> stack(100); //object to implement the stack
The preceding discussion translates into the following algorithm:

Declare the variables and initialize stack.
Open the input file.

If the input file does not exist, exit the program.

= B =

Set the output of the floating-point numbers to a fixed decimal
format with a decimal point and trailing zeroes. Also, set the
precision to two decimal places.

Read the GPA and the student name.
highestGPA = GPA;

o o

Programming Example: Highest GPA

infile.open ("HighestGPAData.txt");

if (!infile)

{

}

cout << "The input file does not "

<< "exist. Program terminates!"

<< endl;
return 1;

cout << fixed << showpoint;
cout << setprecision(2);

infile >> GPA >> name;

highestGPA = GPA;

wh:Lle (infile) NO

‘ Q’A)

P (e\li‘\séack & ze,&l:l,

sFullStack())
tack push (name) ;

highestGPA = GPA;
}
else if (GPA == highestGPA)
if (!stack.isFullStack())
stack.push (name) ;
else
{

cout << "Stack overflows. "

<< "Program terminates!"

<< endl;
return 1; //exit program
}
infile >> GPA >> name;
}
cout << "Highest GPA = " << highestGPA

<< endl;

cout << "The students holding the "

<< "highest GPA are:" << endl;

while (!stack.isEmptyStack())

{

cout << stack.top() << endl;
stack.pop () s

//Step 2

//Step 3

//Step 4
//Step 4

QO

65 2

/Step 7.1
//Step 7.1.1

//Step 7.1.2

//Step 7.1.3

//Step 7.2

//Step 7.3

//Step 8

//Step 9

1137

uk

1142 | Chapter 19: Stacks and Queues

{
return (stackTop == NULL) ;

} //end isEmptyStack

template <class Type>
bool linkedStackType<Type>:: isFullStack() const
{

return false;
} //end isFullStack

Recall that in the linked implementation of stacks, the function isFullStack does not
apply because, logically, the stack is never full. However, you must provide its definiti
because it is included as an abstract function in the parent class stackADT. V

Initialize Stack e

The operation initializeStack re1n1t1al “,eo an e Because the
stack may contain some elements a hnke 3 a stack, we
must deallocate the me he staéel tackTop to NULL.

The deﬁn1t1on§s ctidn 1s l
e e)

edStac initializeStack()
nodeType<Type> *temp; //pointer to delete the node

while (stackTop != NULL) //while there are elements in
//the stack

{
temp = stackTop; //set temp to point to the

//current node
stackTop = stackTop->link; //advance stackTop to the
//next node
delete temp; //deallocate memory occupied by temp

}
} //end initializeStack

Next, we consider the push, top, and pop operations. From Figure 19-12(b), it is clear
that the newElement will be added (in the case of push) at the beginning of the linked
list pointed to by stackTop. In the case of pop, the node pointed to by stackTop will
be removed. In both cases, the value of the pointer stackTop is updated. The operation
top returns the info of the node that stackTop is pointing to.

Push

Consider the stack shown in Figure 19-13.

1148 | Chapter 19: Stacks and Queues

if (this != gotherStack) //avoid self-copy
copyStack (otherStack) ;

return * this;
}//end operator=

The definition of a stack and the functions to implement the stack operations discussed
previously are generic. Also, as in the case of an array representation of a stack, in the
linked representation of a stack, we must put the definition of the stack and the functions
to implement the stack operations together in a (header) file. A client’s program can
include this header file via the include statement.

Example 19-3 illustrates how a linkedStack object is used in a pro rarrco -u

We assume that the definiti Iﬁ\a&nkedSt "[ﬁ qunctlons to
implement the stac l{ luded in g ﬁ[\ inkedsStack.h".
of a linked stack

ega
//This ﬂ various 1%‘
é <iostr age
nclude "llnkep>

using namespace std;

void testCopy(linkedStackType<int> OStack):;

int main()

{
linkedStackType<int> stack;
linkedStackType<int> otherStack;
linkedStackType<int> newStack;

//Add elements into stack
stack.push(34);
stack.push(43);
stack.push(27);

//Use the assignment operator to copy the elements
//of stack into newStack
newStack = stack;

cout << "After the assignment operator, newStack: "
<< endl;

//Output the elements of newStack
while (!newStack.isEmptyStack())

{
cout << newStack.top() << endl;

newStack.pop () ;

Application of Stacks: Postfix Expressions Calculator | 1151

template <class Type>
void linkedStackType<Type>::push(const Type& newElement)
{

}

unorderedLinkedList<Type>::insertFirst (newElement) ;

template <class Type>
Type linkedStackType<Type>::top() const
{

return unorderedLinkedList<Type>::front();
}

template <class Type>
void linkedStackType<Type>: :pop () K

: !
nodeType<Type> * temp; ‘CO *
o e

| W Y off! 1 O 13

O
I@én)n of ﬁgﬂs& Stfix Expressions
éylculator

The usual notation for writing arithmetic expressions (the notation we learned in elemen-
tary school) is called infix notation, in which the operator is written between the operands.
For example, in the expression a + b, the operator + is between the operands a and b. In
infix notation, the operators have precedence. That is, we must evaluate expressions from
left to right, and multiplication and division have higher precedence than do addition and
subtraction. If we want to evaluate the expression in a different order, we must include
parentheses. For example, in the expression a + b * ¢, we first evaluate * using the operands
b and ¢, and then we evaluate + using the operand a and the result of b * c.

In the early 1920s, the Polish mathematician Jan Lukasiewicz discovered that if operators
were written before the operands (prefix or Polish notation; for example, + a b), the
parentheses could be omitted. In the late 1950s, the Australian philosopher and early
computer scientist Charles L. Hamblin proposed a scheme in which the operators follow
the operands (postfix operators), resulting in the Reverse Polish notation. This has the
advantage that the operators appear in the order required for computation.

For example, the expression:
a+b*¢

in a postfix expression is:
abc*+

The following example shows various infix expressions and their equivalent postfix
expressions.

1152 | Chapter 19: Stacks and Queues

EXAMPLE 19-4

Infix Expression Equivalent Postfix Expression
a+b ab+

a+b*c abc*+

a*b+c ab*c+

(@a+b)*c ab+c*

(@a-b)*(c+a ab—cd+*
(@a+b)*(c—dle+f ab+cdel/—*f+

A~ UK
bU‘

Shortly after Lukasiewicz’s discovery, it was realized hgﬁ@l %n had important
applications in computer science. In fact, W ﬁrst e arithmetic

expressions into some form of postf atign then tran expressmn
into machine code. Postﬁxv be ey, llowing algorithm:
Scan the ¢ to rig gperator is found, back up to get the

? ﬁ‘@operands p h}Xt}ﬁe)pemtmn and continue.
nsider the follo xpressmn

63+2%=

Let us evaluate this expression using a stack and the previous algorithm. Figure 19-17
shows how this expression gets evaluated.

Expression: 6 3 + 2 * =

+
Push Push oy Epé "o
6 3 SIS Push 9
into into tW;CE 3- izio
stack stack 821 ; 6: stack
(a) (b) ©) (d
. =
p opl * op2 Pop
Push s?:gck = 18 stack
? twice Push 18 and
into op2 = 2: into print:
stack . = 92 stack 18
(e) () @) "

FIGURE 19-17 Evaluating the postfix expression: 6 3 + 2 * =

if n

{

}

else

} //end

Application of Stacks: Postfix Expressions Calculator

o error was found, then

read next ch;

output ch;
Discard the expression
while

1155

From this algorithm, it follows that this method has five parameters—one to access the input file,
one to access the output file, one to access the stack, one to pass a character of the expression,
and one to indicate whether there is an error in the expression. The definition of this function K

void eva

double num;

while (ch !=>:I<i) ,‘(O

pre

luateExpression (ifstream& inpF, ofstreamé& outF, CO .

stackType<double>§& stack, \e
.

charé& ch, boolg 1sEé§

S
X\' " age

outF << num << " ";

if (!stack.lsFullStack())
stack.push (num) ;

else
{
cout << "Stack overflow. "
<< "Program terminates!" << endl;
exit (0); //terminate the program
}
break;
default:

evaluateOpr (outF, stack, ch,
}//end switch

if (isExpOk) //if no error
{

inpF >> ch;

outF << ch;

if (ch != "#")
outF << " ";
}
else
discardExp (inpF, outF, ch):;

} //end while (!'= '=")

1sExpOk) ;

Queues | 1171

Because the array containing the queue is circular, we can use the following statement to
advance queueRear (queueFront) to the next array position.

queueRear = (queueRear + 1) % maxQueueSize;

If queueRear < maxQueueSize - 1, then queueRear + 1 <= maxQueueSize - 1, so
(queueRear + 1) % maxQueueSize = queueRear + 1. If queueRear == maxQueue-
Size - 1 (that is, queueRear points to the last array position), queueRear + 1 ==
maxQueueSize, so (queueRear + 1) % maxQueueSize = 0. In this case, queueRear
will be set to 0, which is the first array position.

This queue design seems to work well. Before we write the algorithms to implement IK
queue operations, consider the following two cases.

O.
Case 1: Suppose that after certain operations, the array containg \@uﬁg is as shown
in Figure 19-32(a). Notesna 2

0 981199
ueueFront queueFrontm queueRearm
(a) Before de leteQueue() ; (b) After deleteQueue() ;

FIGURE 19-32 Queue before and after the delete operation

After the operation deleteQueue () ;, the resulting array is as shown in Figure 19-32(b).

Case 2: Let us now consider the queue shown in Figure 19-33(a).

0 971198199 0 971[98][99
queue queue elements
elements
queueFrontE queueRear queueFrontm queueRearE
(a) Before addQueue (Queue, "Z") ; (b) After addQueue(Queue, “Z%);

FIGURE 19-33 Queue before and after the add operation

After the operation addQueue (Queue,'Z');, the resulting array is as shown in
Figure 19-33(b).

1178 | Chapter 19: Stacks and Queues

void initializeQueue();
//Function to initialize the queue to an empty state.
//Postcondition: queueFront = NULL; queueRear = NULL

Type front() const;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first
// element of the queue is returned.

Type back() const;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.

//Postcondition: If the queue is empty, the programco
.

// terminates; otherwise, the 1
// element of the queue i é *
void addQueue (const Type& queu
//Function to add queueE ﬁ queu
//Precondition: @ xikts and is l‘é
//Postcond:l.tl ({ is ¢ ge lement
added 2 x%: Q
glst%ueue(

Pv unctio flrst element of the queue.
//Precond queue exists and is not empty.
//Postcon t:Lon e queue is changed and the first
// element is removed from the queue.

linkedQueueType () ;
//Default constructor

linkedQueueType (const linkedQueueType<Type>& otherQueue);
//Copy constructor

~linkedQueueType () ;

//Destructor
private:
nodeType<Type> *queueFront; //pointer to the front of
//the queue
nodeType<Type> *queueRear; //pointer to the rear of
//the queue

}s

Uk

The UML class diagram of the class linkedQueueType is left as an exercise for you.

(See Exercise 29 at the end of this chapter.)

Next, we write the definitions of the functions of the class linkedQueueType.

EMPTY AND FULL QUEUE

The queue is empty if queueFront is NULL. Memory to store the queue elements
is allocated dynamically. Therefore, the queue is never full, so the function to implement

Queues | 1179

the isFullQueue operation returns the value false. (The queue is full only if we run
out of memory.)

template <class Type>
bool linkedQueueType<Type>::isEmptyQueue () const

{
return (queueFront == NULL);
} //end

template <class Type>
bool linkedQueueType<Type>::isFullQueue() const

{
return false;

} //end isFullQueue ¥
0] A8}

Note that in reality, in the linked 1mplementat10n of queue lﬁ\'@)ﬁ isFullQueue
does not apply because, logically, the queue is g you st provide its

definition because it is included as an ahgtra 1r1 the {3 queueADT.

INITIALIZE QUEUE W “(O
The ope ﬂ M1 zeQueue 1 % eue to an empty state. The queue is
iée are no ele cue. Note that the constructor initializes the

q8eue when the ¢ 15 declared So this operation must remove all of the
elements, if any, from the queue. Therefore, this operation traverses the list containing

the queue starting at the first node, and it deallocates the memory occupied by the queue
elements. The definition of this function is:

template <class Type>
void linkedQueueType<Type>::initializeQueue ()
{

nodeType<Type> *temp;

while (queueFront!= NULL) //while there are elements left
//in the queue
{
temp = queueFront; //set temp to point to the
//current node
queueFront = queueFront->1link; //advance first to
//the next node
delete temp; //deallocate memory occupied by temp
}

queueRear = NULL; //set rear to NULL
} //end initializeQueue

addQueue, front, back, AND deleteQueue OPERATIONS

The addQueue operation adds a new element at the end of the queue. To implement this
operation, we access the pointer queueRear.

1188 | Chapter 19: Stacks and Queues

customerType: :customerType (int customerN, int arrvTime,
int wTime, int tTime)
{

setCustomerInfo (customerN, arrvTime, wTime, tTime);

}

The function getWaitingTime returns the current waiting time. The definition of the
function getWaitingTime is:

int customerType::getWaitingTime () const

{

return waitingTime;
} Uk

The function incrementWaitingTime increments the value ‘f alG e, Its

definition is: 5

void customerType: :incrementWaitinﬁ ‘_e

{ 29
waitingTime++; Om .‘ l

) i\

The éﬂ&leﬂ\l the fun% 2-e%alt1ngT1me getArrivalTime,
QPF¥ c g‘g merNumber are left as an exercise for you.

1onT¢
Server

At any given time unit, the server is either busy serving a customer or is free. We use
a string variable to set the status of the server. Every server has a timer and,
because the program might need to know which customer is served by which server,
the server also stores the information of the customer being served. Thus, three
member variables are associated with a server: the status, the transactionTime,
and the currentCustomer. Some of the basic operations that must be performed on
a server are as follows: check whether the server is free; set the server as free; set the
server as busy; set the transaction time (that is, how long it takes to serve the
customer); return the remaining transaction time (to determine whether the server
should be set to free); if the server is busy after each time unit, decrement the
transaction time by one time unit; and so on. The following class, serverType,
implements the server as an ADT.

class serverType
{
public:
serverType () ;
//Default constructor
//Sets the values of the instance variables to their default

//values.
//Postcondition: currentCustomer is initialized by its
// default constructor; status = "free"; and

// the transaction time is initialized to O.

Application of Queues: Simulation

bool isFree() const;
//Function to determine if the server is free.
//Postcondition: Returns true if the server is free,
// otherwise returns false.

void setBusy():;
//Function to set the status of the server to busy.
//Postcondition: status = "busy";

void setFree():;
//Function to set the status of the server to "free".

//Postcondition: status = "free";

void setTransactionTime (int t);
//Function to set the transaction time accord
//parameter t.

//Postcondition: transactlon'rﬁ

//Function to_s

void setTransactionTi
//the st { 1me of

act:L tlﬁ'%co ‘39' to
L@a tomer.

e
(nsaction g% tCus tomer.transactionTime;
a

int getRema ctionTime () const;
//Function to return the remaining transaction time.

| 1189

uk

//Postcondition: The value of transactionTime is returned.

void decreaseTransactionTime () ;
//Function to decrease the transactionTime by one unit.
//Postcondition: transactionTime--

void setCurrentCustomer (customerType cCustomer) ;
//Function to set the info of the current customer
//according to the parameter cCustomer.
//Postcondition: currentCustomer = cCustomer;

int getCurrentCustomerNumber () const;
//Function to return the customer number of the current
//customer.
//Postcondition: The value of customerNumber of the
// current customer is returned.

int getCurrentCustomerArrivalTime () const;
//Function to return the arrival time of the current

//customer.
//Postcondition: The value of arrivalTime of the current
// customer is returned.

int getCurrentCustomerWaitingTime () const;
//Function to return the current waiting time of the
//current customer.

Application of Queues: Simulation | 1197

The addQueue operation inserts the element at the end of the queue. If we perform the
deleteQueue operation followed by the addQueue operation for each element of the
queue, then eventually the front element again becomes the front element. Given that
each deleteQueue operation is followed by an addQueue operation, how do we
determine that all of the elements of the queue have been processed? We cannot use
the isEmptyQueue or isFullQueue operations on the queue, because the queue will
never be empty or full.

One solution to this problem is to create a temporary queue. Every element of the
original queue is removed, processed, and inserted into the temporary queue. When the
original queue becomes empty, all of the elements in the queue are processed. We %

then copy the elements from the temporary queue back into the ori i qie
However, this solution requires us to use extra memory space, whi el fhcant.
&ments from the

Also, if the queue is large, extra computer time is neede ta
temporary queue back into the ongmal quf“

0 anot ution.
In the second solution, befor st te‘the elem ﬁp@g e can insert
a dummy customer wit { say, he ate process, when we
arrive at the ¢ @& the wait t top the update process without

er Wlth th alt If we do not process the customer with
@N e of 1 s rémoved from the queue and, after processing all of
the elements of the e p ueue will contain no extra elements. This solution does
not require us to create a temporary queue, so we do not need extra computer time to

copy the elements back into the original queue. We will use this solution to update the
queue. Therefore, the definition of the function updateWaitingQueue is:

void waitingCustomerQueueType: :updateWaitingQueue ()

{

customerType cust;

cust.setWaitingTime (-1);
int wTime = 0;

addQueue (cust) ;

while (wTime != -1)
{
cust = front();
deleteQueue() ;

wTime = cust.getWaitingTime () ;
if (wTime == -1)

break;
cust.incrementWaitingTime () ;
addQueue (cust) ;

Application of Queues: Simulation | 1199

3. Set the free server to begin the transaction.
serverList.setServerBusy (serverID, customer, transTime);

To run the simulation, we need to know the number of customers arriving at a given
time unit and how long it takes to serve the customer. We use the Poisson distribution
from statistics, which says that the probability of y events occurring at a given time is
given by the formula:

Ne™?
P(y) =—r=0,12,...,

Y \L
in which A is the expected value that y events occur at that t lmt; on
average, a customer arrives every four minutes. Durlng perlod the
customer can arrive at any one of the four min t qual h ihood of each
of the four minutes, the expected value that rrlves 1n four minutes
is, therefore, 1 / 4 = e d etermln o the customer
actually arrives at a g m (ﬁ

Now, P S;}@h proba 111t th % curs at a given time. One of the basic

@ ss at the probability of more than one outcome
o urrmg in a shor al 1s neghglble For simplicity, we assume that only one
customer arrives at abgiven tlme unit. Thus, we use ¢ as the cutoft point to determine
whether a customer arrives at a given time unit. Suppose that, on average, a customer arrives
every four minutes. Then, A = 0.25. We can use an algorithm to generate a number between
0 and 1. If the value of the number generated is > ¢ we can assume that the customer
arrived at a particular time unit. For example, suppose that rNum is a random number such
that 0 < rNum < 1. If rNum > ¢>°, the customer arrived at the given time unit.

We now describe the function runSimulation to implement the simulation. Suppose
that we run the simulation for 100 time units and customers arrive at time units 93, 96, and
100. The average transaction time is five minutes—that is, five time units. For simplicity,
assume that we have only one server and that the server becomes free at time unit 97, and
that all customers arriving before time unit 93 have been served. When the server becomes
free at time unit 97, the customer arriving at time unit 93 starts the transaction. Because the
transaction of the customer arriving at time unit 93 starts at time unit 97 and it takes five
minutes to complete a transaction, when the simulation loop ends, the customer arriving at
time unit 93 is still at the server. Moreover, customers arriving at time units 96 and 100 are
in the queue. For simplicity, we assume that when the simulation loop ends, the customers
at the servers are considered served. The general algorithm for this function is:

1. Declare and initialize the variables, such as the simulation parameters,
customer number, clock, total and average waiting times, number of
customers arrived, number of customers served, number of customers
left in the waiting queue, number of customers left with the servers,
waitingCustomersQueue, and a list of servers.

1202 |

Chapter 19: Stacks and Queues

Customer number 3 arrived at time unit 9
Customer number 4 arrived at time unit

From server number 2 customer
departed at time unit 13
From server number 1 customer
departed at time unit 14
From server number 2 customer
departed at time unit 18

number 2

number 3

number 4

Customer number 5 arrived at time unit

From server number 1 customer
departed at time unit 26

number 5

Customer number 6 arrived at time unit
Customer number 7 arrived at time unit
Customer number 8 arrived at time unit

From server number 1 customer
departed at time unit 42
From server number 2 customer
departed at time unit 43

Customer number 9 arrived at time
Customer number 10 arrived at
From server number 1

departed at ti e%}é
From serverdl cysktomer
ithe unlt 48
E:? ll arri

number
server nu omer
departed at tlme unit 52

Customer number 13 arrived at
Customer number 14 arrived at
From server number 2 customer
departed at time unit 54
Customer number 15 arrived at
From server number 1 customer
departed at time unit 57
From server number 2 customer
departed at time unit 59
Customer number 16 arrived at
From server number 1 customer
departed at time unit 62
From server number 2 customer
departed at time unit 64
Customer number 17 arrived at
From server number 1 customer
departed at time unit 67
From server number 2 customer
departed at time unit 71
Customer number 18 arrived at
From server number 1 customer
departed at time unit 76
Customer number 19 arrived at
From server number 1 customer
departed at time unit 83
Customer number 20 arrived at
Customer number 21 arrived at
From server number 1 customer
departed at time unit 95

number 6

number 7

rlﬁZ‘
unit

me unit
number 10

time unit
time unit
number 11

time unit
number 12

number 13

time unit
number 14

number 15

time unit
number 16

number 17

time unit
number 18

time unit
number 19

time unit
time unit
number 20

12

21

37
38
41

ﬁ@‘

49
51

52
53

54

59

66

71

78

90
92

ca\eCY"
of ﬁ‘ﬂ

uk

1206 | Chapter 19: Stacks and Queues

for (int 1 = 0; i < 7; i++)
sl.push(list[i]);

mystery(sl, s2);

while (!s2.isEmptyStack())

{
cout << s2.top() << " ";

s2.pop () ;
}
cout << endl;

| K
template <class type> \ CO u

void mystery (stackType<type>& s, stackType<type>

{ while (!s.isEmptyStack()) 5
: pty 0‘6
zgz;*z)‘? t{“b\‘(\ \\\,(of 1392

}
e out w&program?
#1nc1ude <1o§
#include <string>
#include "myStack.h"
using namespace std;

void mystery(stackType<int>& s, stackType<int>& t);

int main()

{
int list[] = {5, 10, 15, 20, 25};

stackType<int> sl;
stackType<int> s2;

for (int i = 0; i < 5; i++)
sl.push(list[i]);

mystery(sl, s2);

while (!s2.isEmptyStack())

{
cout << s2.top() << " ";

s2.pop();
}

cout << endl;

1218 | Appendix B: Operator Precedence

| Left to right
&& Left to right
|| Left to right
23 Right to left
= += -= *= J= %= Right to left

<<= >>= &= |= A= Right to left \)\(
Q-

throw ig

Sa\éef‘t to right
1392

, (the sequencing operator)

preV!

This page intentionally left blank

1228 | Appendix E: Additional C++ Topics

We use the weight of each bit to find the equivalent decimal number. For each bit, we
multiply the bit by 2 to the power of its weight and then we add all of the numbers. For
the above binary number, the equivalent decimal number is:

IX2°40x224+0x2"+1x224+1x2240x214+1x2°
=644+0+0+8+4+0+1
=77.

Converting a Binary Number (Base 2) to Octal (Base 8) \(
and Hexadecimal (Base 16)

.

The previous sections described how to convert a binary n al number
(base 2). Even though the language of a compuyter_i eéa nary umber is too
long, then it will be hard to manipulate i@ 0 effec with binary
numbers, two more numb sﬁmal base 8) and se 16), are of
interest to com.puter s %(

9 3, 4,5, 6, and 7. The digits in the

The di number s steg3
r?cfelnumbei;ﬁgé 7.5.6,7.8.9,A,B,C, D, E, and . So A in
h

decimal is 10 1 in hexadecimal is 11 in decimal, and so on.

The algorithm to convert a binary number into an equivalent number in octal (or
hexadecimal) is quite simple. Before we describe the method to do so, let us review
some notations. Suppose a, represents the number a to the base b. For example, 2A044
means 2A0 to the base 16, and 63g means 63 to the base 8.

First we describe how to convert a binary number into an equivalent octal number and
vice versa. Table E-1 describes the first eight octal numbers.

TABLE E-1 Binary representation of first eight octal numbers

000 0 100 4

001 1 101 5
010 2 110 6
011 3 111 7

Consider the binary number 1101100010101. To find the equivalent octal number,
starting from right to left we consider three digits at a time and write their octal
representation. Note that the binary number 1101100010101 has only 13 digits. So when

1254 | Appendix F: Header Files

strcpy (destStr, srcStr) destStr and The base address of
srcStr are destStr is returned;
null-terminated char srcStr is copied into
arrays destStr

strlen (str) str is a null-terminated An integer value > 0
char array specifying the length of

the str (excluding the
'\0) is return 6
HEADER FILE string

This header file—not to be confused e cst i rogrammer-
defined data type named ated % im e are a data type

string: 51ze d a e cons These are defined as follows:

E & :size @sa’g n unS|gned integer type

string: :npos The maximum value of type string: :size_type

The type string contains several functions for string manipulation. In addition to the
string functions listed in Table 8-1, the following table describes additional string functions.
In this table, we assume that strVar is a string variable and str is a string variable, a
string constant, or a character array.

getline (istreamVar, strVar); istreamVar isan input stream variable (of type
istreamor ifstream).

Characters until the newline character are input
from istreamVar and stored in strVar. (The

newline character is read but not stored into
strVar.) The value returned by this function is

usually ignored.

strVar.append(str, n) The first n characters of the character array str are
appended to strVar.

strvar.c_str() The base address of a null-terminated C-string
corresponding to the characters in strVvar.

1258 | Appendix G: Memory Size on a System and Random Number Generator

Random Number Generator

To generate a random number, you can use the C++ function rand. To use the function
rand, the program must include the header file cstdlib. The header file cstdlib also
contains the constant RAND_MAX. Typically, the value of RAND_MAX is 32767. To find
the exact value of RAND_MAX, check your system’s documentation. The function rand
generates an integer between 0 and RAND_MAX. The following program illustrates how to
use the function rand. It also prints the value of RAND_MAX:

#include <iostream> K
#include <cstdlib>

#include <iomanip>

cO-
using namespace std; Sa\e .

int main ()
{) 2
cout << fixed << e setprec1
cout << "T al RA D X << endl;
endl;

cout << umber
ﬂ andom nu and 9: "
g rand
t << "A r between 0 and 1: "
<< sta c ouble> (rand())
/ statJ.c cast<double> (RAND MAX)
<< endl;

return 0;

Sample Run:

The value of RAND MAX: 32767

A random number: 41

A random number between 0 and 9: 7

A random number between 0 and 1: 0.19330

Container Types | 1261

vector<int> intlList;

declares intList to be a vector and the component type is int. Similarly, the statement:
vector<string> stringList;

declares stringList to be a vector container and the component type is string.

DECLARING VECTOR OBJECTS

The class vector contains several constructors, including the default construc-
tor. Therefore, a vector container can be declared and initialized several ways.
Table H-1 describes how a vector container of a specific type can be declare

initialized. CO .

TABLE H-1 Various Ways to Declare and Initialize a Vigc

- §N 2 Q tes the empty vector container
vecto <§1F\% vecList; 3 vecList. (The default
P (e ge constructor is invoked.)

vector<elemType> vecList (otherVecList) ;

Creates the vector container
vecList, and initializes
vecList to the elements of the
vector otherVecList.
vecList and otherVecList
are of the same type.

Creates the vector container
vecList of size size.
vecList is initialized using the
default constructor.

vector<elemType> vecList (size);

Creates the vector container
vecList of size n. vecList is
initialized using n copies of the
element elm.

vector<elemType> vecList (n, elm);

Creates the vector container
vecList. vecList is
initialized to the elements in the
range [beg, end), thatis, all
the elements in the range

beg. . .end-1. Both beg and
end are pointers, called iterators in
STL terminology. (Later in this
appendix, we explain how iterators
are used.)

vector<elemType> vecList (beg, end) ;

1270 | Appendix H: Standard Template Library (STL)

TABLE H-5 Operations Common to All Containers (continued)

ol) Returns the number of elements currently in
) container ct.
Returns the maximum number of elements that

ct.max size . .)
= 0 can be inserted in container ct.

ctl.swap(ct2) Swaps the elements of containers ctl and c\i\(

ot.begin () Returns an iterator to the\éle@@

container ct.

Xa%r to the @er the last
ct.end() Mt into co |nﬁ‘ @

\N “ rs beg ’:Surns a pointer to the last
@io V’.\e nto container ct. This function is used
P (ge 0 process the elements of ct in reverse.

ct.rend () Reverse end. Returns a pointer to the position

: before the first element into container ct.
Inserts elem into container ct at the position
ct.insert (position, elem) specified by position. Note that here
position is an iterator.

Deletes all the elements betweenbeg. . .end-1
ct.erase (beg, end) from container ct. Both beg and end are
iterators.

ct.clear() Deletes all the elements from the container. After
: a call to this function, container ct is empty.

Operator Functions

Copies the elements of ct2 into ct1. After this
ctl = ct2; operation, the elements in both containers are the
same.

Returns true if containers ctl and ct2 are
ctl == ct2)

equal, £alse otherwise.

Returns true if containers ct1 and ct2 are not

=
ctl != ct2 equal, false otherwise.

1276 | Appendix H: Standard Template Library (STL)

copy (vecList.begin(), veclList.end(), screen); //Line 17
cout << endl; //Line 18

return 0;

}
Sample Run:

Line 4: intArray: 5 6 8 3 40 36 98 29 75

Line 8: vecList: 5 6 8 3 40 36 98 29 75

Line 12: After shifting the elements one position to the left,
intArray: 6 8 3 40 36 98 29 75 75

Line 16: After shifting the elements down by two positions, K
vecList: 5 6 5 6 8 3 40 36 98 O u
\e G

Sequence Container: deémN _%m&e 92

This section descrlbes thes erd]@1 que stands for double-
ended que rs are 1 d dyminic arrays in such a way that the
e erted at bot nds T s 2 deque can expand in either direction.

t an also e middle. Inserting elements at the beginning or the
end is fast; 1nsert1n tle n the middle, however, is time consuming because the

elements in the queue need to be shifted.

The name of the class defining the deque containers is deque. Also, the definition of the
class deque, and the functions to implement the various operations on a deque
object, are contained in the header file deque. Therefore, to use a deque container in
a program, the program must include the following statement:

#include <deque>

The class deque contains several constructors. Thus, a deque object can be initialized
in various ways when it is declared. Table H-7 describes various ways a deque object can
be declared.

TABLE H-7 Various Ways to Declare a deque Object

Creates an empty deque container
deque<elementType> deq; deq. (The default constructor is
invoked.)

Creates the deque container deq
and initializes it tothe elements
of otherDeq; deq and
otherDeq are of the same type.

deque<elementType> deq(otherDeq) ;

Container Types | 1279

copy (intDeq.begin(), intDeq.end(), screen); //Line 23
cout << endl; //Line 24

return 0;

}
Sample Run:

Line 7: intDeq: 13 75 28 35

Line 12: After adding two more elements, one at the front
and one at the back, intDeq: 0 13 75 28 35 100

Line 17: After removing the first two elements,

intDeq: 75 28 35 100
Line 22: After removing the last two elements,
intDeqg: 75 28

The statement in Line 1 declares a deque container né‘g \ent that is, all the
de

elements of intDeq are of type int. The s te clar een to be an
in Lines 3

ostream iterator initialized to the ev1 e.

through 6 use the push_ baﬁ 0 inse fou ber 75 28, and 35—
into intDeq. Th ne 8 s of 1ntDeq In the output,
see the é&t ine 7, whlch output of the statements in Lines 7

The statement in ng @'93 0 at the beginning of intDegq; the statement in Line 11
inserts 100 at the end of intDeq. The statement in Line 13 outputs the modified
intDedq.

The statements in Lines 15 and 16 use the operation pop_front to remove the first two
elements of intDeq, and the statement in Line 18 outputs the modified intDeq. The
statements in Lines 20 and 21 use the operation pop_back to remove the last two
elements of intDeq, and the statement in Line 23 outputs the modified intDeq.

Sequence Container: 1ist

This section describes the sequence container 1ist. List containers are implemented as
doubly linked lists. Thus, every element in a list points to its immediate predecessor and
immediate successor (except the first and the last elements). Recall that a linked list is not
a random access data structure, such as an array. Therefore, to access, say, the fifth
element in a list, we must first traverse the first four elements.

The name of the class containing the definition of the class list is 1ist. Also, the
definition of the class list, and the definitions of the functions to implement the
various operations on a list, are contained in the header file 1ist. Therefore, to use 1ist
in a program, the program must include the following statement:

#include <list>

1280 | Appendix H: Standard Template Library (STL)

Like other container classes, the class list also contains several constructors. Thus, a
list object can be initialized several ways when it is declared. Table H-9 shows various
ways to declare and initialize a 1ist object.

TABLE H-9 Various Ways to Declare a 1ist Object

Creates the empty llSt
container 1istCont. \(
default constr, 0

|nvo C

tes the ast container

N d initializes
. nts of
llst<elementType>_€‘§®> therLlst) erLlst 1istCont
e\N 2& and otherList are of the
(e\,\ l% same type.

g Creates the 1ist container
list<elementType> listCont (size);

list<elementType> listCont;

listCont of size size.
listCont isinitialized
using the default constructor.

Creates the 1ist container
listCont of size n.

list<elementType> listCont (n, elm); listCont is initialized
using n copies of the
element elm.

Creates the 1ist container
listCont. 1listCont is
initialized to the elements in
the range [beg, end),
that is, all the elements in
the range beg. . .end-1.
Both beg and end are
iterators.

list<elementType> listCont (beg, end):;

Table H-5 described the operations that are common to all containers, and Table H-6
described the operations that are common to all sequence containers. In addition to these
common operations, Table H-10 describes operations that are specific to a 1ist con-
tainer. The name of the function implementing the operation is shown in bold. (Suppose
that 1istCont, 1listContl, and 1istCont2 are containers of type list.)

APPENDIX |

ANSWERS TO
ODD-NUMBERED
EXERCISES

Chapter 1 cO- \)\(

1. a. false; b. false; c. true; d. false; e. false; f; false; % \me 1. true; j. false;
k. true; 1. false

Screen and printer.

3. 3
5. An operating sy, t@‘? he over of &- mputer and provides
servic E‘N? th serv1c 51 anagement, input/output activ-
'orage mana

P x e machm?j

high-level

a high-level language program is translated into machine language, whereas a

ent.

rograms are written using the binary codes, whereas in
¢ programs are closer to the natural language. For execution,

machine language need not be translated into any other language.

9. Because the computer cannot directly execute instructions written in a high-level
language, a compiler is needed to translate a program written in high-level language
into machine code.

11. Every computer directly understands its own machine language. Therefore, for the
computer to execute a program written in a high-level language, the high-level
language program must be translated into the computer’s machine language.

13. In linking, an object program is combined with other programs in the library used
in the program to create the executable code.

15. To find the weighted average of the four test scores, first you need to know each
test score and its weight. Next, you multiply each test score with its weight and
then add these numbers to get the average. Therefore:

1. Get testScorel, weightTestScorel

Get testScore2, weightTestScore2

Get testScore3, weightTestScore3

Get testScore4, weightTestScored

A

weightedAverage = testScorel * weightTestScorel +
testScore2 * weightTestScore2 +
testScore3 * weightTestScore3 +
testScored * weightTestScore4;

1301

1304 | Appendix I: Answers to Odd-Numbered Exercises

Chapter 2

1. a. false; b. false; c. false; d. true; e. true; f. false; g. true; h. true; 1. false; j. true; k. false
b,d, e
The identifiers firstName and FirstName are not the same. C++ is case
sensitive. The first letter of firstName is lowercase £, whereas the first character

of FirstName is uppercase F. So these identifiers are difterent.
7. a. 3

b. Not possible. Both of the operands of the operator % must be integers. Becauge
the second operand, w, is a floating-point value, the expression is mvahd

c. Not possible. Both of the operands of the operator % must be 1 se
the first operand, which is y + w, is a ﬂoatmg ‘.@ expression 1is

o (€S
P(é\,zxzoopage &3

a and c are valid.

13. a. 32*a+b

b. '8’

c. "Julie Nelson"

d (b*b-4*a*c) / (2* a)

e. (a+b)/c* (e* f) -g*h

f (-b+ (b*b-4*a*c))/ (2% a)
15. x = 20

y = 15

Z = 6

w=11.5

t = 4.5
17. a.0.50; b. 24.50; c. 37.6; d. 8.3; e. 10; f. 38.75
19. a and c are correct.
21. a. int numl;

int num2;
b. cout << "Enter two numbers separated by spaces." << endl;

cin >> numl >> num2;

a o

cout << "numl = " << numl << "num2 = " << num?2
<< "2 * numl - num2 = " << 2 * numl - num2 << endl;

1306 | Appendix I: Answers to Odd-Numbered Exercises

int main()

{
string firstName, lastName;
int num;
double salary;
cout << "Enter first name: ";
cin >> firstName;
cout << endl;
cout << "Enter last name: ";
cin >> lastName;
cout << endl; K

cout << "Enter a positive integer less t\ 70(‘}O

cin >> num;
cout << endl; es
salary = 392
NX’X << ng(% QXNK << lastName << endl;
endl;

CX "Wage's $"l§‘ << endl;
P(e\, uzﬁax'gg " <K<K X + Y << endl;

return 0;

Chapter 3

—_

a. true; b. true; c. false; d. false; e. true; f. true
3. a. x=37,y=86,z=0.56
b. x=37,y=32,z=86.56
c. Input failure: z = 37.0, x = 86, trying to read the . (period) into y.
5. Input failure: Trying to read A into y, which is an int variable. x = 46, y = 18, and
z = 'A". The values of y and z are unchanged.
7. iomanip
getline(cin, name);
11. a. name =" Lance Grant", age = 23
b. name="", age =23

13. #include <iostream>
#include <fstream>

using namespace std;

int main ()

{
int numl, num?2;
ifstream infile;
ostream outfile;

1310

29.

31.

33.

35.

Appendix |: Answers to Odd-Numbered Exercises

a. both

b. do ... while

c. while

d. while

In a pretest loop, the loop condition is evaluated before executing the body of the
loop. In a posttest loop, the loop condition is evaluated after executing the body of
the loop. A posttest loop executes at least once, whereas a pretest loop may not
execute at all.

int num;

do
{

FU\S

cin >> num;

cout << "Enter a number less than 20 or g\éer®@7

}f’hilf 5 s Rote
int i -0, “ ‘“ _‘ lgg'z
@\Nz == 0 && %’L O

e value =
P(els & i >
f lue + i;

37.

39.

els
value = value - i;
i=1i+1;
}
while (i <= 20);

cout << "value = " << value << endl;

The Output is: Value = 200

cin >> number;

while (number != -1)

{
total = total + number;
cin >> number;

}

cout << endl;

cout << total << endl;

a.

number = 1;
while (number <= 10)
{

cout << setw(3) << number;
number++;

Chapter 11 | 1317

9. 10, 12, 18, 21, 25, 28, 30, 71, 32, 58, 15
11. Bubble sort: 49,995,000; selection sort: 49,995,000; insertion sort: 25,007,499
13. 26
15. To use a vector object in a program, the program must include the header file
vector.
17. 13579
19. a. vector<int> secretlist;

secretList.push_back(56);

secretList.push back(28);
secretList.push _back(32); K

secretlList.push back (96) ;
secretList.push_back(75); x
c. for (unsigned int i = 0; 1 < segcr %@_ @), i++)
cout << secretLlﬂb{ 92

cout << endl; _‘ 3%
21. a. cout <\<N:L (nt() < % @1 ack() << endl;
yList.si g%

(e\lor (int i % 1st.size(); i++)
g Listi] << " ";

cout << endl

Chapter 11

1. a. false; b. false; c. true; d. true; e. true; f. true; g. false

3. checkingAccount newAcct;

newAcct.name = "Jason Miller";
newAcct.accountNum = 17328910;
newAcct.balance = 24476.38;
newAcct.interestRate = 0.025;

5. movieType newRelease;

newRelease.name = "Summer Vacation";
newRelease.director = "Tom Blair";
newRelease.producer = "Rajiv Merchant";
newRelease.yearReleased = 2005;
newRelease.copiesInStock = 34;

Chapter 12 | 1319

f. xClass::xClass ()

{
u=0;
w = 0;

}
g. x.print();

h. xClass t (20, 35.0);
5. a. int testClass::sum()

{
return x + y; K
} A8

void testClass::print () const

{

o e mecn @{e]2
testCla Weéﬁ&QmN O“ l g

preV’ pa@e 1267

testClass::testClass(int a, int b)
{

X = ay
y = b;
}

b. One possible solution. (We assume that the name of the header file containing
the definition of the class testClass is Exercise5Ch12.h.)

#include <iostream>
#include "Exercise5Chl2.h"

int main ()

{

testClass one;
testClass two (4, 5);

one.print():
two.print () ;

return 0;
}
7. a. personType student ("Buddy", "Arora");
b. student.print():;
c. student.setName ("Susan", "Gilbert");

1322 | Appendix I: Answers to Odd-Numbered Exercises

13. The members setX, print, y, and setY are protected members in class
third. The private member x of class first is hidden in class third, and
it can be accessed in class third only through the protected and public
members of class first.

15. Because the memberAccessSpecifier is not specified, it is a private inheritance.
Therefore, all of the members of the class first become private members in
class fifth.

17. a. void two::setData(int a, int b, int c¢)

| gni:;fetData(a, b) ; ‘u\(
b. x{roid two: :print () const te a\e CO
ot 222 Y s WO 92
19. In bas@ﬁ ﬁ??ﬁ\ @3 O‘ lg
P(%##ll Page

Chapter 14

1. a. false; b. false; c. false; d. true; e. true; f. true; g. false; h. false

3. The operator * is used to declare a pointer variable and to access the memory space
to which a pointer variable points.

5. 98 98
98 98

7. bandc
78 78

11. 27 35
73 27
36 36

13. 44571014 19253240
15. The operator delete deallocates the memory space to which a pointer points.
17. a. num = new int[10];
b. for (int j=0; j< 10; j++)
cin>> num[]j];
c. delete [] num;

19. In a shallow copy of data, two or more pointers point to the same memory space. In
a deep copy of data, each pointer has its own copy of the data.

Chapter 19 |

23. template <class Type>
void reverseStack (stackType<Type> &s)
{
linkedQueueType<Type> q;
Type elem;

while (!s.isEmptyStack())

{
elem = s.top();
s.pop () ;
g.addQueue (elem) ;
}

v{:hile (!g.isEmptyQueue()) \e ‘CO .

elem = g.front();
g.deleteQueue() ; tesa
S. push(elem) m NO 392
Wss Type> 10
e\? ype<Typee %’ t()
retu@

27. Answer to this question is available at the Web site accompanying this book.

29. Answer to this question is available at the Web site accompanying this book.

1329

functions and, 321
information hiding and, 682
inheritance and, 742-744
input/output (1/0) and, 118, 142, 143
linked lists and, 1057-1058, 1066-1069
multiple inclusions of, 735-746
namespaces and, 452, 458
naming conventions, 1244-1245
overview, 1247-1255
stacks and, 1130-1134, 1148
templates and, 929
vectors and, 585
hexadecimal numbers, 1228-1230
high-level languages, 9
Hollerith, Herman, 2

IBM (International B w\@mgs
character {
encoding ;? s and, 8 P
history of, 2-3
identifiers
described, 33
functions and, 382-386
global, 382
local, 382
naming, 85-86
namespaces and, 452, 455
overview, 33-34
self-documenting, 86
IDEs (integrated development environments)
debugging and, 299
filename extensions and, 78
identifiers and, 34
indentation and, 212
input/output (1/0) and, 137
overview, 11-12
if statements, 188-212, 952, 1013
comparing if. . .else statements with,
198-199
functions and, 334
linked lists and, 1070
nested, 195, 196, 197-199
if...else statements, 198-199
ignore function, 128-130, 744

ge

Index | 1341

implementation files
described, 682
templates and, 929
implicit type coercion, 47
#include preprocessor directive, 75, 81, 512,
744
functions and, 322-323
input/output (1/0) and, 118
string data type and, 458
increment operators, 65, 66-67, 1039
incrementHours function, 651, 652, 664 \(
incrementMinutes function, 651, ‘2\)
664

mcrementSeC{égakg

E&Sgarray ind ! 59

|rectly recur us Qh erm, 995
P E%S

f @ , 1151, 1152

mation h|d|ng, 681-685
inheritance
described, 724
hierarchy, 738, 740-741
linked lists and, 1037
overview, 723-792
pointers and, 828-835
initializeList function, 1045, 1076
initializeQueue function, 1166, 1171, 1174,
1179, 1181
initializeStack function, 1118, 1123-1124
input. See also 1/0 (input/output)
devices, 5
failure, 124, 133, 134-136, 206-207
memory allocation and, 50-53
overview, 50-65
statement, 58-61
stream variables, 119
streams, 118
string, 514-515
input/output (1/0). See also input; output
c-Strings and, 515-517
debugging and, 149-152
enumeration types and, 438
EOF-controlled while loops and, 263, 264
file, 152-165, 516
functions and, 321

53, 659, 662,

1348 | Index

S
sales data analysis program, 628-641

scope resolution operator, 386, 454, 457, 659,

691
search function, 1044, 1058, 1077,
1297-1299
searching. See also search function
arrays, for specific items, 507-510
lists, 564-565
secondary storage, 5
seekg function, 1236, 1237-1241
seekp function, 1236, 1237-1238
selection sort algorithm, 569, 570-572
selection structures
multiple, 195-199
one-way, 189-191
overview, 176-177, 188-212 "(
two-way, 191-184 e\N
selectionSor e\’ﬁ
selectors, @ QC ge
semantic(s P a
descrlbed, 85
errors, 194
rules, 31
semicolon (;), 85, 651, 836
sentinel(s), 257, 259
-controlled while loops, 255, 256
described, 255
segSearch function, 508-509, 621-622
sequence containers, 1260-1269,
1271-1272, 1276-1284
sequence structures, 176-177
sequential search algorithm, 507, 508-510,
564-565, 621-622
serverListType class, 1192-1194
servers
described, 1184
lists of, 1191-1195
queues and, 1184-1185, 1188-1191,
1198-1199
serverType class, 1188-1191
setCustomerlInfo function, 1187
setData function, 748, 749, 752, 753
setDimension function, 733
setfill manipulator, 144-146
setLastName function, 868

setName function, 868

setprecision manipulator, 137-138, 140-141

setServerBusy function, 1194

setTime function, 651, 652, 653, 656, 659,
660, 664, 670

setw manipulator, 142-144, 146

shallow copy, 816, 817, 818

shape class, 725, 835-837

short-circuit evaluation, 199, 200

showpoint manipulator, 139-142

side effects, 386-390 d@ u\(

simple data types, 53, 433-48
simulation example, 1 W 0
single inher'ta@@

i f n 82 12@%88

I| Iem

oftware Se
l& of 6

rt function, 1297-1299
source

code, 10, 77

file, 77

program, 10

sqrt function, 321, 322
square brackets ([1), 495
squareFirst function, 381
stack(s)
container adapters and, 1286
copying, 1128, 1146-1147
described, 1116
emptying, 1124, 1141-1142
full, 1124, 1141-1142
implementation of, as arrays, 1120-1138
initializing, 1123-1124
linked implementation of, 1138-1151
operations, 1118-1119
overview, 1116-1165
recursion and, 1161-1165
top element of, returning to, 1144
stackADT class, 1119, 1120, 1139-1140,
1142
stackType class, 1120-1123, 1129-1134
Standard C++
library, 458
naming conventions for header files, 1244-1245

Index | 1351

W Fibonacci numbers and, 269,
270-273
waitingCustomerQueueType class, 1196-1197 flag-controlled, 258, 260, 268
walk-throughs, 56, 65, 214, 292 functions and '366’ '
while loops nested, 293
binary search algorithm and, 579, 580 overvie,w 549-284
counter-controlled, 252, 253-255 sentinel-controlled. 255. 256
gzzg:ﬁﬁg gg? - whitespace, 34, 120, 129, 149
! - Wozniak, Stephen, 3
EOF-controlled, 263, 264-268, 294-295 write function, 1236

expressions in, 268-269

- ﬁ(
e\WN
preVioage

