
Additional Output Formatting Tools 144

setfill Manipulator 144

left and right Manipulators 146

Input/Output and the string Type 148

Debugging: Understanding Logic Errors

and Debugging with cout Statements 149

File Input/Output 152

Programming Example: Movie Tickets Sale

and Donation to Charity 156

Programming Example: Student Grade 162

Quick Review 165

Exercises 166

Programming Exercises 170

CONTROL STRUCTURES I(SELECTION) 175

Control Structures 176

Relational Operators 177

Relational Operators and Simple Data Types 178

Comparing Characters 179

Relational Operators and the string Type 180

Logical (Boolean) Operators and Logical Expressions 182

Order of Precedence 184

int Data Type and Logical (Boolean) Expressions 187

bool Data Type and Logical (Boolean) Expressions 188

Selection: if and if...else 188

One-Way Selection 189

Two-Way Selection 191

Compound (Block of) Statements 195

Multiple Selections: Nested if 195

Comparing if...else Statements with a Series of

if Statements 198

Short-Circuit Evaluation 199

4

x | C++ Programming: From Problem Analysis to Program Design, Fifth Edition

Preview from Notesale.co.uk

Page 11 of 1392

USER-DEFINED FUNCTIONS II 361

Void Functions 362

Value Parameters 367

Reference Variables as Parameters 368

Value and Reference Parameters

and Memory Allocation 372

Reference Parameters and Value-Returning Functions 382

Scope of an Identifier 382

Global Variables, Named Constants, and Side Effects 386

Static and Automatic Variables 391

Debugging: Using Drivers and Stubs 392

Function Overloading: An Introduction 395

Functions with Default Parameters 396

Programming Example: Classify Numbers 399

Programming Example: Data Comparison 404

Quick Review 414

Exercises 416

Programming Exercises 424

USER-DEFINED SIMPLE DATA TYPES,

NAMESPACES, AND THE string TYPE 433

Enumeration Type 434

Declaring Variables 436

Assignment 436

Operations on Enumeration Types 437

Relational Operators 437

Input /Output of Enumeration Types 438

Functions and Enumeration Types 440

Declaring Variables When Defining the Enumeration Type 442

7

8

Table of Contents | xiii

Preview from Notesale.co.uk

Page 14 of 1392

Inheritance, Pointers, and Virtual Functions 828

Classes and Virtual Destructors 835

Abstract Classes and Pure Virtual Functions 835

Address of Operator and Classes 844

Quick Review 846

Exercises 849

Programming Exercises 857

OVERLOADING AND TEMPLATES 861

Why Operator Overloading Is Needed 862

Operator Overloading 863

Syntax for Operator Functions 864

Overloading an Operator: Some Restrictions 864

Pointer this 865

Friend Functions of Classes 870

Operator Functions as Member Functions and Nonmember

Functions 873

Overloading Binary Operators 876

Overloading the Stream Insertion (<<) and Extraction (>>)

Operators 882

Overloading the Assignment Operator (=) 887

Overloading Unary Operators 895

Operator Overloading: Member versus Nonmember 901

Classes and Pointer Member Variables (Revisited) 902

Operator Overloading: One Final Word 902

Programming Example: Clock Type 902

Programming Example: Complex Numbers 911

Overloading the Array Index (Subscript) Operator ([]) 916

Programming Example: Newstring 918

Function Overloading 924

15

Table of Contents | xix

Preview from Notesale.co.uk

Page 20 of 1392

WELCOME TO THE FIFTH EDITION OF C++ Programming: From Problem Analysis to Program

Design. Designed for a first Computer Science (CS1) C++ course, this text provides a

breath of fresh air to you and your students. The CS1 course serves as the cornerstone of

the Computer Science curriculum. My primary goal is to motivate and excite all CS1

students, regardless of their level. Motivation breeds excitement for learning. Motivation

and excitement are critical factors that lead to the success of the programming student. This

text is a culmination and development of my classroom notes throughout more than fifty

semesters of teaching successful programming to Computer Science students.

C++ Programming: From Problem Analysis to Program Design started as a collection of brief

examples, exercises, and lengthy programming examples to supplement the books that were

in use at our university. It soon turned into a collection large enough to develop into a text.

The approach taken in this book is, in fact, driven by the students’ demand for clarity and readability.

The material was written and rewritten until the students felt comfortable with it. Most of the

examples in this book resulted from student interaction in the classroom.

As with any profession, practice is essential. Cooking students practice their recipes.

Budding violinists practice their scales. New programmers must practice solving

problems and writing code. This is not a C++ cookbook. We do not simply list the

C++ syntax followed by an example; we dissect the ‘‘why’’ behind all the concepts. The

crucial question of ‘‘why?’’ is answered for every topic when first introduced. This

technique offers a bridge to learning C++. Students must understand the ‘‘why?’’ in

order to be motivated to learn.

Traditionally, a C++ programming neophyte needed a working knowledge of another

programming language. This book assumes no prior programming experience. However,

some adequate mathematics background, such as college algebra, is required.

PREFACE

Warning: This text can be expected to create a serious reduction in the demand for

programming help during your office hours. Other side effects include significantly

diminished student dependency on others while learning to program.

Preview from Notesale.co.uk

Page 28 of 1392

In Figure 1, dotted lines mean the preceding chapter is used in one of the sections of the

chapter and is not necessarily a prerequisite for the next chapter. For example, Chapter 9

covers arrays in detail. In Chapters 11 and 12, we show the relationship between arrays and

structs and arrays and classes, respectively. However, if Chapter 12 is studied before

Chapter 9, then the section dealing with arrays in Chapter 12 can be skipped without any

discontinuation. This particular section can be studied after studying chapter 9.

It is recommended that the first seven chapters be covered sequentially. After covering the

first seven chapters, if the reader is interested in learning OOD and OOP early, then Chapter

12 can be studied right after Chapter 7. Chapter 8 can be studied any time after Chapter 7.

After studying the first seven chapters in sequence, some of the approaches are:

1. Study chapters in the sequence: 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.

2. Study chapters in the sequence: 9, 12, 14, 15, 13, 17, 18, 19, 10, 16.

3. Study chapters in the sequence: 12, 9, 10, 14, 15, 13, 17, 18, 19, 16.

4. Study chapters in the sequence: 12, 9, 14, 15, 13, 17, 18, 19, 10, 16.

Preface | xxxi

Preview from Notesale.co.uk

Page 32 of 1392

FEATURES OF THE BOOK

Four-color

interior design

shows

accurate C++

code and

related

comments.

Preview from Notesale.co.uk

Page 33 of 1392

More than 300

visual diagrams,

both extensive

and exhaustive,

illustrate difficult

concepts.

Preview from Notesale.co.uk

Page 34 of 1392

Processor 2.80 GHz, 1GBRAM, 250 GBHD, VX750 19" Silver Flat CRTColorMonitor’’
fall into the hardware category; items such as ‘‘operating system, games, encyclopedias, and
application software’’ fall into the software category. Let’s consider the hardware first.

Hardware
Major hardware components include the central processing unit (CPU); main memory
(MM), also called random access memory (RAM); input/output devices; and secondary
storage. Some examples of input devices are the keyboard, mouse, and secondary storage.
Examples of output devices are the screen, printer, and secondary storage. Let’s look at
each of these components in greater detail.

Central Processing Unit and Main Memory
The central processing unit is the ‘‘brain’’ of the computer and the single most expensive
piece of hardware in a computer. The more powerful the CPU, the faster the computer.
Arithmetic and logical operations are carried out inside the CPU. Figure 1-1(a) shows some
hardware components.

Main memory, or random access memory, is connected directly to the CPU. All
programs must be loaded into main memory before they can be executed. Similarly, all
data must be brought into main memory before a program can manipulate it. When the
computer is turned off, everything in main memory is lost.

Main memory is an ordered sequence of cells, calledmemory cells. Each cell has a unique
location in main memory, called the address of the cell. These addresses help you access
the information stored in the cell. Figure 1-1(b) shows main memory with some data.

Central
Processing
Unit (CPU)

Main Memory

Secondary Storage

Input
Device

Output
Device

(b)(a)

2001
2000

1001
1000 54

A
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Main Memory

FIGURE 1-1 Hardware components of a computer and main memory

4 | Chapter 1: An Overview of Computers and Programming Languages

Preview from Notesale.co.uk

Page 45 of 1392

Today’s computers come with main memory consisting of millions to billions of cells.
Although Figure 1-1(b) shows data stored in cells, the content of a cell can be either a
programming instruction or data. Moreover, this figure shows the data as numbers and
letters. However, as explained later in this chapter, main memory stores everything as
sequences of 0s and 1s. The memory addresses are also expressed as sequences of 0s and 1s.

SECONDARY STORAGE

Because programs and data must be stored in main memory before processing and
because everything in main memory is lost when the computer is turned off, information
stored in main memory must be transferred to some other device for permanent storage.
The device that stores information permanently (unless the device becomes unusable or
you change the information by rewriting it) is called secondary storage. To be able to
transfer information from main memory to secondary storage, these components must
be directly connected to each other. Examples of secondary storage are hard disks, flash
drives, floppy disks, ZIP disks, CD-ROMs, and tapes.

Input /Output Devices
For a computer to perform a useful task, it must be able to take in data and programs and
display the results of calculations. The devices that feed data and programs into computers
are called input devices. The keyboard, mouse, and secondary storage are examples of
input devices. The devices that the computer uses to display results are called output

devices. A monitor, printer, and secondary storage are examples of output devices.
Figure 1-2 shows some input and output devices.

1

Input devices Output devices

FIGURE 1-2 Some input and output devices

Elements of a Computer System | 5

Preview from Notesale.co.uk

Page 46 of 1392

To develop a program to solve a problem, you start by analyzing the problem. You then
design the algorithm; write the program instructions in a high-level language, or code the
program; and enter the program into a computer system.

Analyzing the problem is the first and most important step. This step requires you to do
the following:

1. Thoroughly understand the problem.

2. Understand the problem requirements. Requirements can include whether

the program requires interaction with the user, whether it manipulates data,

1

Results

Problem

Analysis

Algorithm
Design

Coding

Linker

Library

Loader

Compiler

No Error

Error

ErrorExecution

No Error

Preprocessor

FIGURE 1-4 Problem analysis–coding–execution cycle

Programming with the Problem Analysis–Coding–Execution Cycle | 13

Preview from Notesale.co.uk

Page 54 of 1392

EXAMPLE 1-5

There are 10 students in a class. Each student has taken five tests, and each test is worth 100

points. We want to design an algorithm to calculate the grade for each student, as well as the

class average. The grade is assigned as follows: If the average test score is greater than or equal

to 90, the grade is A; if the average test score is greater than or equal to 80 and less than 90,
the grade is B; if the average test score is greater than or equal to 70 and less than 80, the grade

is C; if the average test score is greater than or equal to 60 and less than 70, the grade is D;

otherwise, the grade is F. Note that the data consists of students’ names and their test scores.

This is a problem that can be divided into subproblems as follows: There are five tests, so you

design an algorithm to find the average test score. Next, you design an algorithm to determine

the grade. The two subproblems are to determine the average test score and to determine the

grade.

Let us first design an algorithm to determine the average test score. To find the average test

score, add the five test scores and then divide the sum by 5. Therefore, the algorithm is:

1. Get the five test scores.

2. Add the five test scores. Suppose sum stands for the sum of the test scores.

3. Suppose average stands for the average test score. Then:

average = sum / 5;

Next, you design an algorithm to determine the grade. Suppose grade stands for the grade

assigned to a student. The following algorithm determines the grade:

if average is greater than or equal to 90
grade = A

otherwise
if average is greater than or equal to 80 and less than 90

grade = B
otherwise

if average is greater than or equal to 70 and less than 80
grade = C

otherwise
if average is greater than or equal to 60 and less than 70

grade = D
otherwise

grade = F

You can use the solutions to these subproblems to design the main algorithm as follows:
(Suppose totalAverage stands for the sum of the averages of each student’s test average.)

1. totalAverage = 0;

2. Repeat the following steps for each student in the class:

a. Get student’s name.

b. Use the algorithm as discussed above to find the average test score.

1

Programming with the Problem Analysis–Coding–Execution Cycle | 19

Preview from Notesale.co.uk

Page 60 of 1392

c. Use the algorithm as discussed above to find the grade.

d. Update totalAverage by adding the current student’s average test

score.

3. Determine the class average as follows:

classAverage = totalAverage / 10

A programming exercise in Chapter 7 asks you to write a C++ program to determine the

average test score and grade for each student in a class.

Programming Methodologies
Two popular approaches to programming design are the structured approach and the
object-oriented approach, which are outlined below.

Structured Programming
Dividing a problem into smaller subproblems is called structured design. Each subproblem
is then analyzed, and a solution is obtained to solve the subproblem. The solutions to all of
the subproblems are then combined to solve the overall problem. This process of imple-
menting a structured design is called structured programming. The structured-design
approach is also known as top-down design, bottom-up design, stepwise refinement,
and modular programming.

Object-Oriented Programming
Object-oriented design (OOD) is a widely used programmingmethodology. InOOD, the
first step in the problem-solving process is to identify the components called objects, which
form the basis of the solution, and to determine how these objects interact with one another.
For example, suppose you want to write a program that automates the video rental process for
a local video store. The two main objects in this problem are the video and the customer.

After identifying the objects, the next step is to specify for each object the relevant data
and possible operations to be performed on that data. For example, for a video object, the
data might include:

• movie name

• starring actors

• producer

• production company

• number of copies in stock

Some of the operations on a video object might include:

• checking the name of the movie

• reducing the number of copies in stock by one after a copy is rented

• incrementing the number of copies in stock by one after a customer returns a

particular video

20 | Chapter 1: An Overview of Computers and Programming Languages

Preview from Notesale.co.uk

Page 61 of 1392

This illustrates that each object consists of data and operations on that data. An object
combines data and operations on the data into a single unit. In OOD, the final program is
a collection of interacting objects. A programming language that implements OOD is
called an object-oriented programming (OOP) language. You will learn about the
many advantages of OOD in later chapters.

Because an object consists of data and operations on that data, before you can design and
use objects, you need to learn how to represent data in computer memory, how to
manipulate data, and how to implement operations. In Chapter 2, you will learn the basic
data types of C++ and discover how to represent and manipulate data in computer
memory. Chapter 3 discusses how to input data into a C++ program and output the
results generated by a C++ program.

To create operations, you write algorithms and implement them in a programming
language. Because a data element in a complex program usually has many operations,
to separate operations from each other and to use them effectively and in a convenient
manner, you use functions to implement algorithms. After a brief introduction in
Chapters 2 and 3, you will learn the details of functions in Chapters 6 and 7. Certain
algorithms require that a program make decisions, a process called selection. Other
algorithms might require certain statements to be repeated until certain conditions are
met, a process called repetition. Still other algorithms might require both selection and
repetition. You will learn about selection and repetition mechanisms, called control
structures, in Chapters 4 and 5. Also, in Chapter 9, using a mechanism called an array,
you will learn how to manipulate data when data items are of the same type, such as items
in a list of sales figures.

Finally, to work with objects, you need to know how to combine data and operations on
the data into a single unit. In C++, the mechanism that allows you to combine data and
operations on the data into a single unit is called a class. You will learn how classes work,
how to work with classes, and how to create classes in the chapter Classes and Data
Abstraction (later in this book).

As you can see, you need to learn quite a few things before working with the OOD
methodology. To make this learning easier and more effective, this book purposely
divides control structures into two chapters (4 and 5) and user-defined functions into
two chapters (6 and 7).

For some problems, the structured approach to program design will be very effective.
Other problems will be better addressed by OOD. For example, if a problem requires
manipulating sets of numbers with mathematical functions, you might use the struc-
tured design approach and outline the steps required to obtain the solution. The C++
library supplies a wealth of functions that you can use effectively to manipulate
numbers. On the other hand, if you want to write a program that would make a
candy machine operational, the OOD approach is more effective. C++ was designed
especially to implement OOD. Furthermore, OOD works well and is used in conjunction
with structured design.

1

Programming Methodologies | 21

Preview from Notesale.co.uk

Page 62 of 1392

1
11. The most basic language of a computer is a sequence of 0s and 1s called machine

language. Every computer directly understands its own machine language.

12. A bit is a binary digit, 0 or 1.

13. A byte is a sequence of eight bits.

14. A sequence of 0s and 1s is referred to as a binary code or a binary number.

15. One kilobyte (KB) is 210 ¼ 1024 bytes; one megabyte (MB) is 220 ¼ 1,048,576

bytes; one gigabyte (GB) is 230 ¼ 1,073,741,824 bytes; one terabyte (TB) is

240¼ 1,099,511,627,776 bytes; one petabyte (PB) is 250¼ 1,125,899,906,842,624

bytes; one exabyte (EB) is 260 ¼ 1,152,921,504,606,846,976 bytes; and one

zettabyte (ZB) is 270 ¼ 1,180,591,620,717,411,303,424 bytes.

16. Assembly language uses easy-to-remember instructions called mnemonics.

17. Assemblers are programs that translate a program written in assembly language

into machine language.

18. Compilers are programs that translate a program written in a high-level

language into machine code, called object code.

19. A linker links the object code with other programs provided by the integrated

development environment (IDE) and used in the program to produce execu-

table code.

20. Typically, six steps are needed to execute a C++ program: edit, preprocess,

compile, link, load, and execute.

21. A loader transfers executable code into main memory.

22. An algorithm is a step-by-step problem-solving process in which a solution is

arrived at in a finite amount of time.

23. The problem-solving process has three steps: analyze the problem and design

an algorithm, implement the algorithm in a programming language, and

maintain the program.

24. Programs written using the structured design approach are easier to understand,

easier to test and debug, and easier to modify.

25. In structured design, a problem is divided into smaller subproblems. Each

subproblem is solved, and the solutions to all of the subproblems are then

combined to solve the problem.

26. In object-oriented design (OOD), a program is a collection of interacting objects.

27. An object consists of data and operations on that data.

28. The ANSI/ISO Standard C++ syntax was approved in mid-1998.

EXERCISES

1. Mark the following statements as true or false.

a. The first device known to carry out calculations was the Pascaline.

b. Modern-day computers can accept spoken-word instructions but cannot

imitate human reasoning.

Exercises | 23

Preview from Notesale.co.uk

Page 64 of 1392

2

In C++, you must declare all identifiers before you can use them. If you refer to an

identifier without declaring it, the compiler will generate an error message (syntax error),

indicating that the identifier is not declared. Therefore, to use either a named constant or

a variable, you must first declare it.

Now that data types, variables, and constants have been defined and discussed, it is
possible to offer a formal definition of simple data types. A data type is called simple if
the variable or named constant of that type can store only one value at a time. For
example, if x is an int variable, at a given time, only one value can be stored in x.

Putting Data into Variables
Now that you know how to declare variables, the next question is: How do you put data
into those variables? In C++, you can place data into a variable in two ways:

1. Use C++’s assignment statement.

2. Use input (read) statements.

Assignment Statement
The assignment statement takes the following form:

variable = expression;

In an assignment statement, the value of the expression should match the data type of
the variable. The expression on the right side is evaluated, and its value is assigned to
the variable (and thus to a memory location) on the left side.

A variable is said to be initialized the first time a value is placed in the variable.

In C++, = is called the assignment operator.

EXAMPLE 2-13

Suppose you have the following variable declarations:

int num1, num2;
double sale;
char first;
string str;

Now consider the following assignment statements:

num1 = 4;
num2 = 4 * 5 - 11;
sale = 0.02 * 1000;
first = 'D';
str = "It is a sunny day.";

Input | 53

Preview from Notesale.co.uk

Page 94 of 1392

Values of the Variables Explanation

Before Statement 1 ?

num1 num3num2

? ?

After Statement 1

num3num2num1

18 ? ?

After Statement 2

num3num2num1

45 ? ?
num1 + 27 = 18 + 27 = 45.
This value is assigned to num1, which
replaces the old value of num1.

After Statement 3

num3num2num1

45 45 ? Copy the value of num1 into num2.

After Statement 4

num3num2num1

45 45 9
num2 / 5 = 45 / 5 = 9. This
value is assigned to num3. So num3
= 9.

After Statement 5

num3num2num1

45 45 2
num3 / 4 = 9 / 4 = 2. This
value is assigned to num3, which
replaces the old value of num3.

Thus, after the execution of the statement in Line 5, num1 = 45, num2 = 45, and num3 = 2.

Tracing values through a sequence, called a walk-through, is a valuable tool to learn and
practice. Try it in the sequence above. You will learn more about how to walk through a
sequence of C++ statements later in this chapter.

Suppose that x, y, and z are int variables. The following is a legal statement in C++:

x = y = z;

In this statement, first the value of z is assigned to y, and then the new value of y is

assigned to x. Because the assignment operator, =, is evaluated from right to left, the

associativity of the assignment operator is said to be from right to left.

Saving and Using the Value of an Expression
Now that you know how to declare variables and put data into them, you can learn
how to save the value of an expression. You can then use this value in a later
expression without using the expression itself, thereby answering the question raised
earlier in this chapter. To save the value of an expression and use it in a later
expression, do the following:

1. Declare a variable of the appropriate data type. For example, if the
result of the expression is an integer, declare an int variable.

56 | Chapter 2: Basic Elements of C++

Preview from Notesale.co.uk

Page 97 of 1392

During data manipulation, the computer takes the value stored in particular cells and
performs a calculation. If you declare a variable and do not store a value in it, the memory
cell still has a value—usually the value of the setting of the bits from their last use—and
you have no way to know what this value is.

If you only declare a variable and do not instruct the computer to put data into the variable,
the value of that variable is garbage. However, the computer does not warn us, regards
whatever values are in memory as legitimate, and performs calculations using those values
in memory. Using a variable in an expression without initializing it produces erroneous
results. To avoid these pitfalls, C++ allows you to initialize variables while they are being
declared. For example, consider the following C++ statements in which variables are first
declared and then initialized:

int first, second;
char ch;
double x;

first = 13;
second = 10;
ch = ' ';
x = 12.6;

You can declare and initialize these variables at the same time using the following C++
statements:

int first = 13, second = 10;
char ch = ' ';
double x = 12.6;

The first C++ statement declares two int variables, first and second, and stores 13 in
first and 10 in second. The meaning of the other statements is similar.

In reality, not all variables are initialized during declaration. It is the nature of the
program or the programmer’s choice that dictates which variables should be initi-
alized during declaration. The key point is that all variables must be initialized before
they are used.

Input (Read) Statement
Previously, you learned how to put data into variables using the assignment statement. In
this section, you will learn how to put data into variables from the standard input device,
using C++’s input (or read) statements.

In most cases, the standard input device is the keyboard.

When the computer gets the data from the keyboard, the user is said to be acting interactively.

58 | Chapter 2: Basic Elements of C++

Preview from Notesale.co.uk

Page 99 of 1392

2

cin >> firstName >> lastName; //Line 6
cin >> age >> weight; //Line 7

cout << "Name: " << firstName << " "
<< lastName << endl; //Line 8

cout << "Age: " << age << endl; //Line 9
cout << "Weight: " << weight << endl; //Line 10

return 0; //Line 11
}

Sample Run: In this sample run, the user input is shaded.

Enter first name, last name, age, and weight, separated by spaces.
Sheila Mann 23 120.5
Name: Sheila Mann
Age: 23
Weight: 120.5

The preceding program works as follows: The statements in Lines 1 to 4 declare the
variables firstName and lastName of type string, age of type int, and weight of
type double. The statement in Line 5 is an output statement and tells the user what to
do. (Such output statements are called prompt lines.) As shown in the sample run, the
input to the program is:

Sheila Mann 23 120.5

The statement in Line 6 first reads and stores the string Sheila into the variable
firstName and then skips the space after Sheila and reads and stores the string Mann
into the variable lastName. Next, the statement in Line 7 first skips the blank after
Mann and reads and stores 23 into the variable age and then skips the blank after 23

and reads and stores 120.5 into the variable weight.

The statements in Lines 8, 9, and 10 produce the third, fourth, and fifth lines of the
sample run.

During programming execution, if more than one value is entered in a line, these values must

be separated by at least one blank or tab. Alternately, one value per line can be entered.

Variable Initialization
Remember, there are two ways to initialize a variable: by using the assignment statement
and by using a read statement. Consider the following declaration:

int feet;
int inches;

Input | 61

Preview from Notesale.co.uk

Page 102 of 1392

Next, we show the values of the variables after the execution of each statement.

After

St.
Values of the Variables Explanation

1 4
firstNum

?

secondNum

?

z

?

ch

?

name
Store 4 into firstNum.

2 4

firstNum

14
secondNum

?

z

?

ch

?

name

2 * firstNum + 6 = 2 * 4
+ 6 = 14.
Store 14 into secondNum.

3 4

firstNum

14

secondNum

2.5
z

?

ch

?

name

(firstNum + 1) / 2.0
= (4 + 1) / 2.0 = 5 / 2.0
= 2.5. Store 2.5 into z.

4 4

firstNum

14

secondNum

2.5

z

A
ch

?

name

Store 'A' into ch.

5 4

firstNum

8
secondNum

2.5

z

A

ch

?

name

Read a number from the
keyboard (which is 8) and store it
into secondNum. This statement
replaces the old value of
secondNum with this new
value.

6 4

firstNum

8

secondNum

16.3
z

A

ch

?

name

Read a number from the
keyboard (which is 16.3)
and store this number into z.
This statement replaces the old
value of z with this new value.

7 32
firstNum

8

secondNum

16.3

z

A

ch

?

name

2 * secondNum +
static_cast<int>(z) =
2 * 8 þ
static_cast<int> (16.3)
=16 þ 16 = 32. Store 32 into
firstNum. This statement
replaces the old value of
firstNum with this new value.

8 32

firstNum

8

secondNum

16.3

z

A

ch

Jenny
name

Read the next input, Jenny,
from the keyboard and store it
into name.

9 32

firstNum

9
secondNum

16.3

z

A

ch

Jenny

name

secondNum + 1 = 8 + 1 = 9.
Store 9 into secondNum.

10 32

firstNum

9

secondNum

16.3

z

D
ch

Jenny

name

Read the next input from the
keyboard (which is D) and store it
into ch. This statement replaces
the old value of ch with the new
value.

64 | Chapter 2: Basic Elements of C++

Preview from Notesale.co.uk

Page 105 of 1392

cout << 29 / 4 << endl; //Line 3
cout << 3.0 / 2 << endl; //Line 4
cout << "Hello there.\n"; //Line 5
cout << 7 << endl; //Line 6
cout << 3 + 5 << endl; //Line 7
cout << "3 + 5"; //Line 8
cout << endl; //Line 9
cout << a << endl; //Line 10
cout << "a" << endl; //Line 11
cout << (a + 5) * 6 << endl; //Line 12
cout << 2 * b << endl; //Line 13

return 0;
}

In the following output, the column marked ‘‘Output of Statement at’’ and the line
numbers are not part of the output. The line numbers are shown in this column to make
it easy to see which output corresponds to which statement.

Output of Statement at

7 Line 3
1.5 Line 4
Hello there. Line 5
7 Line 6
8 Line 7
3 + 5 Line 8
65 Line 10
a Line 11
420 Line 12
156 Line 13

For the most part, the output is straightforward. Look at the output of the statements in
Lines 7, 8, 9, and 10. The statement in Line 7 outputs the result of 3 + 5, which is 8, and
moves the insertion point to the beginning of the next line. The statement in Line 8
outputs the string 3 + 5. Note that the statement in Line 8 consists only of the string 3 + 5.
Therefore, after printing 3 + 5, the insertion point stays positioned after 5; it does not
move to the beginning of the next line.

The output statement in Line 9 contains only the manipulator endl, which moves
the insertion point to the beginning of the next line. Therefore, when the statement
in Line 10 executes, the output starts at the beginning of the line. Note that in
this output, the column ‘‘Output of Statement at’’ does not contain Line 9. This is due
to the fact that the statement in Line 9 does not produce any printable output. It simply
moves the insertion point to the beginning of the next line. Next, the statement in Line
10 outputs the value of a, which is 65. The manipulator endl then moves the insertion
point to the beginning of the next line.

70 | Chapter 2: Basic Elements of C++

Preview from Notesale.co.uk

Page 111 of 1392

only tells the user to input a number, but also informs the user that the number
should be between 1 and 10.

Documentation
The programs that you write should be clear not only to you, but also to anyone
else. Therefore, you must properly document your programs. A well-documented
program is easier to understand and modify, even a long time after you originally
wrote it. You use comments to document programs. Comments should appear in a
program to explain the purpose of the program, identify who wrote it, and explain
the purpose of particular statements.

Form and Style
You might be thinking that C++ has too many rules. However, in practice, the rules give
C++ a great degree of freedom. For example, consider the following two ways of
declaring variables:

int feet, inch;
double x, y;

and:

int feet,inches;double x,y;

The computer would have no difficulty understanding either of these formats, but the
first form is easier to read and follow. Of course, the omission of a single comma or
semicolon in either format may lead to all sorts of strange error messages.

What about blank spaces? Where are they significant and where are they meaningless?
Consider the following two statements:

int a,b,c;

and:

int a, b, c;

Both of these declarations mean the same thing. Here, the blanks between the identifiers
in the second statement are meaningless. On the other hand, consider the following
statement:

inta,b,c;

This statement contains a syntax error. The lack of a blank between int and the
identifier a changes the reserved word int and the identifier a into a new identifier,
inta.

The clarity of the rules of syntax and semantics frees you to adopt formats that are pleasing
to you and easier to understand.

2

Program Style and Form | 87

Preview from Notesale.co.uk

Page 128 of 1392

int main ()
{

//Declare variables
int feet, inches;
int totalInches;
double centimeter;

//Statements: Step 1 - Step 7
cout << "Enter two integers, one for feet and "

<< "one for inches: "; //Step 1
cin >> feet >> inches; //Step 2
cout << endl;
cout << "The numbers you entered are " << feet

<< " for feet and " << inches
<< " for inches. " << endl; //Step 3

totalInches = INCHES_PER_FOOT * feet + inches; //Step 4

cout << "The total number of inches = "
<< totalInches << endl; //Step 5

centimeter = CENTIMETERS_PER_INCH * totalInches; //Step 6

cout << "The number of centimeters = "
<< centimeter << endl; //Step 7

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter two integers, one for feet, one for inches: 15 7

The numbers you entered are 15 for feet and 7 for inches.
The total number of inches = 187
The number of centimeters = 474.98

PROGRAMMING EXAMPLE: Make Change
Write a program that takes as input any change expressed in cents. It should then
compute the number of half-dollars, quarters, dimes, nickels, and pennies to be
returned, returning as many half-dollars as possible, then quarters, dimes, nickels,
and pennies, in that order. For example, 483 cents should be returned as 9 half-
dollars, 1 quarter, 1 nickel, and 3 pennies.

Input Change in cents.

Output Equivalent change in half-dollars, quarters, dimes, nickels, and pennies.

94 | Chapter 2: Basic Elements of C++

Preview from Notesale.co.uk

Page 135 of 1392

23. The modulus operator, %, takes only integer operands.

24. Arithmetic expressions are evaluated using the precedence rules and the
associativity of the arithmetic operators.

25. All operands in an integral expression, or integer expression, are integers,
and all operands in a floating-point expression are decimal numbers.

26. A mixed expression is an expression that consists of both integers and
decimal numbers.

27. When evaluating an operator in an expression, an integer is converted to a
floating-point number, with a decimal part of 0, only if the operator has
mixed operands.

28. You can use the cast operator to explicitly convert values from one data
type to another.

29. A string is a sequence of zero or more characters.

30. Strings in C++ are enclosed in double quotation marks.

31. A string containing no characters is called a null or empty string.

32. Every character in a string has a relative position in the string. The position of
the first character is 0, the position of the second character is 1, and so on.

33. The length of a string is the number of characters in it.

34. During program execution, the contents of a named constant cannot be
changed.

35. A named constant is declared by using the reserved word const.

36. A named constant is initialized when it is declared.

37. All variables must be declared before they can be used.

38. C++ does not automatically initialize variables.

39. Every variable has a name, a value, a data type, and a size.

40. When a new value is assigned to a variable, the old value is lost.

41. Only an assignment statement or an input (read) statement can change the
value of a variable.

42. In C++, >> is called the stream extraction operator.

43. Input from the standard input device is accomplished by using cin and the
stream extraction operator >>.

44. When data is input in a program, the data items, such as numbers, are
usually separated by blanks, lines, or tabs.

45. In C++, << is called the stream insertion operator.

46. Output of the program to the standard output device is accomplished by
using cout and the stream insertion operator <<.

47. The manipulator endl positions the insertion point at the beginning of the
next line on an output device.

2

Quick Review | 99

Preview from Notesale.co.uk

Page 140 of 1392

2

PROGRAMMING EXERCISES

1. Write a program that produces the following output:

* Programming Assignment 1 *
* Computer Programming I *
* Author: ??? *
* Due Date: Thursday, Jan. 24 *

In your program, substitute ??? with your own name. If necessary, adjust the
positions and the number of the stars to produce a rectangle.

2. Write a program that produces the following output:

CCCCCCCCC ++ ++
CC ++ ++
CC ++++++++++++++ +++++++++++++++
CC ++++++++++++++ +++++++++++++++
CC ++ ++
CCCCCCCCC ++ ++

3. Consider the following program segment

//include statement(s)
//using namespace statement

int main()
{

//variable declaration

//executable statements

//return statement
}

a. Write C++ statements that include the header files iostream.

b. Write a C++ statement that allows you to use cin, cout, and endl

without the prefix std::.

c. Write C++ statements that declare the following variables: num1, num2,
num3, and average of type int.

d. Write C++ statements that store 125 into num1, 28 into num2, and
-25 into num3.

e. Write a C++ statement that stores the average of num1, num2, and
num3, into average.

f. Write C++ statements that output the values of num1, num2, num3,
and average.

g. Compile and run your program.

Programming Exercises | 109

Preview from Notesale.co.uk

Page 150 of 1392

program that prompts the user to input the masses of the bodies and the
distance between the bodies. The program then outputs the force between
the bodies.

24. One metric ton is approximately 2205 pounds. Write a program that
prompts the user to input the amount of rice, in pounds, in a bag. The
program outputs the number of bags needed to store one metric ton of rice.

25. Cindy uses the services of a brokerage firm to buy and sell stocks. The firm
charges 1.5% service charges on the total amount for each transaction, buy
or sell. When Cindy sells stocks, she would like to know if she gained or
lost on a particular investment. Write a program that allows Cindy to input
the number of shares sold, the purchase price of each share, and the selling
price of each share. The program outputs the amount invested, the total
service charges, amount gained or lost, and the amount received after selling
the stock.

2

Programming Exercises | 115

Preview from Notesale.co.uk

Page 156 of 1392

As you can see in the preceding syntax, a single input statement can read more than one
data item by using the operator >> several times. Every occurrence of >> extracts the
next data item from the input stream. For example, you can read both payRate and
hoursWorked via a single input statement by using the following code:

cin >> payRate >> hoursWorked;

There is no difference between the preceding input statement and the following two
input statements. Which form you use is a matter of convenience and style.

cin >> payRate;
cin >> hoursWorked;

How does the extraction operator >> work? When scanning for the next input, >> skips
all whitespace characters. Recall that whitespace characters consist of blanks and certain
nonprintable characters, such as tabs and the newline character. Thus, whether you
separate the input data by lines or blanks, the extraction operator >> simply finds the
next input data in the input stream. For example, suppose that payRate and
hoursWorked are double variables. Consider the following input statement:

cin >> payRate >> hoursWorked;

Whether the input is:

15.50 48.30

or:

15.50 48.30

or:

15.50
48.30

the preceding input statement would store 15.50 in payRate and 48.30 in
hoursWorked. Note that the first input is separated by a blank, the second input is
separated by a tab, and the third input is separated by a line.

Now suppose that the input is 2. How does the extraction operator >> distinguish
between the character 2 and the number 2? The right-side operand of the extraction
operator >> makes this distinction. If the right-side operand is a variable of the data type
char, the input 2 is treated as the character 2 and, in this case, the ASCII value of 2 is
stored. If the right-side operand is a variable of the data type int or double, the input 2
is treated as the number 2.

Next, consider the input 25 and the statement:

cin >> a;

where a is a variable of some simple data type. If a is of the data type char, only the single
character 2 is stored in a. If a is of the data type int, 25 is stored in a. If a is of the data type

120 | Chapter 3: Input/Output

Preview from Notesale.co.uk

Page 161 of 1392

int main()
{

double hours = 35.45;
double rate = 15.00;
double tolerance = 0.01000;

cout << "hours = " << hours << ", rate = " << rate
<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

cout << scientific;
cout << "Scientific notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate

<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

cout << fixed;
cout << "Fixed decimal notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate

<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

return 0;
}

Sample Run:

hours = 35.45, rate = 15, pay = 531.75, tolerance = 0.01

Scientific notation:
hours = 3.545000e+001, rate = 1.500000e+001, pay = 5.317500e+002, tolerance = 1
.000000e-002

Fixed decimal notation:
hours = 35.450000, rate = 15.000000, pay = 531.750000, tolerance = 0.010000

The sample run shows that when the value of rate and tolerance are printed without
setting the scientific or fixed manipulators, the trailing zeros are not shown and, in the
case of rate, the decimal point is also not shown. After setting the manipulators, the values
are printed to six decimal places. In the next section, we describe the manipulator
showpoint to force the system to show the decimal point and trailing zeros. We will then
give an example to show how to use the manipulators setprecision, fixed, and
showpoint to get the desired output.

showpoint Manipulator
Suppose that the decimal part of a decimal number is zero. In this case, when you instruct the
computer to output the decimal number in a fixed decimal format, the output may not show
the decimal point and the decimal part. To force the output to show the decimal point and

3

Output and Formatting Output | 139

Preview from Notesale.co.uk

Page 180 of 1392

cout << "Line 23: volume = "
<< PI * radius * radius * height << endl; //Line 23

cout << "Line 24: PI = " << PI << endl << endl; //Line 24

cout << "Line 25: "
<< setprecision(3) << radius << ", "
<< setprecision(2) << height << ", "
<< setprecision(5) << PI << endl; //Line 25

return 0; //Line 26
} //Line 27

Sample Run:

Line 10: setprecision(2)
Line 11: radius = 12.67
Line 12: height = 12.00
Line 13: volume = 6051.80
Line 14: PI = 3.14

Line 15: setprecision(3)
Line 16: radius = 12.670
Line 17: height = 12.000
Line 18: volume = 6051.797
Line 19: PI = 3.142

Line 20: setprecision(4)
Line 21: radius = 12.6700
Line 22: height = 12.0000
Line 23: volume = 6051.7969
Line 24: PI = 3.1416

Line 25: 12.670, 12.00, 3.14159

In this program, the statement in Line 2 includes the header file iomanip, and the
statement in Line 4 declares the named constant PI and sets the value to eight decimal
places. The statements in Lines 7 and 8 declare and initialize the variables radius and
height to store the radius of the base and the height of a cylinder. The statement in Line
10 sets the output of floating-point numbers in a fixed decimal format with a decimal
point and trailing zeros.

The statements in Lines 11, 12, 13, and 14 output the values of radius, height, the
volume, and PI to two decimal places.

The statements in Lines 16, 17, 18, and 19 output the values of radius, height,
the volume, and PI to three decimal places.

The statements in Lines 21, 22, 23, and 24 output the values of radius, height, the
volume, and PI to four decimal places.

The statement in Line 25 outputs the value of radius to three decimal places, the value
of height to two decimal places, and the value of PI to five decimal places.

3

Output and Formatting Output | 141

Preview from Notesale.co.uk

Page 182 of 1392

3

where ostreamVar is an output stream variable. Disabling the manipulator left returns
the output to the settings of the default output format. For example, the following
statement disables the manipulator left on the standard output device:

cout.unsetf(ios::left);

The syntax to set the manipulator right is:

ostreamVar << right;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be right-justified on the standard output device:

cout << right;

On some compliers, the statements cin >> left; and cin >> right;might not work.

In this case, you can use cin.setf(ios::left); in place of cin >> left; and

cin.setf(ios::right); in place of cin >> right;.

The program in Example 3-14 illustrates the effect of the manipulators left and right.

EXAMPLE 3-14

//Example: left justification

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

int x = 15; //Line 1
int y = 7634; //Line 2

cout << left; //Line 3

cout << "12345678901234567890" << endl; //Line 4
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 5

cout << setfill('*'); //Line 6

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << x << setw(7) << setfill('#')
<< y << setw(8) << "Warm" << endl; //Line 8

cout << setw(5) << setfill('@') << x
<< setw(7) << setfill('#') << y

Additional Output Formatting Tools | 147

Preview from Notesale.co.uk

Page 188 of 1392

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

celsius = static_cast<int>
(5.0 / 9 * (fahrenheit - 32) + 0.5); //Line 10

cout << fahrenheit << " degree F = "
<< celsius << " degree C. " << endl; //Line 11

return 0; //Line 12
} //Line 13

Sample Run: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

110 degree F = 43 degree C.

As we can see, using temporary cout statements, we were able to find the problem. After
correcting the problem, the temporary cout statements are removed.

The temperature conversion program contained logic errors, not syntax errors. Using
cout statements to print the values of expressions and/or variables to see the results of a
calculation is an effective way to find and correct logic errors.

File Input/Output
The previous sections discussed in some detail how to get input from the keyboard (standard
input device) and send output to the screen (standard output device). However, getting input
from the keyboard and sending output to the screen have several limitations. Inputting data in a
program from the keyboard is comfortable as long as the amount of input is very small. Sending
output to the screen works well if the amount of data is small (no larger than the size of the
screen) and you do not want to distribute the output in a printed format to others.

If the amount of input data is large, however, it is inefficient to type it at the keyboard
each time you run a program. In addition to the inconvenience of typing large amounts
of data, typing can generate errors, and unintentional typos cause erroneous results. You
must have some way to get data into the program from other sources. By using alternative
sources of data, you can prepare the data before running a program, and the program can
access the data each time it runs.

Suppose you want to present the output of a program in a meeting. Distributing printed
copies of the program output is a better approach than showing the output on a screen.
For example, you might give a printed report to each member of a committee before an
important meeting. Furthermore, output must sometimes be saved so that the output
produced by one program can be used as an input to other programs.

This section discusses how to obtain data from other input devices, such as a disk (that is,
secondary storage), and how to save the output to a disk. C++ allows a program to get

152 | Chapter 3: Input/Output

Preview from Notesale.co.uk

Page 193 of 1392

Here, fileStreamVariable is a file stream variable, and sourceName is the name of the
input/output file.

Suppose you include the declaration from Step 2 in a program. Further suppose that the input
data is stored in a file called prog.dat. The following statements associate inData with
prog.dat and outData with prog.out. That is, the file prog.dat is opened for inputting
data, and the file prog.out is opened for outputting data.

inData.open("prog.dat"); //open the input file; Line 1
outData.open("prog.out"); //open the output file; Line 2

IDEs such as Visual Studio .Net manage programs in the form of projects. That is, first you

create a project, and then you add source files to the project. The statement in Line 1 assumes

that the file prog.dat is in the same directory (subdirectory) as your project. However, if this

is in a different directory (subdirectory), then you must specify the path where the file is

located, along with the name of the file. For example, suppose that the file prog.dat is on a

flash memory in drive H. Then the statement in Line 1 should be modified as follows:

inData.open("h:\\prog.dat");

Note that there are two \ after h:. Recall from Chapter 2 that in C++, \ is the escape

character. Therefore, to produce a \within a string, you need \\. (To be absolutely sure

about specifying the source where the input file is stored, such as the drive h:\\, check
your system’s documentation.)

Similar conventions for the statement in Line 2.

Suppose that a program reads data from a file. Because different computers have drives

labeled differently, for simplicity, throughout the book, we assume that the file containing

the data and the program reading data from the file are in the same directory (subdirectory).

We typically use .dat, .out, or .txt as an extension for the input and output files

and use Notepad, Wordpad, or TextPad to create and open these files. You can also use

your IDE’s editor, if any, to create .txt (text) files. (To be absolutely sure about it, check

you IDE’s documentation.)

Step 4 typically works as follows. You use the file stream variables with >>, <<, or other
input/output functions. The syntax for using >> or << with file stream variables is exactly
the same as the syntax for using cin and cout. Instead of using cin and cout, however,
you use the file stream variable names that were declared. For example, the statement:

inData >> payRate;

reads the data from the file prog.dat and stores it in the variable payRate. The statement:

outData << "The paycheck is: $" << pay << endl;

154 | Chapter 3: Input/Output

Preview from Notesale.co.uk

Page 195 of 1392

PROGRAMMING EXAMPLE: Student Grade
Write a program that reads a student name followed by five test scores. The program
should output the student name, the five test scores, and the average test score.
Output the average test score with two decimal places.

The data to be read is stored in a file called test.txt. The output should be stored
in a file called testavg.out.

Input A file containing the student name and the five test scores. A sample input is:

Andrew Miller 87.50 89 65.75 37 98.50

Output The student name, the five test scores, and the average of the five test

scores, saved to a file.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

To find the average of the five test scores, you add the five test scores and divide the
sum by 5. The input data is in the following form: the student name followed by the
five test scores. Therefore, you must read the student name first and then read the five
test scores. This problem analysis translates into the following algorithm:

1. Read the student name and the five test scores.

2. Output the student name and the five test scores.

3. Calculate the average.

4. Output the average.

You output the average test score in the fixed decimal format with two decimal places.

Variables The programneeds to read a student’s first and last name and five test scores. Therefore, you
need two variables to store the student name and five variables to store the five test scores.

To find the average, you must add the five test scores and then divide the sum by 5.
Thus, you need a variable to store the average test score. Furthermore, because the
input data is in a file, you need an ifstream variable to open the input file. Because
the program output will be stored in a file, you need an ofstream variable to open
the output file. The program, therefore, needs at least the following variables:

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double test1, test2, test3, test4, test5; //variables to
//read the five test scores

double average; //variable to store the average test score
string firstName; //variable to store the first name
string lastName; //variable to store the last name

MAIN

ALGORITHM

In the preceding sections, we analyzed the problem and determined the formulas to
perform the calculations. We also determined the necessary variables and named

162 | Chapter 3: Input/Output

Preview from Notesale.co.uk

Page 203 of 1392

3

QUICK REVIEW

1. A stream in C++ is an infinite sequence of characters from a source to a
destination.

2. An input stream is a stream from a source to a computer.

3. An output stream is a stream from a computer to a destination.

4. cin, which stands for common input, is an input stream object, typically
initialized to the standard input device, which is the keyboard.

5. cout, which stands for common output, is an output stream object,
typically initialized to the standard output device, which is the screen.

6. When the binary operator >> is usedwith an input streamobject, such ascin, it
is called the stream extraction operator. The left-side operand of >>must be an
input stream variable, such as cin; the right-side operand must be a variable.

7. When the binary operator << is used with an output stream object, such as
cout, it is called the stream insertion operator. The left-side operand of <<
must be an output stream variable, such as cout; the right-side operand of
<< must be an expression or a manipulator.

8. When inputting data into a variable, the operator >> skips all leading
whitespace characters.

9. To use cin and cout, the program must include the header file iostream.

10. The function get is used to read data on a character-by-character basis and
does not skip any whitespace characters.

11. The function ignore is used to skip data in a line.

12. The function putback puts the last character retrieved by the function get
back into the input stream.

13. The function peek returns the next character from the input stream but
does not remove the character from the input stream.

14. Attempting to read invalid data into a variable causes the input stream to
enter the fail state.

15. Once an input failure has occurred, you use the function clear to restore
the input stream to a working state.

The preceding program uses five variables—test1, test2, test3, test4,

and test5—to read the five test scores and then find the average test score.

The Web site accompanying this book contains a modified version of this program

that uses only one variable, testScore, to read the test scores and another

variable, sum, to find the sum of the test scores. The program is named

Ch3_AverageTestScoreVersion2.cpp.

Quick Review | 165

Preview from Notesale.co.uk

Page 206 of 1392

18. Suppose that infile is an ifstream variable and it is associated with the
file that contains the following data: 27306 savings 7503.35. Write the
C++ statement(s) that reads and stores the first input in the int variable
acctNumber, the second input in the string variable accountType, and
the third input in the double variable balance.

19. Suppose that you have the following statements:

ofstream outfile;
double distance = 375;
double speed = 58;
double travelTime;

Write C++ statements to do the following:

a. Open the file travel.dat using the variable outfile.

b. Write the statement to format your output to two decimal places in
fixed form.

c. Write the values of the variables day, distance, and speed in the file
travel.dat.

d. Calculate and write the travelTime in the file travel.dat.

e. Which header files are needed to process the information in (a) to (d)?

PROGRAMMING EXERCISES

1. Consider the following incomplete C++ program:

#include <iostream>

int main()
{

...
}

a. Write a statement that includes the header files fstream, string, and
iomanip in this program.

b. Write statements that declare inFile to be an ifstream variable and
outFile to be an ofstream variable.

c. The program will read data from the file inData.txt and write output
to the file outData.txt. Write statements to open both of these files,
associate inFile with inData.txt, and associate outFile with
outData.txt.

d. Suppose that the file inData.txt contains the following data:

10.20 5.35
15.6
Randy Gill 31
18500 3.5
A

170 | Chapter 3: Input/Output

Preview from Notesale.co.uk

Page 211 of 1392

4

str1 > "Hen" false

str1 = "Hello". The first two characters of str1 and
"Hen" are the same, but the third character 'l' of str1 is

less than the third character 'n' of "Hen". Therefore,
str1 > "Hen" is false.

str3 < "An" true

str3 = "Air". The first characters of str3 and "An" are

the same, but the second character 'i' of "Air" is less than

the second character 'n' of "An". Therefore, str3 < "An"
is true.

str1 == "hello" false
str1 = "Hello". The first character 'H' of str1 is less

than the first character 'h' of "hello" because the ASCII

value of 'H' is 72, and the ASCII value of 'h' is 104.

Therefore, str1 == "hello" is false.

str3 <= str4 true
str3 = "Air" and str4 = "Bill". The first character
'A' of str3 is less than the first character 'B' of str4.
Therefore, str3 <= str4 is true.

str2 > str4 true
str2 = "Hi" and str4 = "Bill". The first character
'H' of str2 is greater than the first character 'B' of str4.
Therefore, str2 > str4 is true.

If two strings of different lengths are compared and the character-by-character compar-
ison is equal until it reaches the last character of the shorter string, the shorter string is
evaluated as less than the larger string, as shown next.

Expression Value/Explanation

str4 >= "Billy" false

str4 = "Bill". It has four characters, and "Billy" has

five characters. Therefore, str4 is the shorter string. All four

characters of str4 are the same as the corresponding first

four characters of "Billy", and "Billy" is the larger

string. Therefore, str4 >= "Billy" is false.

str5 <= "Bigger" true

str5 = "Big". It has three characters, and "Bigger"
has six characters. Therefore, str5 is the shorter string.

All three characters of str5 are the same as the

corresponding first three characters of "Bigger",
and "Bigger" is the larger string. Therefore,
str5 <= "Bigger" is true.

Relational Operators | 181

Preview from Notesale.co.uk

Page 222 of 1392

Expression Value / Explanation

hours + overTime <= 75.00 true

Because hours + overTime is 45.30 + 15.00 =
60.30 and 60.30 <= 75.00 is true, it follows that
hours + overTime <= 75.00 evaluates to true.

(count >= 0) &&
(count <= 100)

true

Now, count is 20. Because 20 >= 0 is true,
count >= 0 is true. Also, 20 <= 100 is true, so
count <= 100 is true. Therefore, (count >=
0) && (count <= 100) is true && true,
which evaluates to true.

('A' <= ch && ch <= 'Z') true

Here, ch is 'B'. Because 'A' <= 'B' is true,
'A' <= ch evaluates to true. Also, because 'B'
<= 'Z' is true, ch <= 'Z' evaluates to true.
Therefore, ('A' <= ch && ch <= 'Z') is true
&& true, which evaluates to true.

The following program evaluates and outputs the values of these logical expressions. Note
that if a logical expression evaluates to true, the corresponding output is 1; if the logical
expression evaluates to false, the corresponding output is 0, as shown in the output at the
end of the program. (Recall that if the value of a logical expression is true, it evaluates to 1,
and if the value of the logical expression is false, it evaluates to 0.)

//Chapter 4 Logical operators

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

bool found = true;
int age = 20;
double hours = 45.30;
double overTime = 15.00;
int count = 20;
char ch = 'B';

cout << fixed << showpoint << setprecision(2);
cout << "found = " << found << ", age = " << age

<< ", hours = " << hours << ", overTime = " << overTime
<< "," << endl << "count = " << count
<< ", ch = " << ch << endl << endl;

cout << "!found evaluates to " << !found << endl;
cout << "hours > 40.00 evaluates to " << (hours > 40.00) << endl;
cout << "!age evaluates to " << !age << endl;
cout << "!found && (hours >= 0) evaluates to "

<< (!found && (hours >= 0)) << endl;

186 | Chapter 4: Control Structures I (Selection)

Preview from Notesale.co.uk

Page 227 of 1392

4

EXAMPLE 4-12

The following statements show an example of a syntax error.

if (hours > 40.0); //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2
else //Line 3

wages = hours * rate; //Line 4

The semicolon at the end of the if statement (see Line 1) ends the if statement, so the
statement in Line 2 separates the else clause from the if statement. That is, else is all
by itself. Because there is no stand-alone else statement in C++, this code generates a
syntax error. As shown in Example 4-10, in a one-way selection, the semicolon at the
end of an if statement is a logical error, whereas as shown in this example, in a two-way
selection, it is a syntax error.

EXAMPLE 4-13

The following program determines an employee’s weekly wages. If the hours worked
exceed 40, wages include overtime payment.

//Program: Weekly wages

#include <iostream>
#include <iomanip>

using namespace std;

int main()

double wages, rate, hours;

cout << fixed << showpoint << setprecision(2); //Line 1
cout << "Line 2: Enter working hours and rate: "; //Line 2
cin >> hours >> rate; //Line 3

if (hours > 40.0) //Line 4
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 5
else //Line 6

wages = hours * rate; //Line 7

cout << endl; //Line 8
cout << "Line 9: The wages are $" << wages

<< endl; //Line 9

return 0;
}

Selection: if and if...else | 193

Preview from Notesale.co.uk

Page 234 of 1392

Compound (Block of) Statements
The if and if. . .else structures control only one statement at a time. Suppose, how-
ever, that you want to execute more than one statement if the expression in an if or
if. . .else statement evaluates to true. To permit more complex statements, C++
provides a structure called a compound statement or a block of statements. A
compound statement takes the following form:

{
statement_1
statement_2

.

.

.
statement_n

}

That is, a compound statement consists of a sequence of statements enclosed in curly
braces, {and }. In an if or if . . .else structure, a compound statement functions as if it
was a single statement. Thus, instead of having a simple two-way selection similar to the
following code:

if (age >= 18)
cout << "Eligible to vote." << endl;

else
cout << "Not eligible to vote." << endl;

you could include compound statements, similar to the following code:

if (age >= 18)
{

cout << "Eligible to vote." << endl;
cout << "No longer a minor." << endl;

}
else
{

cout << "Not eligible to vote." << endl;
cout << "Still a minor." << endl;

}

The compound statement is very useful and will be used in most of the structured
statements in this chapter.

Multiple Selections: Nested if
In the previous sections, you learned how to implement one-way and two-way selections
in a program. Some problems require the implementation of more than two alternatives.
For example, suppose that if the checking account balance is more than $50,000, the
interest rate is 7%; if the balance is between $25,000 and $49,999.99, the interest rate is
5%; if the balance is between $1,000 and $24,999.99, the interest rate is 3%; otherwise,

4

Selection: if and if...else | 195

Preview from Notesale.co.uk

Page 236 of 1392

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is in Line 2. In this code, the if in Line 1 has no
else and is a one-way selection. Once again, the indentation does not determine the
pairing, but it communicates the pairing.

EXAMPLE 4-19

Assume that all variables are properly declared, and consider the following statements:

if (gender == 'M') //Line 1
if (age < 21) //Line 2

policyRate = 0.05; //Line 3
else //Line 4

policyRate = 0.035; //Line 5
else if (gender == 'F') //Line 6

if (age < 21) //Line 7
policyRate = 0.04; //Line 8

else //Line 9
policyRate = 0.03; //Line 10

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is the if in Line 2. The else in Line 6 is paired
with the if in Line 1. The else in Line 9 is paired with the if in Line 7. Once again,
the indentation does not determine the pairing, but it communicates the pairing.

Comparing if...else Statements with a Series of if Statements
Consider the following C++ program segments, all of which accomplish the same task.

a. if (month == 1) //Line 1
cout << "January" << endl; //Line 2

else if (month == 2) //Line 3
cout << "February" << endl; //Line 4

else if (month == 3) //Line 5
cout << "March" << endl; //Line 6

else if (month == 4) //Line 7
cout << "April" << endl; //Line 8

else if (month == 5) //Line 9
cout << "May" << endl; //Line 10

else if (month == 6) //Line 11
cout << "June" << endl; //Line 12

b. if (month == 1)
cout << "January" << endl;

if (month == 2)
cout << "February" << endl;

if (month == 3)
cout << "March" << endl;

198 | Chapter 4: Control Structures I (Selection)

Preview from Notesale.co.uk

Page 239 of 1392

For the expression in Line 1, suppose that the value of age is 25. Because (25 >= 21) is
true and the logical operator used in the expression is ||, the expression evaluates to
true. Due to short-circuit evaluation, the computer does not evaluate the expression
(x == 5). Similarly, for the expression in Line 2, suppose that the value of grade

is 'B'. Because ('B' == 'A') is false and the logical operator used in the
expression is &&, the expression evaluates to false. The computer does not evaluate
(x >= 7).

Comparing Floating-Point Numbers for Equality: A Precaution
Comparison of floating-point numbers for equality may not behave as you would expect.
For example, consider the following program:

#include <iostream>
#include <iomanip>
#include <cmath>

using namespace std;

int main()
{

double x = 1.0;
double y = 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0;

cout << fixed << showpoint << setprecision(17);

cout << "3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 = "
<< 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 << endl;

cout << "x = " << x << endl;
cout << "y = " << y << endl;

if (x == y)
cout << "x and y are the same." << endl;

else
cout << "x and y are not the same." << endl;

if (fabs(x - y) < 0.000001)
cout << "x and y are the same within the tolerance "

<< "0.000001." << endl;
else

cout << " x and y are not the same within the "
<< "tolerance 0.000001." << endl;

return 0;
}

200 | Chapter 4: Control Structures I (Selection)

Preview from Notesale.co.uk

Page 241 of 1392

if (gpa >= 2.0) //Line 9
{ //Line 10

if (gpa >= 3.9) //Line 11
cout << "Dean\’s Honor List." << endl; //Line 12

} //Line 13
else //Line 14

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 15

return 0; //Line 16
} //Line 17

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the GPA: 3.91

Dean’s Honor List.

Sample Run 2:

Enter the GPA: 3.8

Sample Run 3:

Enter the GPA: 1.95

The GPA is below the graduation requirement.
See your academic advisor.

In cases such as this one, the general rule is that you cannot look inside of a block (that is,
inside the braces) to pair an else with an if. The else in Line 14 cannot be paired with
the if in Line 11 because the if statement in Line 11 is enclosed within braces, and the
else in Line 14 cannot look inside those braces. Therefore, the else in Line 14 is paired
with the if in Line 9.

In this book, the C++ programming concepts and techniques are presented in a logical
order. When these concepts and techniques are learned one at a time in a logical order,
they are simple enough to be understood completely. Understanding a concept or
technique completely before using it will save you an enormous amount of debugging
time.

Input Failure and the if Statement
In Chapter 3, you saw that an attempt to read invalid data causes the input stream to enter a
fail state. Once an input stream enters a fail state, all subsequent input statements associated
with that input stream are ignored, and the computer continues to execute the program,
which produces erroneous results. You can use if statements to check the status of an input
stream variable and, if the input stream enters the fail state, include instructions that stop
program execution.

206 | Chapter 4: Control Structures I (Selection)

Preview from Notesale.co.uk

Page 247 of 1392

4

{
cout << "Cannot open the input file. "

<< "The program terminates." << endl;
return 1;

}

outFile.open("testavg.out"); //open the output file

outFile << fixed << showpoint;
outFile << setprecision(2);

cout << "Processing data" << endl;

inFile >> firstName >> lastName;
outFile << "Student name: " << firstName

<< " " << lastName << endl;

inFile >> test1 >> test2 >> test3
>> test4 >> test5;

outFile << "Test scores: " << setw(4) << test1
<< setw(4) << test2 << setw(4) << test3
<< setw(4) << test4 << setw(4) << test5
<< endl;

average = (test1 + test2 + test3 + test4 + test5) / 5.0;

outFile << "Average test score: " << setw(6)
<< average << endl;

inFile.close();
outFile.close();

return 0;
}

Confusion between the Equality Operator (==) and the
Assignment Operator (=)
Recall that if the decision-making expression in the if statement evaluates to true, the
statement part of the if statement executes. In addition, the expression is usually a logical
expression. However, C++ allows you to use any expression that can be evaluated to either
true or false as an expression in the if statement. Consider the following statement:

if (x = 5)
cout << "The value is five." << endl;

The expression—that is, the decision maker—in the if statement is x = 5. The
expression x = 5 is called an assignment expression because the operator = appears in
the expression and there is no semicolon at the end.

This expression is evaluated as follows. First, the right side of the operator = is evaluated,
which evaluates to 5. The value 5 is then assigned to x. Moreover, the value 5—that is, the

Selection: if and if...else | 209

Preview from Notesale.co.uk

Page 250 of 1392

If the statement in (a) is true, then x is larger. If the statement in (b) is true, then y is
larger. However, for this code to work in concert to determine the larger of two integers,
the computer needs to evaluate both expressions:

(x > y) and (y > x)

even if the first statement is true. Evaluating both expressions is a waste of computer
time.

Let’s rewrite this pseudo as follows:

if (x > y) then
x is larger

else
y is larger

Here, only one condition needs to be evaluated. This code looks okay, so let’s put it
into C++.

#include <iostream>

using namespace std;

int main()
{

if (x > y)

Wait . . . once you begin translating the pseudo into a C++ program, you should
immediately notice that there is no place to store the value of x or y. The variables
were not declared, which is a very common oversight, especially for new program-
mers. If you examine the pseudo, you will see that the program needs three variables,
and you might as well make them self-documenting. Let’s start the program code
again:

#include <iostream>

using namespace std;

int main()
{

int num1, num2, larger; //Line 1

if (num1 > num2); //Line 2; error
larger = num1; //Line 3

else //Line 4
larger = num2; //Line 5

return 0;
}

Compiling this program will result in the identification of a common syntax error
(in Line 2). Recall that a semicolon cannot appear after the expression in the

4

Using Pseudocode to Develop, Test, and Debug a Program | 213

Preview from Notesale.co.uk

Page 254 of 1392

int main() //Line 3
{ //Line 4

int testScore; //Line 5

cout << "Enter the test score: "; //Line 6
cin >> testScore; //Line 7
cout << endl; //Line 8

switch (testScore / 10) //Line 9
{ //Line 10
case 0: //Line 11
case 1: //Line 12
case 2: //Line 13
case 3: //Line 14
case 4: //Line 15
case 5: //Line 16

cout << "The grade is F." << endl; //Line 17
case 6: //Line 18

cout << "The grade is D." << endl; //Line 19
case 7: //Line 20

cout << "The grade is C." << endl; //LIne 21
case 8: //Line 22

cout << "The grade is B." << endl; //Line 23
case 9: //Line 24
case 10: //Line 25

cout << "The grade is A." << endl; //Line 26
default: //Line 27

cout << "Invalid test score." << endl; //Line 28
} //Line 29

return 0; //Line 30
} //Line 31

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the test score: 110

Invalid test score.

Sample Run 2:

Enter the test score: -70

Invalid test score.

Sample Run 3:

Enter the test score: 75

The grade is C.
The grade is B.
The grade is A.
Invalid test score.

222 | Chapter 4: Control Structures I (Selection)

Preview from Notesale.co.uk

Page 263 of 1392

4

Variables Because the program will ask the user to input the customer account number,
customer code, number of premium channels, and number of basic service
connections, you need variables to store all of this information. Also, because the
program will calculate the billing amount, you need a variable to store the billing
amount. Thus, the program needs at least the following variables to compute and
print the bill:

int accountNumber; //variable to store the customer's
//account number

char customerType; //variable to store the customer code
int numOfPremChannels; //variable to store the number

//of premium channels to which the
//customer subscribes

int numOfBasicServConn; //variable to store the
//number of basic service connections
//to which the customer subscribes

double amountDue; //variable to store the billing amount

Named

Constants

As you can see, the bill processing fees, the cost of a basic service connection, and the
cost of a premium channel are fixed, and these values are needed to compute the bill.
Although these values are constants in the program, the cable company can change
them with little warning. To simplify the process of modifying the program later,
instead of using these values directly in the program, you should declare them as
named constants. Based on the problem analysis, you need to declare the following
named constants:

//Named constants – residential customers
const double RES_BILL_PROC_FEES = 4.50;
const double RES_BASIC_SERV_COST = 20.50;
const double RES_COST_PREM_CHANNEL = 7.50;

//Named constants – business customers
const double BUS_BILL_PROC_FEES = 15.00;
const double BUS_BASIC_SERV_COST = 75.00;
const double BUS_BASIC_CONN_COST = 5.00;
const double BUS_COST_PREM_CHANNEL = 50.00;

Formulas The program uses a number of formulas to compute the billing amount. To compute
the residential bill, you need to know only the number of premium channels to
which the user subscribes. The following statement calculates the billing amount for a
residential customer.

amountDue = RES_BILL_PROC_FEES + RES_BASIC_SERV_COST
+ numOfPremChannels * RES_COST_PREM_CHANNEL;

To compute the business bill, you need to know the number of basic service
connections and the number of premium channels to which the user subscribes. If
the number of basic service connections is less than or equal to 10, the cost of the

Programming Example: Cable Company Billing | 227

Preview from Notesale.co.uk

Page 268 of 1392

15. Write a program that calculates and prints the bill for a cellular telephone
company. The company offers two types of service: regular and premium.
Its rates vary, depending on the type of service. The rates are computed as
follows:

Regular service: $10.00 plus first 50 minutes are free. Charges for
over 50 minutes are $0.20 per minute.

Premium service: $25.00 plus:

a. For calls made from 6:00 a.m. to 6:00 p.m., the first 75 minutes are free;
charges for more than 75 minutes are $0.10 per minute.

b. For calls made from 6:00 p.m. to 6:00 a.m., the first 100 minutes are
free; charges for more than 100 minutes are $0.05 per minute.

Your program should prompt the user to enter an account number, a
service code (type char), and the number of minutes the service was used.
A service code of r or R means regular service; a service code of p or P
means premium service. Treat any other character as an error. Your pro-
gram should output the account number, type of service, number of
minutes the telephone service was used, and the amount due from the user.

For the premium service, the customer may be using the service during the
day and the night. Therefore, to calculate the bill, you must ask the user to
input the number of minutes the service was used during the day and the
number of minutes the service was used during the night.

16. Write a program to implement the algorithm that you designed in Exercise
22 of Chapter 1. (Assume that the account balance is stored in the file
Ch4_Ex16_Data.txt.) Your program should output account balance before
and after withdrawal and service charges. Also save the account balance after
withdrawal in the file Ch4_Ex16_Output.txt.

17. You have several pictures of different sizes that you would like to frame. A
local picture-framing store offers two types of frames—regular and fancy.
The frames are available in white and can be ordered in any color the
customer desires. Suppose that each frame is 1 inch wide. The cost of
coloring the frame is $0.10 per inch. The cost of a regular frame is $0.15
per inch, and the cost of a fancy frame is $0.25 per inch. The cost of putting
a cardboard paper behind the picture is $0.02 per square inch, and the cost
of putting glass on top of the picture is $0.07 per square inch. The customer
can also choose to put crowns on the corners, which costs $0.35 per crown.
Write a program that prompts the user to input the following information
and then output the cost of framing the picture:

a. The length and width, in inches, of the picture

b. The type of the frame

c. Customer’s choice of color to color the frame

d. If the user wants to put the crowns, then the number of crowns

4

Programming Exercises | 245

Preview from Notesale.co.uk

Page 286 of 1392

In Chapter 4, you saw how decisions are incorporated in programs. In this chapter, you
learn how repetitions are incorporated in programs.

Why Is Repetition Needed?
Suppose you want to add five numbers to find their average. From what you have learned
so far, you could proceed as follows (assume that all variables are properly declared):

cin >> num1 >> num2 >> num3 >> num4 >> num5; //read five numbers
sum = num1 + num2 + num3 + num4 + num5; //add the numbers
average = sum / 5; //find the average

But suppose you want to add and average 100, 1000, or more numbers. You would have
to declare that many variables and list them again in cin statements and, perhaps, again in
the output statements. This takes an exorbitant amount of space and time. Also, if you
want to run this program again with different values or with a different number of values,
you have to rewrite the program.

Suppose you want to add the following numbers:

5 3 7 9 4

Consider the following statements, in which sum and num are variables of type int:

1. sum = 0;

2. cin >> num;

3. sum = sum + num;

The first statement initializes sum to 0. Let us execute statements 2 and 3. Statement 2
stores 5 in num; statement 3 updates the value of sum by adding num to it. After statement
3, the value of sum is 5.

Let us repeat statements 2 and 3. After statement 2 (after the programming code reads the
next number):

num = 3

After statement 3:

sum = sum + num = 5 + 3 = 8

At this point, sum contains the sum of the first two numbers. Let us again repeat statements
2 and 3 (a third time). After statement 2 (after the code reads the next number):

num = 7

After statement 3:

sum = sum + num = 8 + 7 = 15

Now, sum contains the sum of the first three numbers. If you repeat statements 2 and 3
two more times, sum will contain the sum of all five numbers.

248 | Chapter 5: Control Structures II (Repetition)

Preview from Notesale.co.uk

Page 289 of 1392

sum = 0; //Line 4
counter = 0; //Line 5

cout << "Line 6: Enter " << limit
<< " integers." << endl; //Line 6

while (counter < limit) //Line 7
{

cin >> number; //Line 8
sum = sum + number; //Line 9
counter++; //Line 10

}

cout << "Line 11: The sum of the " << limit
<< " numbers = " << sum << endl; //Line 11

if (counter != 0) //Line 12
cout << "Line 13: The average = "

<< sum / counter << endl; //Line 13
else //Line 14

cout << "Line 15: No input." << endl; //Line 15

return 0; //Line 16
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter the number of integers in the list: 12

Line 6: Enter 12 integers.
8 9 2 3 90 38 56 8 23 89 7 2
Line 11: The sum of the 12 numbers = 335
Line 13: The average = 27

This program works as follows. The statement in Line 1 prompts the user to input the
number of data items. The statement in Line 2 reads the next input line and stores it in the
variable limit. The value of limit indicates the number of items in the list. The statements
in Lines 4 and 5 initialize the variables sum and counter to 0. (The variable counter is the
loop control variable.) The statement in Line 6 prompts the user to input numbers. (In this
sample run, the user is prompted to enter 12 integers.) The while statement in Line 7
checks the value of counter to determine how many items have been read. If counter is
less than limit, the while loop proceeds for the next iteration. The statement in Line 8
reads the next number and stores it in the variable number. The statement in Line 9 updates
the value of sum by adding the value of number to the previous value, and the statement in
Line 10 increments the value of counter by 1. The statement in Line 11 outputs the sum of
the numbers; the statements in Lines 12 through 15 output the average.

Note that sum is initialized to 0 in Line 4 in this program. In Line 9, after reading a number at
Line 8, the program adds it to the sum of all the numbers scanned before the current number.
The first number read will be added to zero (because sum is initialized to 0), giving the
correct sum of the first number. To find the average, divide sum by counter. If counter

254 | Chapter 5: Control Structures II (Repetition)

Preview from Notesale.co.uk

Page 295 of 1392

5

srand(time(0));
num = rand() % 100;

The first statement sets the seed, and the second statement generates a random number
greater than or equal to 0 and less than 100. Note how the function time is used. It is
used with an argument, that is, parameter, which is 0.

The program uses the bool variable isGuessed to control the loop. The bool variable
isGuessed is initialized to false. It is set to true when the user guesses the correct
number.

//Flag-controlled while loop.
//Number guessing game.

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int main()
{

//declare the variables
int num; //variable to store the random

//number
int guess; //variable to store the number

//guessed by the user
bool isGuessed; //boolean variable to control

//the loop

srand(time(0)); //Line 1
num = rand() % 100; //Line 2

isGuessed = false; //Line 3

while (!isGuessed) //Line 4
{ //Line 5

cout << "Enter an integer greater"
<< " than or equal to 0 and "
<< "less than 100: "; //Line 6

cin >> guess; //Line 7
cout << endl; //Line 8

if (guess == num) //Line 9
{ //Line 10

cout << "You guessed the correct "
<< "number." << endl; //Line 11

isGuessed = true; //Line 12
} //Line 13
else if (guess < num) //Line 14

cout << "Your guess is lower than the "
<< "number.\n Guess again!"
<< endl; //Line 15

while Looping (Repetition) Structure | 261

Preview from Notesale.co.uk

Page 302 of 1392

5

Case 4: EOF-Controlled while Loops
If the data file is frequently altered (for example, if data is frequently added or deleted), it’s
best not to read the data with a sentinel value. Someone might accidentally erase the sentinel
value or add data past the sentinel, especially if the programmer and the data entry person are
different people. Also, it can be difficult at times to select a good sentinel value. In such
situations, you can use an end-of-file (EOF)-controlled while loop.

Until now, we have used an input stream variable, such as cin, and the extraction
operator, >>, to read and store data into variables. However, the input stream variable
can also return a value after reading data, as follows:

1. If the program has reached the end of the input data, the input stream
variable returns the logical value false.

2. If the program reads any faulty data (such as a char value into an int
variable), the input stream enters the fail state. Once a stream enters the fail
state, any further I/O operations using that stream are considered to be null
operations; that is, they have no effect. Unfortunately, the computer does
not halt the program or give any error messages. It just continues executing
the program, silently ignoring each additional attempt to use that stream. In
this case, the input stream variable returns the value false.

3. In cases other than (1) and (2), the input stream variable returns the
logical value true.

You can use the value returned by the input stream variable to determine whether the
program has reached the end of the input data. Because the input stream variable returns the
logical value true or false, in a while loop, it can be considered a logical expression.

The following is an example of an EOF-controlled while loop:

cin >> variable; //initialize the loop control variable

while (cin) //test the loop control variable
{

.

.

.
cin >> variable; //update the loop control variable
.
.
.

}

Notice that here, the variable cin acts as the loop control variable.

eof Function

In addition to checking the value of an input stream variable, such as cin, to determine
whether the end of the file has been reached, C++ provides a function that you can use
with an input stream variable to determine the end-of-file status. This function is called

while Looping (Repetition) Structure | 263

Preview from Notesale.co.uk

Page 304 of 1392

5

int current; //variable to store the current
//Fibonacci number

int counter; //loop control variable
int nthFibonacci; //variable to store the desired

//Fibonacci number

To calculate the third Fibonacci number, add the values of previous1 and previous2

and store the result in current. To calculate the fourth Fibonacci number, add the value
of the second Fibonacci number (that is,previous2) and the value of the third Fibonacci
number (that is, current). Thus, when the fourth Fibonacci number is calculated, you
no longer need the first Fibonacci number. Instead of declaring additional variables, which
could be too many, after calculating a Fibonacci number to determine the next Fibonacci
number, current becomes previous2 and previous2 becomes previous1.
Therefore, you can again use the variable current to store the next Fibonacci number.
This process is repeated until the desired Fibonacci number is calculated. Initially,
previous1 and previous2 are the first two elements of the sequence, supplied by the
user. From the preceding discussion, it follows that you need five variables.

MAIN

ALGORITHM

1. Prompt the user for the first two numbers—that is, previous1 and
previous2.

2. Read (input) the first two numbers into previous1 and previous2.

3. Output the first two Fibonacci numbers. (Echo input.)

4. Prompt the user for the position of the desired Fibonacci number.

5. Read the position of the desired Fibonacci number into
nthFibonacci.

6. a. if (nthFibonacci == 1)
the desired Fibonacci number is the first Fibonacci number.
Copy the value of previous1 into current.

b. else if (nthFibonacci == 2)
the desired Fibonacci number is the second Fibonacci number.
Copy the value of previous2 into current.

c. else calculate the desired Fibonacci number as follows:

Because you already know the first two Fibonacci numbers of
the sequence, start by determining the third Fibonacci number.

c.1. Initialize counter to 3 to keep track of the calculated
Fibonacci numbers.

c.2. Calculate the next Fibonacci number, as follows:

current = previous2 + previous1;

c.3. Assign the value of previous2 to previous1.

c.4. Assign the value of current to previous2.

c.5. Increment counter.

Programming Example: Fibonacci Number | 271

Preview from Notesale.co.uk

Page 312 of 1392

for Looping (Repetition) Structure
The while loop discussed in the previous section is general enough to implement
most forms of repetitions. The C++ for looping structure discussed here is a specialized
form of the while loop. Its primary purpose is to simplify the writing of counter-controlled
loops. For this reason, the for loop is typically called a counted or indexed for loop.

5

else if (nthFibonacci == 2) //Step 6.b
current = previous2;

else //Step 6.c
{

counter = 3; //Step 6.c.1

//Steps 6.c.2 - 6.c.5
while (counter <= nthFibonacci)
{

current = previous2 + previous1; //Step 6.c.2
previous1 = previous2; //Step 6.c.3
previous2 = current; //Step 6.c.4
counter++; //Step 6.c.5

}//end while
}//end else

cout << "The Fibonacci number at position "
<< nthFibonacci << " is " << current
<< endl; //Step 7

return 0;
}//end main

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the first two Fibonacci numbers: 12 16

The first two Fibonacci numbers are 12 and 16
Enter the position of the desired Fibonacci number: 10

The Fibonacci number at position 10 is 796

Sample Run 2:

Enter the first two Fibonacci numbers: 1 1

The first two Fibonacci numbers are 1 and 1
Enter the position of the desired Fibonacci number: 15

The Fibonacci number at position 15 is 610

for Looping (Repetition) Structure | 273

Preview from Notesale.co.uk

Page 314 of 1392

Next, the update statement increments the value of i by 1, so the value of i becomes
11. Now the loop condition evaluates to false and the for loop terminates. Note
that the output statement in Line 2 executes only once.

4. Consider the following for loop:

for (i = 1; i <= 10; i++); //Line 1
cout << i << " "; //Line 2

cout << endl; //Line 3

This for loop has no effect on the output statement in Line 2. The semicolon at the
end of the for statement terminates the for loop; the action of the for loop is thus
empty. The output statement is all by itself and executes only once.

5. Consider the following for loop:

for (i = 1; ; i++)
cout << i << " ";

cout << endl;

In this for loop, because the loop condition is omitted from the for statement,
the loop condition is always true. This is an infinite loop.

EXAMPLE 5-15

In this example, a for loop reads five numbers and finds their sum and average.
Consider the following program code, in which i, newNum, sum, and average are
int variables.

sum = 0;

for (i = 1; i <= 5; i++)
{

cin >> newNum;
sum = sum + newNum;

}

average = sum / 5;
cout << "The sum is " << sum << endl;
cout << "The average is " << average << endl;

In the preceding for loop, after reading a newNum, this value is added to the previously
calculated (partial) sum of all the numbers read before the current number. The variable
sum is initialized to 0 before the for loop. Thus, after the program reads the first
number and adds it to the value of sum, the variable sum holds the correct sum of the
first number.

278 | Chapter 5: Control Structures II (Repetition)

Preview from Notesale.co.uk

Page 319 of 1392

The syntax of the for loop, which is:

for (initial expression; logical expression; update expression)
statement

is functionally equivalent to the following while statement:

initial expression
while (expression)
{

statement
update expression

}

For example, the following for and while loops are equivalent:

for (int i = 0; i < 10; i++) int i = 0;
cout << i << " "; while (i < 10)

cout << endl; {
cout << i << " ";
i++;

}
cout << endl;

If the number of iterations of a loop is known or can be determined in advance, typically

programmers use a for loop.

EXAMPLE 5-16 (F IBONACCI NUMBER PROGRAM: REVISITED)

The Programming Example: Fibonacci Number given in the previous section uses a
while loop to determine the desired Fibonacci number. You can replace the while
loop with an equivalent for loop as follows:

for (counter = 3; counter <= nthFibonacci; counter++)
{

current = previous2 + previous1;
previous1 = previous2;
previous2 = current;
counter++;

}//end for

The complete program listing of the program that uses a for loop to determine the
desired Fibonacci number is given at the Web site accompanying this book. The program
is named Ch5_FibonacciNumberUsingAForLoop.cpp.

In the following C++ program, we recommend that you walk through each step.

5

for Looping (Repetition) Structure | 279

Preview from Notesale.co.uk

Page 320 of 1392

int counter; //loop control variable
int number; //variable to store the number read
int zeros; //variable to store the zero count
int evens; //variable to store the even count
int odds; //variable to store the odd count

Clearly, you must initialize the variables zeros, evens, and odds to zero. You can
initialize these variables when you declare them.

MAIN

ALGORITHM

1. Initialize the variables.

2. Prompt the user to enter 20 numbers.

3. For each number in the list:

a. Read the number.

b. Output the number (echo input).

c. If the number is even:

{
i. Increment the even count.

ii. If the number is zero, increment the zero count.
}
otherwise

Increment the odd count.

4. Print the results.

Before writing the C++ program, let us describe Steps 1–4 in greater detail. It will be
much easier for you to then write the instructions in C++.

1. Initialize the variables. You can initialize the variables zeros,
evens, and odds when you declare them.

2. Use an output statement to prompt the user to enter 20 numbers.

3. For Step 3, you can use a for loop to process and analyze the 20
numbers. In pseudocode, this step is written as follows:

for (counter = 1; counter <= 20; counter++)
{

read the number;
output number;

switch (number % 2) // check the remainder
{
case 0:

increment even count;
if (number == 0)

increment zero count;
break;

282 | Chapter 5: Control Structures II (Repetition)

Preview from Notesale.co.uk

Page 323 of 1392

to sum, check whether num is negative. If num is negative, an error message appears on
the screen and isNegative is set to true. In the next iteration, when the expression in
the while statement is evaluated, it evaluates to false because !isNegative is
false. (Note that because isNegative is true, !isNegative is false.)

The following while loop is written without using the variable isNegative:

sum = 0;
cin >> num;

while (cin)
{

if (num < 0) //if num is negative, terminate the loop
{

cout << "Negative number found in the data." << endl;
break;

}

sum = sum + num;
cin >> num;

}

In this form of the while loop, when a negative number is found, the expression in the
if statement evaluates to true; after printing an appropriate message, the break
statement terminates the loop. (After executing the break statement in a loop, the
remaining statements in the loop are discarded.)

The break statement is an effective way to avoid extra variables to control a loop and

produce an elegant code. However, break statements must be used very sparingly

within a loop. An excessive use of these statements in a loop will produce spaghetti-code

(loops with many exit conditions) that can be very hard to understand and manage. You

should be extra careful in using break statements and ensure that the use of the break
statements makes the code more readable and not less readable. If you’re not sure, don’t

use break statements.

The continue statement is used in while, for, and do. . .while structures. When the
continue statement is executed in a loop, it skips the remaining statements in the loop and
proceeds with the next iteration of the loop. In a while and do. . .while structure, the
expression (that is, the loop-continue test) is evaluated immediately after the continue
statement. In a for structure, the update statement is executed after the continue
statement, and then the loop condition (that is, the loop-continue test) executes.

If the previous program segment encounters a negative number, the while loop termi-
nates. If you want to discard the negative number and read the next number rather than
terminate the loop, replace the break statement with the continue statement, as shown
in the following example:

sum = 0;
cin >> num;

290 | Chapter 5: Control Structures II (Repetition)

Preview from Notesale.co.uk

Page 331 of 1392

(Assume that ch is a variable of type char.) The general loop to process the data is:

infile >> ID; //Line 1
while (infile) //Line 2
{ //Line 3

infile.get(ch); //Line 4
getline(infile, name); //Line 5

//process the numbers in each line //Line 6
//output the name and total votes
infile >> ID; //begin processing the next line

}

The code to read and sum up the voting data is:

sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9

sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number

} //Line 12

We can now write the following nested loop to process data as follows:

infile >> ID; //Line 1
while (infile) //Line 2
{ //Line 3

infile.get(ch); //Line 4
getline(infile, name); //Line 5
sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9

sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number

}

cout << "Name: " << name
<< ", Votes: " << sum
<< endl; //Line 12

infile >> ID; //Line 13; begin processing the next line
}

Avoiding Bugs by Avoiding Patches
Debugging sections in the previous chapters illustrated how to debug syntax and logical
errors, and how to avoid partially understood concepts. In this section, we illustrate how
to avoid a software patch to fix a code. A software patch is a piece of code written on top
of an existing piece of code and intended to fix a bug in the original code.

296 | Chapter 5: Control Structures II (Repetition)

Preview from Notesale.co.uk

Page 337 of 1392

5

program closely, we can see that the four lines are produced because the outer loop executes
four times. The values assigned to loop control variable i are 1, 2, 3, and 4. This is an example
of the classic ‘‘off-by-one’’ problem. (In an ‘‘off-by-one problem,’’ either the loop executes
one too many or one too few times.) We can eliminate this problem by correctly setting the
values of the loop control variable. For example, we can rewrite the loops as follows:

for (i = 1; i <= 3; i++)
{

sum = 0;

for (j = 1; j <= 4; j++)
{

infile >> num;
cout << num << " ";;
sum = sum + num;

}

cout << "sum = " <<< sum << endl;
}

This code fixes the original problem without using a software patch. It also represents
good programming practice. The complete modified program is available at the Web site
accompanying this book and is named Ch5_LoopWithBugsCorrectedProgram.cpp.

Debugging Loops
As we have seen in the earlier debugging sections, no matter how careful a program is
designed and coded, errors are likely to occur. If there are syntax errors, the compiler will
identify them. However, if there are logical errors, we must carefully look at the code or
even maybe at the design and try to find the errors. To increase the reliability of the
program, errors must be discovered and fixed before the program is released to the users.

Once an algorithm is written, the next step is to verify that it works properly. If the algorithm
is a simple sequential flow or contains a branch, it can be hand traced or you can use the
debugger, if any, provided by the IDE. Typically, loops are harder to debug. The correctness
of a loop can be verified by using loop invariants. A loop invariant is a set of statements that
remains true each time the loop body is executed. Let p be a loop invariant and q be the
(logical) expression in a loop statement. Then p && q remains true before each iteration of the
loop and p && not(q) is true after the loop terminates. The full discussion of loop invariants is
beyond the scope of the book. However, you can learn about loop invariants in the book:
Discrete Mathematical Structures: Theory and Applications, D.S. Malik and M.K. Sen, Course
Technology, 2004. Here, we give a few tips that you can use to debug a loop.

As discussed in the previous section, the most common error associated with loops is off-
by-one. If a loop turns out to be an infinite loop, the error is most likely in the logical
expression that controls the execution of the loop. Check the logical expression carefully
and see if you have reversed an inequality, an assignment statement symbol appears in place
of the equality operator, or && appears in place of ||. If the loop changes the values of

Debugging Loops | 299

Preview from Notesale.co.uk

Page 340 of 1392

5

16. Putting a semicolon at the end of the for loop (before the body of the for
loop) is a semantic error. In this case, the action of the for loop is empty.

17. The syntax of the do. . .while statement is:

do
statement

while (expression);

statement is called the body of the do. . .while loop.

18. Both while and for loops are called pretest loops. A do. . .while loop is
called a posttest loop.

19. The while and for loops may not execute at all, but the do. . .while loop
always executes at least once.

20. Executing a break statement in the body of a loop immediately terminates
the loop.

21. Executing a continue statement in the body of a loop skips the loop’s
remaining statements and proceeds with the next iteration.

22. When a continue statement executes in a while or do. . .while loop,
the expression update statement in the body of the loop may not execute.

23. After a continue statement executes in a for loop, the update statement
is the next statement executed.

EXERCISES

1. Mark the following statements as true or false.

a. In a counter-controlled while loop, it is not necessary to initialize the
loop control variable.

b. It is possible that the body of a while loop may not execute at all.

c. In an infinite while loop, the while expression (the decision maker) is
initially false, but after the first iteration it is always true.

d. The while loop:

j = 0;
while (j <= 10)

j++;

terminates if j > 10.

e. A sentinel-controlled while loop is an event-controlled while loop
whose termination depends on a special value.

f. A loop is a control structure that causes certain statements to execute
over and over.

g. To read data from a file of an unspecified length, an EOF-controlled
loop is a good choice.

Exercises | 301

Preview from Notesale.co.uk

Page 342 of 1392

h. When a while loop terminates, the control first goes back to the
statement just before the while statement, and then the control goes
to the statement immediately following the while loop.

2. What is the output of the following C++ code?

int count = 1;
int y = 100;
while (count < 100)
{

y = y - 1;
count++;

}
cout << " y = " << y << " and count = " << count << endl;

3. What is the output of the following C++ code?

int num = 5;
while (num > 5)

num = num + 2;
cout << num << endl;

4. What is the output of the following C++ code?

int num = 1;
while (num < 10)
{

cout << num << " ";
num = num + 2;

}
cout << endl;

5. When does the following while loop terminate?

ch = 'D';
while ('A' <= ch && ch <= 'Z')

ch = static_cast<char>(static_cast<int>(ch) + 1);

6. Suppose that the input is 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> sum;
cin >> num;

for (j = 1; j <= 3; j++)
{

cin >> num;
sum = sum + num;

}
cout << "Sum = " << sum << endl;

7. Suppose that the input is 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> sum;
cin >> num;

while (num != -1)

302 | Chapter 5: Control Structures II (Repetition)

Preview from Notesale.co.uk

Page 343 of 1392

5

{
sum = sum + num;
cin >> num;

}
cout << "Sum = " << sum << endl;

8. Suppose that the input is 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> num;
sum = num;

while (num != -1)
{

cin >> num;
sum = sum + num;

}
cout << "Sum = " << sum << endl;

9. Suppose that the input is 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

sum = 0;
cin >> num;

while (num != -1)
{

sum = sum + num;
cin >> num;

}
cout << "Sum = " << sum << endl;

10. Correct the following code so that it finds the sum of 20 numbers.

sum = 0;

while (count < 20)
cin >> num;
sum = sum + num;
count++;

11. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int x, y, z;

x = 4; y = 5;
z = y + 6;

while(((z - x) % 4) != 0)
{

cout << z << " ";
z = z + 7;

}

Exercises | 303

Preview from Notesale.co.uk

Page 344 of 1392

cout << endl;

return 0;
}

12. Suppose that the input is:

58 23 46 75 98 150 12 176 145 -999

What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int num;

cin >> num;

while (num != -999)
{

cout << num % 25 << " ";
cin >> num;

}

cout << endl;

return 0;
}

13. The following program is designed to input two numbers and output their
sum. It asks the user if he/she would like to run the program. If the answer
is Y or y, it prompts the user to enter two numbers. After adding the
numbers and displaying the results, it again asks the user if he/she would
like to add more numbers. However, the program fails to do so. Correct the
program so that it works properly.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

char response;
double num1;
double num2;

cout << "This program adds two numbers." << endl;
cout << "Would you like to run the program: (Y/y) ";
cin >> response;
cout << endl;

304 | Chapter 5: Control Structures II (Repetition)

Preview from Notesale.co.uk

Page 345 of 1392

40. Given the following program segment:

j = 2;
for (i = 1; i <= 5; i++);
{

cout << setw(4) << j;
j = j + 5;

}
cout << endl;

write a while loop and a do. . .while loop that have the same output.

41. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int x, y, z;
x = 4; y = 5;
z = y + 6;
do
{

cout << z << " ";
z = z + 7;

}
while (((z - x) % 4) != 0);

cout << endl;

return 0;
}

42. To learn how nested for loops work, do a walk-through of the following
program segments and determine, in each case, the exact output.

a. int i, j;

for (i = 1; i <= 5; i++)
{

for (j = 1; j <= 5; j++)
cout << setw(3) << i;

cout << endl;
}

b. int i, j;
for (i = 1; i <= 5; i++)
{

for (j = (i + 1); j <= 5; j++)
cout << setw(5) << j;

cout << endl;
}

5

Exercises | 311

Preview from Notesale.co.uk

Page 352 of 1392

that prompts the user to enter the number of lockers in a school. After the
game is over, the program outputs the number of lockers that are opened.
Test run your program for the following inputs: 1000, 5000, 10000. Do
you see any pattern developing?

(Hint: Consider locker number 100. This locker is visited by student
numbers 1, 2, 4, 5, 10, 20, 25, 50, and 100. These are the positive divisors
of 100. Similarly, locker number 30 is visited by student numbers 1, 2, 3, 5,
6, 10, 15, and 30. Notice that if the number of positive divisors of a locker
number is odd, then at the end of the game, the locker is opened. If the
number of positive divisors of a locker number is even, then at the end of
the game, the locker is closed.)

19. When you borrow money to buy a house, a car, or for some other purpose,
you repay the loan by making periodic payments over a certain period of time.
Of course, the lending company will charge interest on the loan. Every
periodic payment consists of the interest on the loan and the payment toward
the principal amount. To be specific, suppose that you borrow $1000 at the
interest rate of 7.2% per year and the payments are monthly. Suppose that your
monthly payment is $25. Now, the interest is 7.2% per year and the payments
are monthly, so the interest rate per month is 7.2/12¼ 0.6%. The first month’s
interest on $1000 is 1000 � 0.006 ¼ 6. Because the payment is $25 and
interest for the first month is $6, the payment toward the principal amount is
25 – 6 ¼ 19. This means after making the first payment, the loan amount is
1000 – 19 ¼ 981. For the second payment, the interest is calculated on $981.
So the interest for the second month is 981 � 0.006 ¼ 5.886, that is,
approximately $5.89. This implies that the payment toward the principal is
25 – 5.89¼ 19.11 and the remaining balance after the second payment is 981 –
19.11 ¼ 961.89. This process is repeated until the loan is paid. Write a
program that accepts as input the loan amount, the interest rate per year,
and the monthly payment. (Enter the interest rate as a percentage. For
example, if the interest rate is 7.2% per year, then enter 7.2.) The program
then outputs the number of months it would take to repay the loan. (Note
that if the monthly payment is less than the first month’s interest, then after
each payment, the loan amount will increase. In this case, the program
must warn the borrower that the monthly payment is too low, and with
this monthly payment, the loan amount could not be repaid.)

20. Enhance your program from Exercise 19 by first telling the user the
minimum monthly payment and then prompting the user to enter the
monthly payment. Your last payment might be more than the remaining
loan amount and interest on it. In this case, output the loan amount before
the last payment and the actual amount of the last payment. Also, output the
total interest paid.

21. Write a complete program to test the code in Example 5-21.

22. Write a complete program to test the code in Example 5-22.

5

Programming Exercises | 317

Preview from Notesale.co.uk

Page 358 of 1392

In C++, return is a reserved word.

When a return statement executes in a function, the function immediately terminates
and the control goes back to the caller. Moreover, the function call statement is replaced
by the value returned by the return statement. When a return statement executes in
the function main, the program terminates.

To put the ideas in this discussion to work, let us write a function that determines the
larger of two numbers. Because the function compares two numbers, it follows that this
function has two parameters and that both parameters are numbers. Let us assume that the
data type of these numbers is floating-point (decimal)—say, double. Because the larger
number is of type double, the function’s data type is also double. Let us name this
function larger. The only thing you need to complete this function is the body of the
function. Thus, following the syntax of a function, you can write this function as follows:

double larger(double x, double y)
{

double max;

if (x >= y)
max = x;

else
max = y;

return max;
}

Note that the function larger requires that you use an additional variable max (called a
local declaration, in which max is a variable local to the function larger). Figure 6-1
describes various parts of the function larger.

{

max = x;

max = Y;
else

}

Function
return type

Function
name

Formal
parameters

Formal parameters list

Function return value

Local variable
Function

body

Function
heading larger(x, y)double double double

max;

max;

return

double

if (x >= y)

FIGURE 6-1 Various parts of the function larger

328 | Chapter 6: User-Defined Functions I

Preview from Notesale.co.uk

Page 369 of 1392

Syntax: Function Prototype
The general syntax of the function prototype of a value-returning function is:

functionType functionName(parameter list);

(Note that the function prototype ends with a semicolon.)

For the function larger, the prototype is:

double larger(double x, double y);

When writing the function prototype, you do not have to specify the variable name in the

parameter list. However, you must specify the data type of each parameter.

You can rewrite the function prototype of the function larger as follows:

double larger(double, double);

FINAL PROGRAM

You now know enough to write the entire program, compile it, and run it. The following
program uses the functions larger, compareThree, and main to determine the larger/
largest of two or three numbers.

//Program: Largest of three numbers

#include <iostream>

using namespace std;

double larger(double x, double y);
double compareThree(double x, double y, double z);

int main()
{

double one, two; //Line 1

cout << "Line 2: The larger of 5 and 10 is "
<< larger(5, 10) << endl; //Line 2

cout << "Line 3: Enter two numbers: "; //Line 3
cin >> one >> two; //Line 4
cout << endl; //Line 5

cout << "Line 6: The larger of " << one
<< " and " << two << " is "
<< larger(one, two) << endl; //Line 6

332 | Chapter 6: User-Defined Functions I

Preview from Notesale.co.uk

Page 373 of 1392

2. For each remaining number in the list:

a. Read the next number. Store it in a variable called num.

b. Compare num and max. If max < num, then num is the new
largest number, so update the value of max by copying num into
max. If max >= num, discard num; that is, do nothing.

3. Because max now contains the largest number, print it.

To find the larger of two numbers, the program uses the function larger.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// This program finds the largest number of a set of 10
// numbers.
//**

#include <iostream>

using namespace std;

double larger(double x, double y);

int main()
{

double num; //variable to hold the current number
double max; //variable to hold the larger number
int count; //loop control variable

cout << "Enter 10 numbers." << endl;
cin >> num; //Step 1
max = num; //Step 1

for (count = 1; count < 10; count++) //Step 2
{

cin >> num; //Step 2a
max = larger(max, num); //Step 2b

}

cout << "The largest number is " << max
<< endl; //Step 3

return 0;
}//end main

342 | Chapter 6: User-Defined Functions I

Preview from Notesale.co.uk

Page 383 of 1392

c. Calculate the bill.

d. Return the amount due.

This function contains a statement to prompt the user to enter the number of premium
channels (Step a) and a statement to read the number of premium channels (Step b).Other
items needed to calculate the billing amount, such as the cost of basic service connection
and bill-processing fees, are defined as named constants (before the definition of the
function main). Therefore, to calculate the billing amount, this function does not need to
get any value from the function main. This function, therefore, has no parameters.

Local

Variables

(Function

residential)

From the previous discussion, it follows that the function residential requires
variables to store both the number of premium channels and the billing amount. This
function needs only two local variables to calculate the billing amount:

int noOfPChannels; //number of premium channels
double bAmount; //billing amount

The definition of the function residential can now be written as follows:

double residential()
{

int noOfPChannels; //number of premium channels
double bAmount; //billing amount
cout << "Enter the number of premium "

<< "channels used: ";
cin >> noOfPChannels;
cout << endl;

bAmount = RES_BILL_PROC_FEES +
RES_BASIC_SERV_COST +
noOfPChannels * RES_COST_PREM_CHANNEL;

return bAmount;
}

Function

business

To compute the business bill, you need to know the number of both the basic service
connections and the premium channels to which the customer subscribes. Then, based
on these numbers, you can calculate the billing amount. The billing amount is then
returned using the return statement. The following six steps describe this function:

a. Prompt the user for the number of basic service connections.

b. Read the number of basic service connections.

c. Prompt the user for the number of premium channels.

d. Read the number of premium channels.

e. Calculate the bill.

f. Return the amount due.

344 | Chapter 6: User-Defined Functions I

Preview from Notesale.co.uk

Page 385 of 1392

QUICK REVIEW

1. Functions are like miniature programs and are called modules.

2. Functions enable you to divide a program into manageable tasks.

3. The C++ system provides the standard (predefined) functions.

4. To use a standard function, you must:

i. Know the name of the header file that contains the function’s specification,

ii. Include that header file in the program, and

iii. Know the name and type of the function and number and types of the
parameters (arguments).

5. There are two types of user-defined functions: value-returning functions
and void functions.

6. Variables defined in a function heading are called formal parameters.

7. Expressions, variables, or constant values used in a function call are called
actual parameters.

8. In a function call, the number of actual parameters and their types must
match with the formal parameters in the order given.

9. To call a function, use its name together with the actual parameter list.

10. A value-returning function returns a value. Therefore, a value-returning
function is used (called) in either an expression or an output statement or as
a parameter in a function call.

11. The general syntax of a user-defined function is:

functionType functionName(formal parameter list)
{

statements
}

12. The line functionType functionName(formal parameter list) is
called the function heading (or function header). Statements enclosed
between braces ({ and }) are called the body of the function.

13. The function heading and the body of the function are called the definition
of the function.

6

Enter the number of basic service connections: 25

Enter the number of premium channels used: 9

Account number = 21341
Amount due = $615.00

Quick Review | 349

Preview from Notesale.co.uk

Page 390 of 1392

Your program must contain at least the following functions: a function that
calculates and returns the mean and a function that calculates the standard
deviation.

11. When you borrow money to buy a house, a car, or for some other purposes,
then you typically repay it by making periodic payments. Suppose that the
loan amount is L, r is the interest rate per year, m is the number of payments
in a year, and the loan is for t years. Suppose that i ¼ (r / m) and r is in
decimal. Then the periodic payment is:

R ¼ Li

1� ð1þ iÞ�mt ;

You can also calculate the unpaid loan balance after making certain payments.
For example, the unpaid balance after making k payments is:

L0 ¼ R
1� ð1þ iÞ�ðmt�kÞ

i

" #
;

where R is the periodic payment. (Note that if the payments are monthly, then
m ¼ 12.)

Write a program that prompts the user to input the values of L, r, m, t, and k.
The program then outputs the apropriate values. Your program must contain
at least two functions, with appropriate parameters, to calculate the periodic
payments and the unpaid balance after certain payments. Make the program
menu driven and use a loop so that the user can repeat the program for
different values.

12. During the tax season, every Friday, J&J accounting firm provides assistance
to people who prepare their own tax returns. Their charges are as follows.

a. If a person has low income (<¼ 25,000) and the consulting time is less
than or equal to 30 minutes, there are no charges; otherwise, the service
charges are 40% of the regular hourly rate for the time over 30 minutes.

b. For others, if the consulting time is less than or equal to 20 minutes, there
are no service charges; otherwise, service charges are 70% of the regular
hourly rate for the time over 20 minutes.

(For example, suppose that a person has low income and spent 1 hour and 15 minutes, and
the hourly rate is $70.00. Then the billing amount is 70.00 � 0.40 � (45 / 60) ¼ $21.00.)

Write a program that prompts the user to enter the hourly rate, the total consulting time,
and whether the person has low income. The program should output the billing amount.
Your program must contain a function that takes as input the hourly rate, the total
consulting time, and a value indicating whether the person has low income. The function
should return the billing amount. Your program may prompt the user to enter the
consulting time in minutes.

360 | Chapter 6: User-Defined Functions I

Preview from Notesale.co.uk

Page 401 of 1392

7

Value Parameters
The previous section defined two types of parameters—value parameters and reference
parameters. Example 7-3 shows a program that uses a function with parameters. Before
considering more examples of void functions with parameters, let us make the following
observation about value and reference parameters. When a function is called, the value of
the actual parameter is copied into the corresponding formal parameter. If the formal
parameter is a value parameter, then after copying the value of the actual parameter,
there is no connection between the formal parameter and actual parameter; that is, the
formal parameter has its own copy of the data. Therefore, during program execution, the
formal parameter manipulates the data stored in its own memory space. The program in
Example 7-4 further illustrates how a value parameter works.

EXAMPLE 7-4

The following program shows how a formal parameter of a primitive data type works.

//Example 7-4
//Program illustrating how a value parameter works.

#include <iostream>

using namespace std;

void funcValueParam(int num);

int main()
{

int number = 6; //Line 1

cout << "Line 2: Before calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 2

funcValueParam(number); //Line 3

cout << "Line 4: After calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 4

return 0;
}

void funcValueParam(int num)
{

cout << "Line 5: In the function funcValueParam, "
<< "before changing, num = " << num
<< endl; //Line 5

num = 15; //Line 6

Value Parameters | 367

Preview from Notesale.co.uk

Page 408 of 1392

Line 6 produces the following output:

Line 6: After funOne: num1 = 10, num2 = 30, and ch = A

The statement in Line 7 is a function call to the function funTwo. Now funTwo has three
parameters: x, y, and w. Also, x and w are reference parameters, and y is a value parameter.
Thus, x receives the address of its corresponding actual parameter, which is num2, and w

receives the address of its corresponding actual parameter, which is ch. The variable y
copies the value 25 into its memory cell. Figure 7-12 shows the values before the
statement in Line 14 executes.

After the statement in Line 14, x++;, executes, the variables are as shown in Figure 7-13.
(Note that the variable x changed the value of num2.)

7

main

Ach

num2 30

num1 10

FIGURE 7-11 Values of the variables when control goes back to Line 6

funTwo

y

x

w

25

main

Ach

num2 30

num1 10

FIGURE 7-12 Values of the variables before the statement in Line 14 executes

funTwo

y

x

w

25

main

Ach

num2 31

num1 10

FIGURE 7-13 Values of the variables after the statement in Line 14 executes

Value and Reference Parameters and Memory Allocation | 377

Preview from Notesale.co.uk

Page 418 of 1392

Table 7-1 summarizes the scope (visibility) of the identifiers.

7

TABLE 7-1 Scope (Visibility) of the Identifiers

Identifier
Visibility
in one

Visibility
in two

Visibility
in three

Visibility
in Block
four

Visibility
in main

RATE (before main) Y Y Y Y Y

z (before main) Y Y N N N

t (before main) Y Y Y Y Y

main Y Y Y Y Y

local variables of main N N N N Y

one (function name) Y Y N N Y

x (one’s formal parameter) Y N N N N

y (one’s formal parameter) Y N N N N

w (before function two) N Y Y Y N

two (function name) Y Y Y Y Y

a (two’s formal parameter) N Y N N N

b (two’s formal parameter) N Y N N N

x (two’s formal parameter) N Y N N N

local variables of two N Y N N N

three (function name) Y Y Y Y Y

one (three’s formal
parameter)

N N Y Y N

y (three’s formal
parameter)

N N Y Y N

z (three’s formal
parameter)

N N Y Y N

ch (three’s local
variable)

N N Y Y N

a (three’s local variable) N N Y N N

x (Block four’s local
variable)

N N N Y N

a (Block four’s local
variable)

N N N Y N

Scope of an Identifier | 385

Preview from Notesale.co.uk

Page 426 of 1392

7

global variables in one area of a program might be misunderstood as problems caused in
another area.

For example, consider the following program:

//Global variable

#include <iostream>

using namespace std;

int t;

void funOne(int& a);

int main()
{

t = 15; //Line 1

cout << "Line 2: In main: t = " << t << endl; //Line 2

funOne(t); //Line 3

cout << "Line 4: In main after funOne: "
<< " t = " << t << endl; //Line 4

return 0; //Line 5
}

void funOne(int& a)
{

cout << "Line 6: In funOne: a = " << a
<< " and t = " << t << endl; //Line 6

a = a + 12; //Line 7
cout << "Line 8: In funOne: a = " << a

<< " and t = " << t << endl; //Line 8

t = t + 13; //Line 9

cout << "Line 10: In funOne: a = " << a
<< " and t = " << t << endl; //Line 10

}

This program has a variable t that is declared before the definition of any function.
Because none of the functions has an identifier t, the variable t is accessible any-
where in the program. Also, the program consists of a void function with a reference
parameter.

In Line 3, the function main calls the function funOne, and the actual parameter passed
to funOne is t. So, a, the formal parameter of funOne, receives the address of t. Any
changes that a makes to its value immediately change t. Because t can be directly
accessed anywhere in the program, in Line 9, the function funOne changes the value of t

Global Variables, Named Constants, and Side Effects | 387

Preview from Notesale.co.uk

Page 428 of 1392

7

do
{

showChoices();
cin >> choice;
cout << endl;

switch (choice)
{
case 1:

cout << "Enter feet and inches: ";
cin >> feet >> inches;
cout << endl;
feetAndInchesToMetersAndCent(feet, inches,

meters, centimeters);
cout << feet << " feet(foot), "

<< inches << " inch(es) = "
<< meters << " meter(s), "
<< centimeters << " centimeter(s)." << endl;

break;

case 2:
cout << "Enter meters and centimeters: ";
cin >> meters >> centimeters;
cout << endl;
metersAndCentTofeetAndInches(meters, centimeters,

feet, inches);
cout << meters << " meter(s), "

<< centimeters << " centimeter(s) = "
<< feet << " feet(foot), "
<< inches << " inch(es)."
<< endl;

break;

case 99:
break;

default:
cout << "Invalid input." << endl;

}
}
while (choice != 99);

return 0;
}

void showChoices()
{

cout << "Enter--" << endl;
cout << "1: To convert from feet and inches to meters "

<< "and centimeters." << endl;
cout << "2: To convert from meters and centimeters to feet "

<< "and inches." << endl;
cout << "99: To quit the program." << endl;

}

Global Variables, Named Constants, and Side Effects | 389

Preview from Notesale.co.uk

Page 430 of 1392

void poolFillTime(double len, double wid, double dep,
double fRate, int& fTime)

{
double poolWaterCapacity;

poolWaterCapacity = poolCapacity(len, wid, dep);
fTime = static_cast<int> (poolWaterCapacity / fRate + 0.5);

}

void print(int fTime)
{

cout << "The time to fill the pool is approximately: "
<< ftime / 60 << " hour(s) and " << ftime % 60
<< " minute(s)." << endl;

}

Sample Run: In this sample run, the user input is shaded.

Enter the length, width, and the depth of the pool (in feet): 30 15 10

Enter the rate of the water, (in gallons per minute): 100

The time to fill the pool is approximately: 5 hour(s) and 37 minute(s).

As you can see, the program contains the function poolCapacity to find the amount of
water needed to fill the pool, the function poolFillTime to find the time to fill the pool,
and some other functions. Now, to calculate the time to fill the pool, you must know the
amount of the water needed and the rate at which the water is released in the pool. Because
the results of the function poolCapacity are needed in the function poolFillTime, the
function poolFillTime cannot be tested alone. Does this mean that we must write the
functions in a specific order? Not necessarily, especially when different people are working
on different parts of the program. In situations such as these, we use function stubs.
A function stub is a function that is not fully coded. For a void function, a function stub
might consist of only a function header and a set of empty braces, {}, and for a value-
returning function it might contain only a return statement with a plausible return value. For
example, the function stub for the function poolCapacity can be:

double poolCapacity(double len, double wid, double dep)

{
return 1000.00;

}

This allows the function poolCapacity to be called while the program is being coded.
Ultimately, the stub for function poolCapacity is replaced with a function that properly
calculates the amount of water needed to fill the pool based on the values of the parameters.
In the meantime, the function stub allows work to continue on other parts of the program
that call the function poolCapacity.

Before we look at some programming examples, another concept about functions is
worth mentioning: function overloading.

394 | Chapter 7: User-Defined Functions II

Preview from Notesale.co.uk

Page 435 of 1392

In the previous program, because the data is assumed to be input from the standard

input device (the keyboard) and the function getNumber returns only one value, you

can also write the function getNumber as a value-returning function. If written as a

value-returning function, the definition of the function getNumber is:

int getNumber()
{

int num;

cin >> num;

return num;
}

In this case, the statement (function call):

getNumber(number);

in the function main should be replaced by the statement:

number = getNumber();

Of course, you also need to change the function prototype.

PROGRAMMING EXAMPLE: Data Comparison
This programming example illustrates:

• How to read data from more than one file in the same program.

• How to send output to a file.

• How to generate bar graphs.

• With the help of functions and parameter passing, how to use the
same program segment on different (but similar) sets of data.

• How to use structured design to solve a problem and how to perform
parameter passing.

This program is broken into two parts. First, you learn how to read data from more
than one file. Second, you learn how to generate bar graphs.

Two groups of students at a local university are enrolled in certain special courses
during the summer semester. The courses are offered for the first time and are taught
by different teachers. At the end of the semester, both groups are given the same tests
for the same courses, and their scores are recorded in separate files. The data in each
file is in the following form:

404 | Chapter 7: User-Defined Functions II

Preview from Notesale.co.uk

Page 445 of 1392

The definition of the function printResult follows:

void printResult(ofstream& outp, string courseID, int groupNo,
double avg)

{
if (groupNo == 1)

outp << " " << courseID << " ";
else

outp << " ";

outp << setw(8) << groupNo << setw(17) << avg << endl;
} //end printResult

Now that we have designed and defined the functions calculateAverage and
printResult, we can describe the algorithm for the function main. Before out-
lining the algorithm, however, we note the following: It is quite possible that in both
input files, the data is ordered according to the course IDs, but one file might have
fewer courses than the other. We do not discover this error until after we have
processed both files and discovered that one file has unprocessed data. Make sure to
check for this error before printing the final answer—that is, the averages for group 1
and group 2.

MAIN

ALGORITHM:

Function main

1. Declare the variables (local declaration).

2. Open the input files.

3. Print a message if you are unable to open a file and terminate the
program.

4. Open the output file.

5. To output floating-point numbers in a fixed decimal format with
the decimal point and trailing zeros, set the manipulators fixed
and showpoint. Also, to output floating-point numbers to two
decimal places, set the precision to two decimal places.

6. Initialize the course average for group 1 to 0.0.

7. Initialize the course average for group 2 to 0.0.

8. Initialize the number of courses to 0.

9. Print the heading.

10. Get the course ID, courseId1, for group 1.

11. Get the course ID, courseId2, for group 2.

12. For each course in group 1 and group 2,

a. if (courseId1 != courseId2)
{

cout << "Data error: Course IDs do not match.\n";
return 1;

}

408 | Chapter 7: User-Defined Functions II

Preview from Notesale.co.uk

Page 449 of 1392

cin >> num;
cout << endl;

cout << "Take ";

if (num == 1)
func1();

else if (num == 2)
func2();

else
cout << "Invalid input. You must enter a 1 or 2" << endl;

return 0;
}

void func1()
{

cout << "Programming I." <<endl;
}

void func2()
{

cout << "Programming II." << endl;
}

a. What is the output if the input is 1?

b. What is the output if the input is 2?

c. What is the output if the input is 3?

d. What is the output if the input is -1?

5. Write the definition of a void function that takes as input a decimal number
and as output 3 times the value of the decimal number. Format your output
to two decimal places.

6. Write the definition of a void function that takes as input two decimal
numbers. If the first number is nonzero, it outputs second number divided
by the first number; otherwise, it outputs a message indicating that the second
number cannot be divided by the first number because the first number is 0.

7. Write the definition of a void function with three reference parameters of type
int, double, and string. The function sets the values of the int and double
variables to 0 and the value of the string variable to the empty string.

8. Write the definition of a void function that takes as input two parameters
of type int, say sum and testScore. The function updates the value of
sum by adding the value of testScore. The new value of sum is reflected
in the calling environment.

9. What is the output of the following program?

#include <iostream>
using namespace std;

418 | Chapter 7: User-Defined Functions II

Preview from Notesale.co.uk

Page 459 of 1392

7

void find(int a, int& b, int& c,)

int main()
{

int one, two, three;

one = 5;
two = 10;
three = 15;

find(one, two, three);
cout << one << ", " << two << ", " << three << endl;

find(two, one, three);
cout << one << ", " << two << ", " << three << endl;

find(three, two, one);
cout << one << ", " << two << ", " << three << endl;

find(two, three, one);
cout << one << ", " << two << ", " << three << endl;

return 0;
}

void find(int a, int& b, int& c)
{

int temp;

c = a + b;
temp = a;
a = b;
b = 2 * temp;

}

10. What is the output of the following program?

#include <iostream>
using namespace std;

int x;

void summer(int&, int);
void fall(int, int&);

int main()
{

int intNum1 = 2;
int intNum2 = 5;
x = 6;

summer(intNum1, intNum2);
cout << intNum1 << " " << intNum2 << " " << x << endl;

Exercises | 419

Preview from Notesale.co.uk

Page 460 of 1392

fall(intNum1, intNum2);
cout << intNum1 << " " << intNum2 << " " << x << endl;
return 0;

}

void summer(int& a, int b)
{

int intNum1;
intNum1 = b + 12;
a = 2 * b + 5;
b = intNum1 + 4;

}

void fall(int u, int& v)
{

int intNum2;
intNum2= x;
v = intNum2 * 4;
x = u - v;

}

11. In the following program, number the marked statements to show the order
in which they will execute (the logical order of execution).

#include <iostream>

using namespace std;

void func(int val1, int val2);

int main()
{

int num1, num2;
___ cout << "Please enter two integers." << endl;
___ cin >> num1 >> num2;
___ func (num1, num2);
___ cout << " The two integers are " << num1

<< ", " << num2 << endl;
___ return 0;
}
void func(int val1, int val2)
{

int val3, val4;
___ val3 = val1 + val2;
___ val4 = val1 * val2;
___ cout << "The sum and product are " << val3

<< " and " << val4 << endl;
}

12. Consider the following program:

#include <iostream>
#include <cmath>
#include <iomanip>

420 | Chapter 7: User-Defined Functions II

Preview from Notesale.co.uk

Page 461 of 1392

Write a program that prompts the user to enter:

a. The width of the river

b. The distance of the factory downstream on the other side of the river

c. The cost of laying the power line under water

d. The cost of laying the power line over land

The program then outputs the length of the power line that should run
under water and the length that should run over land so the cost of
constructing the power line is at the minimum. The program should
also output the total cost of constructing the power line.

16. (Pipe problem, requires trigonometry) A pipe is to be carried
around the right-angled corner of two intersecting corridors. Suppose
that the widths of the two intersecting corridors are 5 feet and 8 feet
(see Figure 7-22). Your objective is to find the length of the longest
pipe, rounded to the nearest foot, that can be carried level around the
right-angled corner.

Write a program that prompts the user to input the widths of both of the
hallways. The program then outputs the length of the longest pipe, rounded to
the nearest foot, that can be carried level around the right-angled corner. (Note
that the length of the pipe is given by l = AB + BC = 8 / sin y + 5 / cos y,
where 0 < y < p/2.)

5

8

A

B
θ

C
l

FIGURE 7-22 Pipe problem

432 | Chapter 7: User-Defined Functions II

Preview from Notesale.co.uk

Page 473 of 1392

These are illegal enumeration types because none of the values is an identifier. The
following, however, are legal enumeration types:

enum grades {A, B, C, D, F};
enum places {FIRST, SECOND, THIRD, FOURTH};

If a value has already been used in one enumeration type, it cannot be used by any other
enumeration type in the same block. The same rules apply to enumeration types declared
outside of any blocks. Example 8-4 illustrates this concept.

EXAMPLE 8-4

Consider the following statements:

enum mathStudent {JOHN, BILL, CINDY, LISA, RON};
enum compStudent {SUSAN, CATHY, JOHN, WILLIAM}; //illegal

Suppose that these statements are in the same program in the same block. The second
enumeration type, compStudent, is not allowed because the value JOHN was used in the
previous enumeration type mathStudent.

Declaring Variables
Once a data type is defined, you can declare variables of that type. The syntax for
declaring variables of an enum type is the same as before:

dataType identifier, identifier,...;

The statement:

enum sports {BASKETBALL, FOOTBALL, HOCKEY, BASEBALL, SOCCER,
VOLLEYBALL};

defines an enumeration type called sports. The statement:

sports popularSport, mySport;

declares popularSport and mySport to be variables of type sports.

Assignment
Once a variable is declared, you can store values in it. Assuming the previous declaration,
the statement:

popularSport = FOOTBALL;

436 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Preview from Notesale.co.uk

Page 477 of 1392

typedef int Boolean; //Line 1
const Boolean TRUE = 1; //Line 2
const Boolean FALSE = 0; //Line 3
Boolean flag; //Line 4

The statement in Line 1 creates an alias, Boolean, for the data type int. The
statements in Lines 2 and 3 declare the named constants TRUE and FALSE and initialize
them to 1 and 0, respectively. The statement in Line 4 declares flag to be a variable of
type Boolean. Because flag is a variable of type Boolean, the following statement is
legal:

flag = TRUE;

PROGRAMMING EXAMPLE: The Game of Rock, Paper, and Scissors
Children often play the game of rock, paper, and scissors. This game has two players,
each of whom chooses one of the three objects: rock, paper, or scissors. If player 1
chooses rock and player 2 chooses paper, player 2 wins the game because paper
covers the rock. The game is played according to the following rules:

• If both players choose the same object, this play is a tie.

• If one player chooses rock and the other chooses scissors, the player
choosing the rock wins this play because the rock breaks the scissors.

• If one player chooses rock and the other chooses paper, the player
choosing the paper wins this play because the paper covers the rock.

• If one player chooses scissors and the other chooses paper, the player
choosing the scissors wins this play because the scissors cut the paper.

Write an interactive program that allows two people to play this game.

Input This program has two types of input:

• The users’ responses when asked to play the game.

• The players’ choices.

Output The players’ choices and the winner of each play. After the game is over,
the total number of plays and the number of times that each player won
should be output as well.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Two players play this game. Players enter their choices via the keyboard. Each
player enters R or r for Rock, P or p for Paper, or S or s for Scissors. While the
first player enters a choice, the second player looks elsewhere. Once both entries
are in, if the entries are valid, the program outputs the players’ choices and declares
the winner of the play. The game continues until one of the players decides to quit

444 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Preview from Notesale.co.uk

Page 485 of 1392

8

the game. After the game ends, the program outputs the total number of plays and
the number of times that each player won. This discussion translates into the
following algorithm:

1. Provide a brief explanation of the game and how it is played.

2. Ask the users if they want to play the game.

3. Get plays for both players.

4. If the plays are valid, output the plays and the winner.

5. Update the total game count and winner count.

6. Repeat Steps 2 through 5 while the users agree to play the game.

7. Output the number of plays and times that each player won.

We will use the enumeration type to describe the objects.

enum objectType {ROCK, PAPER, SCISSORS};

Variables

(Function main)

It is clear that you need the following variables in the function main:

int gameCount; //variable to store the number of
//games played

int winCount1; //variable to store the number of games
//won by player 1

int winCount2; //variable to store the number of games
//won by player 2

int gamewinner;
char response; //variable to get the user's response to

//play the game
char selection1;
char selection2;
objectType play1; //player1's selection
objectType play2; //player2's selection

This program is divided into the following functions, which the ensuing sections
describe in detail.

• displayRules: This function displays some brief information about the game
and its rules.

• validSelection: This function checks whether a player’s selection is valid.
The only valid selections are R, r, P, p, S, and s.

• retrievePlay: Because enumeration types cannot be read directly, this func-
tion converts the entered choice (R, r, P, p, S, or s) and returns the
appropriate object type.

• gameResult: This function outputs the players’ choices and the winner of
the game.

Programming Example: The Game of Rock, Paper, and Scissors | 445

Preview from Notesale.co.uk

Page 486 of 1392

b. else
{

1. Determine the winning object. (Call function winningObject)
2. Output each player's choice.
3. Determine the winning player.
4. Return the winning player via a reference parameter to the

function main so that the function main can update the
winning player's win count.

}

The definition of this function is:

void gameResult(objectType play1, objectType play2,
int& winner)

{
objectType winnerObject;

if (play1 == play2)
{

winner = 0;
cout << "Both players selected ";
convertEnum(play1);
cout << ". This game is a tie." << endl;

}
else
{

winnerObject = winningObject(play1, play2);

//Output each player's choice
cout << "Player 1 selected ";
convertEnum(play1);
cout << " and player 2 selected ";
convertEnum(play2);
cout << ". ";

//Decide the winner
if (play1 == winnerObject)

winner = 1;
else if (play2 == winnerObject)

winner = 2;

//Output the winner
cout << "Player " << winner << " wins this game."

<< endl;
}

}

Function

convertEnum

Because enumeration types cannot be output directly, let’s write the function
convertEnum to output objects of the enum type objectType. This function
has one parameter, of type objectType. It outputs the string that corresponds to the
objectType. In pseudocode, this function is:

448 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Preview from Notesale.co.uk

Page 489 of 1392

8

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Rock, Paper, and Scissors
// This program plays the game of rock, paper, and scissors.
//***

#include <iostream>

using namespace std;

enum objectType {ROCK, PAPER, SCISSORS};

//Function prototypes
void displayRules();
objectType retrievePlay(char selection);
bool validSelection(char selection);
void convertEnum(objectType object);
objectType winningObject(objectType play1, objectType play2);
void gameResult(objectType play1, objectType play2, int& winner);
void displayResults(int gCount, int wCount1, int wCount2);

int main()
{

//Step 1
int gameCount; //variable to store the number of

//games played
int winCount1; //variable to store the number of games

//won by player 1
int winCount2; //variable to store the number of games

//won by player 2
int gamewinner;
char response; //variable to get the user's response to

//play the game
char selection1;
char selection2;
objectType play1; //player1's selection
objectType play2; //player2's selection

//Initialize variables; Step 2
gameCount = 0;
winCount1 = 0;
winCount2 = 0;

displayRules(); //Step 3

cout << "Enter Y/y to play the game: "; //Step 4
cin >> response; //Step 5
cout << endl;

Programming Example: The Game of Rock, Paper, and Scissors | 451

Preview from Notesale.co.uk

Page 492 of 1392

y = std::pow(x, 2);
.
.
.

}

This example accesses the function pow of the header file cmath.

EXAMPLE 8-11

Consider the following C++ code:

#include <iostream>
.
.
.
int main()
{

using namespace std;
.
.
.

}
.
.
.

In this example, the function main can refer to the global identifiers of the header file
iostream without using the prefix std:: before the identifier name. The using
statement appears inside the function main. Therefore, other functions (if any) should
use the prefix std:: before the name of the global identifier of the header file iostream
unless the function has a similar using statement.

EXAMPLE 8-12

Consider the following C++ code:

#include <iostream>

using namespace std; //Line 1

int t; //Line 2
double u; //Line 3

namespace expN
{

int x; //Line 4
char t; //Line 5

456 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Preview from Notesale.co.uk

Page 497 of 1392

double u; //Line 6
void printResult(); //Line 7

}

using namespace expN;

int main()
{

int one; //Line 8
double t; //Line 9
double three; //Line 10

.

.

.
}

void expN::printResult() //Definition of the function printResult
{

.

.

.
}

In this C++ program:

1. To refer to the variable t in Line 2 in main, use the scope resolution
operator, which is :: (that is, refer to t as ::t), because the function
main has a variable named t (declared in Line 9). For example, to copy
the value of x into t, you can use the statement ::t = x;.

2. To refer to the member t (declared in Line 5) of the namespace expN
in main, use the prefix expN:: with t (that is, refer to t as expN::t)
because there is a global variable named t (declared in Line 2) and a
variable named t in main.

3. To refer to the member u (declared in Line 6) of the namespace expN
in main, use the prefix expN:: with u (that is, refer to u as expN::u)
because there is a global variable named u (declared in Line 3).

4. You can reference the member x (declared in Line 4) of the namespace
expN in main as either x or expN::x because there is no global
identifier named x and the function main does not contain any identifier
named x.

5. The definition of a function that is a member of a namespace, such
as printResult, is usually written outside the namespace as in
the preceding program. To write the definition of the function
printResult, the name of the function in the function heading
can be either printResult or expN::printResult (because no
other global identifier is named printResult).

8

Namespaces | 457

Preview from Notesale.co.uk

Page 498 of 1392

TABLE 8-1 Some string functions

Expression Effect

strVar.at(index) Returns the element at the position specified by
index.

strVar[index]
Returns the element at the position specified by
index.

strVar.append(n, ch)
Appends n copies of ch to strVar, in which ch
is a char variable or a char constant.

strVar.append(str) Appends str to strVar.

strVar.clear() Deletes all the characters in strVar.

strVar.compare(str) Compares strVar and str. (This operation
is discussed in Chapter 4.)

strVar.empty() Returns true if strVar is empty; otherwise,
it returns false.

strVar.erase() Deletes all the characters in strVar.

strVar.erase(pos, n)
Deletes n characters from strVar starting at
position pos.

strVar.find(str)
Returns the index of the first occurrence of str
in strVar. If str is not found, the special value
string::npos is returned.

strVar.find(str, pos)
Returns the index of the first occurrence at or
after pos where str is found in strVar.

strVar.find_first_of
(str, pos)

Returns the index of the first occurrence of any
character of strVar in str. The search starts
at pos.

strVar.find_first_not_of
(str, pos)

Returns the index of the first occurrence of any
character of str not in strVar. The search
starts at pos.

strVar.insert(pos, n, ch);
Inserts n occurrences of the character ch at index
pos into strVar; pos and n are of type
string::size_type; ch is a character.

strVar.insert(pos, str);
Inserts all the characters of str at index pos
into strVar.

strVar.length() Returns a value of type string::size_type
giving the number of characters strVar.

462 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Preview from Notesale.co.uk

Page 503 of 1392

QUICK REVIEW

1. An enumeration type is a set of ordered values.

2. C++’s reserved word enum is used to create an enumeration type.

3. The syntax of enum is:

enum typeName {value1, value2,...};

in which value1, value2,. . . are identifiers, and value1 < value2 <

4. No arithmetic operations are allowed on the enumeration type.

8

cout << endl;

cout << "The pig Latin form of " << str << " is: "
<< pigLatinString(str) << endl;

return 0;
}

//Place the definitions of the functions isVowel, rotate, and
//pigLatinString and as described previously here.

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter a string: eye

The pig Latin form of eye is: eye-way

Sample Run 2:

Enter a string: There

The pig Latin form of There is: ere-Thay

Sample Run 3:

Enter a string: why

The pig Latin form of why is: y-whay

Sample Run 4:

Enter a string: 123456

The pig Latin form of 123456 is: 123456-way

Quick Review | 475

Preview from Notesale.co.uk

Page 516 of 1392

This page intentionally left blank

Preview from Notesale.co.uk

Page 525 of 1392

In previous chapters, you worked with simple data types. In Chapter 2, you learned that
C++ data types fall into three categories. One of these categories is the structured data
type. This chapter and the next few chapters focus on structured data types.

Recall that a data type is called simple if variables of that type can store only one value at
a time. In contrast, in a structured data type, each data item is a collection of other data
items. Simple data types are building blocks of structured data types. The first structured
data type that we will discuss is an array. In Chapters 11 and 12, we will discuss other
structured data types.

Before formally defining an array, let us consider the following problem. We want to
write a C++ program that reads five numbers, finds their sum, and prints the numbers in
reverse order.

In Chapter 5, you learned how to read numbers, print them, and find the sum. The
difference here is that we want to print the numbers in reverse order. This means we
cannot print the first four numbers until we have printed the fifth, and so on. To do this,
we need to store all of the numbers before we start printing them in reverse order. From
what we have learned so far, the following program accomplishes this task.

//Program to read five numbers, find their sum, and print the
//numbers in reverse order.

#include <iostream>

using namespace std;

int main()
{

int item0, item1, item2, item3, item4;
int sum;

cout << "Enter five integers: ";
cin >> item0 >> item1 >> item2 >> item3 >> item4;
cout << endl;

sum = item0 + item1 + item2 + item3 + item4;

cout << "The sum of the numbers = " << sum << endl;
cout << "The numbers in the reverse order are: ";
cout << item4 << " " << item3 << " " << item2 << " "

<< item1 << " " << item0 << endl;

return 0;
}

This program works fine. However, if you need to read 100 (or more) numbers and
print them in reverse order, you would have to declare 100 variables and write many
cin and cout statements. Thus, for large amounts of data, this type of program is not
desirable.

486 | Chapter 9: Arrays and Strings

Preview from Notesale.co.uk

Page 527 of 1392

Note the following in the previous program:

1. Five variables must be declared because the numbers are to be printed in
reverse order.

2. All variables are of type int—that is, of the same data type.

3. The way in which these variables are declared indicates that the variables
to store these numbers all have the same name—except the last char-
acter, which is a number.

Statement 1 tells you that you have to declare five variables. Statement 3 tells you
that it would be convenient if you could somehow put the last character, which is a
number, into a counter variable and use one for loop to count from 0 to 4 for
reading and another for loop to count from 4 to 0 for printing. Finally, because all
variables are of the same type, you should be able to specify how many variables
must be declared—and their data type—with a simpler statement than the one we
used earlier.

The data structure that lets you do all of these things in C++ is called an array.

Arrays
An array is a collection of a fixed number of components all of the same data type. A
one-dimensional array is an array in which the components are arranged in a list form.
This section discusses only one-dimensional arrays. Arrays of two dimensions or more are
discussed later in this chapter.

The general form for declaring a one-dimensional array is:

dataType arrayName[intExp];

in which intExp is any constant expression that evaluates to a positive integer. Also,
intExp specifies the number of components in the array.

EXAMPLE 9-1

The statement:

int num[5];

declares an array num of five components. Each component is of type int. The compo-
nents are num[0], num[1], num[2], num[3], and num[4]. Figure 9-1 illustrates the
array num.

9

Arrays | 487

Preview from Notesale.co.uk

Page 528 of 1392

The statement in Line 1 declares and initializes the array myList, and the statement in
Line 2 declares the array yourList. Note that these arrays are of the same type and have
the same number of components. Suppose that you want to copy the elements of
myList into the corresponding elements of yourList. The following statement is
illegal:

yourList = myList; //illegal

In fact, this statement will generate a syntax error. C++ does not allow aggregate
operations on an array. An aggregate operation on an array is any operation that
manipulates the entire array as a single unit.

To copy one array into another array, you must copy it component-wise—that is, one
component at a time. This can be done using a loop, such as the following:

for (int index = 0; index < 5; index ++)
yourList[index] = myList[index];

Next, suppose that you want to read data into the array yourList. The following
statement is illegal and, in fact, would generate a syntax error.

cin >> yourList; //illegal

To read data into yourList, you must read one component at a time, using a loop such
as the following:

for (int index = 0; index < 5; index ++)
cin >> yourList[index];

Similarly, determining whether two arrays have the same elements and printing the
contents of an array must be done component-wise. Note that the following statements
are illegal in the sense that they do not generate a syntax error; however, they do not give
the desired results.

cout << yourList;

if (myList <= yourList)
.
.
.

We will comment on these statements in the section Base Address of an Array and Array
in Computer Memory later in this chapter.

Arrays as Parameters to Functions
Now that you have seen how to work with arrays, a question naturally arises: How are
arrays passed as parameters to functions?

By reference only: In C++, arrays are passed by reference only.

Because arrays are passed by reference only, you do not use the symbol & when declaring
an array as a formal parameter.

9

Arrays | 497

Preview from Notesale.co.uk

Page 538 of 1392

//Find and output the sum of the elements
//of listA

cout << "Line 14: The sum of the elements of "
<< "listA is: "
<< sumArray(listA, ARRAY_SIZE) << endl
<< endl; //Line 14

//Find and output the position of the largest
//element in listA

cout << "Line 15: The position of the largest "
<< "element in listA is: "
<< indexLargestElement(listA, ARRAY_SIZE)
<< endl; //Line 15

//Find and output the largest element
//in listA

cout << "Line 16: The largest element in "
<< "listA is: "
<< listA[indexLargestElement(listA, ARRAY_SIZE)]
<< endl << endl; //Line 16

//Copy the elements of listA into listB using the
//function copyArray

copyArray(listA, 0, listB, 0, ARRAY_SIZE); //Line 17

cout << "Line 18: After copying the elements "
<< "of listA into listB," << endl
<< " listB elements are: "; //Line 18

//Output the elements of listB
printArray(listB, ARRAY_SIZE); //Line 19
cout << endl; //Line 20

return 0;
}

//Place the definitions of the functions initializeArray,
//fillArray, and so on here. Example 9-6 gives the definitions
//of these functions.

Sample Run: In this sample run, the user input is shaded.

Line 1: listA elements: 0 0 0 0 0 0 0 0 0 0
Line 5: ListB elements: 0 0 0 0 0 0 0 0 0 0

Line 8: Enter 10 integers: 33 77 25 63 56 48 98 39 5 12

Line 11: After filling listA, the elements are:
33 77 25 63 56 48 98 39 5 12

Line 14: The sum of the elements of listA is: 456

9

Arrays | 505

Preview from Notesale.co.uk

Page 546 of 1392

9

for (row = 0; row < NUMBER_OF_ROWS; row++)
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

matrix[row][col] = 0;

Print
By using a nested for loop, you can output the components of matrix. The following
nested for loops print the components of matrix, one row per line:

for (row = 0; row < NUMBER_OF_ROWS; row++)
{

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cout << setw(5) << matrix[row][col] << " ";

cout << endl;
}

Input
The following for loop inputs the data into row number 4, that is, the fifth row of matrix:

row = 4;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cin >> matrix[row][col];

As before, by putting the row number in a loop, you can input data into each component
of matrix. The following for loop inputs data into each component of matrix:

for (row = 0; row < NUMBER_OF_ROWS; row++)
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

cin >> matrix[row][col];

Sum by Row
The following for loop finds the sum of row number 4 of matrix; that is, it adds the
components of row number 4.

sum = 0;
row = 4;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

sum = sum + matrix[row][col];

Once again, by putting the row number in a loop, we can find the sum of each row
separately. Following is the C++ code to find the sum of each individual row:

//Sum of each individual row
for (row = 0; row < NUMBER_OF_ROWS; row++)
{

sum = 0;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

sum = sum + matrix[row][col];

cout << "Sum of row " << row + 1 << " = " << sum << endl;
}

Two- and Multidimensional Arrays | 525

Preview from Notesale.co.uk

Page 566 of 1392

9

if (length != length2) //Step d
{

cout << "The original code and its copy "
<< "are not of the same length."
<< endl;

return;
}

outfile << "Code Digit Code Digit Copy"
<< endl;

for (count = 0; count < length; count++) //Step e
{

infile >> digit; //Step e.1
outfile << setw(5) << list[count]

<< setw(17) << digit; //Step e.2

if (digit != list[count]) //Step e.3
{

outfile << " code digits are not the same"
<< endl;

codeOk = false;
}
else

outfile << endl;
}

if (codeOk) //Step f
outfile << "Message transmitted OK."

<< endl;
else

outfile << "Error in transmission. "
<< "Retransmit!!" << endl;

}

Following is the algorithm for the function main.

Main

Algorithm

1. Declare the variables.

2. Open the files.

3. Call the function readCode to read the secret code.

4. if (length of the secret code <= 250)

Call the function compareCode to compare the codes.

else

Output an appropriate error message.

Programming Example: Code Detection | 537

Preview from Notesale.co.uk

Page 578 of 1392

//**
// Author: D.S. Malik
//
// Program: Check Code
// This program determines whether a code is transmitted
// correctly.
//**

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

const int MAX_CODE_SIZE = 250;

void readCode(ifstream& infile, int list[],
int& length, bool& lenCodeOk);

void compareCode(ifstream& infile, ofstream& outfile,
const int list[], int length);

int main()
{

//Step 1
int codeArray[MAX_CODE_SIZE]; //array to store the secret

//code
int codeLength; //variable to store the

//length of the secret code
bool lengthCodeOk; //variable to indicate if the length

//of the secret code is less than or
//equal to 250

ifstream incode; //input file stream variable
ofstream outcode; //output file stream variable

char inputFile[51]; //variable to store the name of the
//input file

char outputFile[51]; //variable to store the name of
//the output file

cout << "Enter the input file name: ";
cin >> inputFile;
cout << endl;

//Step 2
incode.open(inputFile);
if (!incode)
{

cout << "Cannot open the input file." << endl;
return 1;

}

538 | Chapter 9: Arrays and Strings

Preview from Notesale.co.uk

Page 579 of 1392

PROGRAMMING EXAMPLE: Text Processing
(Line and letter count) Let us now write a program that reads a given text, outputs
the text as is, and also prints the number of lines and the number of times each letter
appears in the text. An uppercase letter and a lowercase letter are treated as being the
same; that is, they are tallied together.

Because there are 26 letters, we use an array of 26 components to perform the letter
count. We also need a variable to store the line count.

The text is stored in a file, which we will call textin.txt. The output will be
stored in a file, which we will call textout.out.

Input A file containing the text to be processed.

Output A file containing the text, number of lines, and the number of times a
letter appears in the text.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Based on the desired output, it is clear that we must output the text as is. That is, if the
text contains any whitespace characters, they must be output as well. Furthermore, we
must count the number of lines in the text. Therefore, we must know where the line
ends, which means that we must trap the newline character. This requirement suggests
that we cannot use the extraction operator to process the input file. Because we also
need to perform the letter count, we use the get function to read the text.

Let us first describe the variables that are necessary to develop the program. This will
simplify the discussion that follows.

Variables We need to store the line count and the letter count. Therefore, we need a variable
to store the line count and 26 variables to perform the letter count. We will use an
array of 26 components to perform the letter count. We also need a variable to read
and store each character in turn, because the input file is to be read character by
character. Because data is to be read from an input file and output is to be saved in a
file, we need an input stream variable to open the input file and an output stream
variable to open the output file. These statements indicate that the function main

needs (at least) the following variables:

int lineCount; //variable to store the line count
int letterCount[26]; //array to store the letter count
char ch; //variable to store a character
ifstream infile; //input file stream variable
ofstream outfile; //output file stream variable

In this declaration, letterCount[0] stores the A count, letterCount[1]

stores the B count, and so on. Clearly, the variable lineCount and the array
letterCount must be initialized to 0.

540 | Chapter 9: Arrays and Strings

Preview from Notesale.co.uk

Page 581 of 1392

4. Determine whether the following array declarations are valid. If a declara-
tion is invaid, explain why.

a. int list75;

b. int size;
double list[size];

c. int test[-10];

d. double sales[40.5];

5. What would be a valid range for the index of an array of size 50?

6. Write C++ statements to do the following:

a. Declare an array alpha of 15 components of type int.

b. Output the value of the tenth component of the array alpha.

c. Set the value of the fifth component of the array alpha to 35.

d. Set the value of the ninth component of the array alpha to the sum of
the sixth and thirteenth components of the array alpha.

e. Set the value of the fourth component of the array alpha to three
times the value of the eighth component minus 57.

f. Output alpha so that five components per line are printed.

7. What is the output of the following program segment?

int temp[5];

for (int i = 0; i < 5; i++)
temp[i] = 2 * i - 3;

for (int i = 0; i < 5; i++)
cout << temp[i] << " ";

cout << endl;

temp[0] = temp[4];
temp[4] = temp[1];
temp[2] = temp[3] + temp[0];

for (int i = 0; i < 5; i++)
cout << temp[i] << " ";

cout << endl;

8. Suppose list is an array of five components of type int. What is stored in
list after the following C++ code executes?

for (int i = 0; i < 5; i++)
{

list[i] = 2 * i + 5;
if (i % 2 == 0)

list[i] = list[i] - 3;
}

550 | Chapter 9: Arrays and Strings

Preview from Notesale.co.uk

Page 591 of 1392

29. Given the declaration:

char str1[21];
char str2[21];

a. Write a C++ statement that stores "Sunny Day" in str1.

b. Write a C++ statement that stores the length of str1 into the int
variable length.

c. Write a C++ statement that copies the value of name into str2.

d. Write C++ code that outputs str1 if str1 is less than or equal to
str2, and otherwise outputs str2.

30. Assume the following declarations:

char name[21];
char yourName[21];
char studentName[31];

Mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. cin >> name;

b. cout << studentName;

c. yourName[0] = '\0';

d. yourName = studentName;

e. if (yourName == name)
studentName = name;

f. int x = strcmp(yourName, studentName);

g. strcpy(studentName, Name);

h. for (int j = 0; j < 21; j++)
cout << name[j];

31. Define a two-dimensional array named temp of three rows and four
columns of type int such that the first row is initialized to 6, 8, 12, 9;
the second row is initialized to 17, 5, 10, 6; and the third row is initialized
to 14, 13, 16, 20.

32. Suppose that array temp is as defined in Exercise 31. Write C++ statements
to accomplish the following:

a. Output the contents of the first row and first column element of temp.

b. Output the contents of the first row and last column element of temp.

c. Output the contents of the last row and first column element of temp.

d. Output the contents of the last row and last column element of temp.

33. Consider the following declarations:

const int CAR_TYPES = 5;
const int COLOR_TYPES = 6;

556 | Chapter 9: Arrays and Strings

Preview from Notesale.co.uk

Page 597 of 1392

at least, contain a function to read and store a number into an array and
another function to output the sum of the numbers. (Hint: Read numbers as
strings and store the digits of the number in the reverse order.)

12. Jason, Samantha, Ravi, Sheila, and Ankit are preparing for an upcoming
marathon. Each day of the week, they run a certain number of miles and
write them into a notebook. At the end of the week, they would like to
know the number of miles run each day, the total miles for the week, and
average miles run each day. Write a program to help them analyze their
data. Your program must contain parallel arrays: an array to store the names
of the runners and a two-dimensional array of five rows and seven columns
to store the number of miles run by each runner each day. Furthermore,
your program must contain at least the following functions: a function to
read and store the runners’ names and the numbers of miles run each day; a
function to find the total miles run by each runner and the average number
of miles run each day; and a function to output the results. (You may
assume that the input data is stored in a file and each line of data is in the
following form: runnerName milesDay1 milesDay2 milesDay3
milesDay4 milesDay5 milesDay6 milesDay7.)

13. Write a program to calculate students’ average test scores and their grades.
You may assume the following input data:

Johnson 85 83 77 91 76
Aniston 80 90 95 93 48
Cooper 78 81 11 90 73
Gupta 92 83 30 69 87
Blair 23 45 96 38 59
Clark 60 85 45 39 67
Kennedy 77 31 52 74 83
Bronson 93 94 89 77 97
Sunny 79 85 28 93 82
Smith 85 72 49 75 63

Use three arrays: a one-dimensional array to store the students’ names, a
(parallel) two-dimensional array to store the test scores, and a parallel one-
dimensional array to store grades. Your program must contain at least the
following functions: a function to read and store data into two arrays, a
function to calculate the average test score and grade, and a function to
output the results. Have your program also output the class average.

14. (Airplane Seating Assignment) Write a program that can be used to
assign seats for a commercial airplane. The airplane has 13 rows, with six
seats in each row. Rows 1 and 2 are first class, rows 3 through 7 are business
class, and rows 8 through 13 are economy class. Your program must prompt
the user to enter the following information:

a. Ticket type (first class, business class, or economy class)

b. Desired seat

9

Programming Exercises | 561

Preview from Notesale.co.uk

Page 602 of 1392

Suppose that you have a list with 1000 elements. If the search item is the second item in the
list, the sequential search makes two key (also called item) comparisons to determine whether
the search item is in the list. Similarly, if the search item is the 900th item in the list, the
sequential search makes 900 key comparisons to determine whether the search item is in the
list. If the search item is not in the list, the sequential search makes 1000 key comparisons.

Therefore, if searchItem is always at the bottom of the list, it will take many comparisons to
find it. Also, if searchItem is not in list, then we compare searchItem with every
element in list. A sequential search is therefore not very efficient for large lists. In fact, it
can be proved that, on average, the number of comparisons (key comparisons, not index
comparisons) made by the sequential search is equal to half the size of the list. So, for a list size
of 1000, on average, the sequential search makes about 500 key comparisons.

The sequential search algorithm does not assume that the list is sorted. If the list is sorted,
then you can significantly improve the search algorithm as discussed in the section Binary
Search of this chapter. However, first, we discuss how to sort a list.

Bubble Sort
There are many sorting algorithms. This section describes the sorting algorithm, called
bubble sort, to sort a list.

Suppose list[0]...list[n - 1] is a list of n elements, indexed 0 to n - 1. We want to
rearrange, that is, sort, the elements of list in increasing order. The bubble sort
algorithm works as follows:

In a series of n - 1 iterations, the successive elements list[index] and list[index + 1] of
list are compared. If list[index] is greater than list[index + 1], then the elements
list[index] and list[index + 1] are swapped, that is, interchanged.

It follows that the smaller elements move toward the top (beginning), and the larger
elements move toward the bottom (end) of the list.

In the first iteration, we consider list[0]...list[n - 1]; in the second iteration,
we consider list[0]...list[n - 2]; in the third iteration, we consider
list[0]...list[n - 3], and so on. For example, consider list[0]...list[4], as
shown in Figure 10-1.

1
0

list

list[0] 10

7

19

5

16

list[1]

list[2]

list[3]

list[4]

FIGURE 10-1 List of five elements

List Processing | 565

Preview from Notesale.co.uk

Page 606 of 1392

describes the sorting algorithm called insertion sort, which tries to improve—that is,
reduce—the number of key comparisons.

The insertion sort algorithm sorts the list by moving each element to its proper place.
Consider the list given in Figure 10-9.

The length of the list is 8. Moreover, the list elements list[0], list[1], list[2], and
list[3] are already in (ascending) order. That is, list[0]...list[3] is sorted (see
Figure 10-10).

Next, we consider the element list[4], the first element of the unsorted list. Because
list[4] < list[3], we need to move the element list[4] to its proper location. It
thus follows that element list[4] should be moved to list[2] (see Figure 10-11).

1
0

list

[0]

10 18 25 30 23 17 45 35

[1] [2] [3] [4] [5] [6] [7]

FIGURE 10-9 list

list

[0]

10 18 25 30 23 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 10-10 Sorted and unsorted portion of list

list

[0]

10 18 25 30

move

23 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 10-11 Move list[4] into list[2]

List Processing | 573

Preview from Notesale.co.uk

Page 614 of 1392

We now copy temp into list[2]. Figure 10-15 shows the resulting list.

Now list[0]...list[4] is sorted, and list[5]...list[7] is unsorted. We repeat
this process on the resulting list by moving the first element of the unsorted list into the
proper place in the sorted list.

From this discussion, we see that during the sorting phase, the array containing the list is
divided into two sublists, sorted and unsorted. Elements in the sorted sublist are sorted;
elements in the unsorted sublist are to be moved to their proper places in the sorted
sublist one at a time. We use an index—say, firstOutOfOrder—to point to the first
element in the unsorted sublist. Initially, firstOutOfOrder is initialized to 1.

This discussion translates into the following pseudocode:

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;
firstOutOfOrder++)

if (list[firstOutOfOrder] is less than list[firstOutOfOrder - 1])
{

copy list[firstOutOfOrder] into temp

initialize location to firstOutOfOrder

do
{

a. copy list[location - 1] into list[location]
b. decrement location by 1 to consider the next element

in the sorted portion of the array
}
while (location > 0 && the element in the upper list at

location - 1 is greater than temp)
}

copy temp into list[location]

The following C++ function implements the previous algorithm:

void insertionSort(int list[], int listLength)

1
0

list

temp

[0]

10 18

23

25 30

copy

23 17 45 35

[1]

sorted list
unsorted

list
[2] [3] [4] [5] [6] [7]

FIGURE 10-15 list after copying temp into list[2]

List Processing | 575

Preview from Notesale.co.uk

Page 616 of 1392

{

int firstOutOfOrder, location;

int temp;

for (firstOutOfOrder = 1; firstOutOfOrder < listLength;

firstOutOfOrder++)
if (list[firstOutOfOrder] < list[firstOutOfOrder - 1])

{

temp = list[firstOutOfOrder];
location = firstOutOfOrder;

do
{

list[location] = list[location - 1];

location--;
}

while (location > 0 && list[location - 1] > temp);

list[location] = temp;

}

} //end insertionSort

We leave it as an exercise to write a program to test the insertion sort algorithm.

It is known that for a list of length n, on average, insertion sort makes about n2 þ 3n� 4
4

key comparisons and about
nðn� 1Þ

4 item assignments. Therefore, if n = 1000, to sort

the list, insertion sort makes about 250,000 key comparisons and about 250,000 item
assignments.

This chapter presented three sorting algorithms. In fact, these are not the only sorting
algorithms. You might be wondering why there are so many different sorting algo-
rithms. The answer is that the performance of each sorting algorithm is different. Some
algorithms make more comparisons, whereas others make fewer item assignments. Also,
there are algorithms that make fewer comparisons, as well as fewer item assignments.
The previous sections give the average number of comparisons and item assignments for
the three sorting algorithms covered in this chapter. Analysis of the number of key
comparisons and item assignments allows the user to decide which algorithm to use in a
particular situation.

Binary Search
A sequential search is not very efficient for large lists. It typically searches about half of
the list. However, if the list is sorted, you can use another search algorithm called binary

search. A binary search is much faster than a sequential search. In order to apply a binary
search, the list must be sorted.

576 | Chapter 10: Applications of Arrays (Searching and Sorting) and the vector Type

Preview from Notesale.co.uk

Page 617 of 1392

Now that we know how to declare a vector object, let us discuss how to manipulate the
data stored in a vector object. To do so, we must know the following basic operations:

• Item insertion

• Item deletion

• Stepping through the elements of a vector container

The type vector provides various operations to manipulate data stored in a vector
object. Each of these operations is defined in the form of a function. Table 10-2 describes
some of these functions and how to use them with a vector object. (Assume that vecList
is a vector object. The name of the function is shown in bold.)

TABLE 10-2 Operations on a vector Object

Expression Effect

vecList.at(index) Returns the element at the position
specified by index.

vecList[index]
Returns the element at the position
specified by index.

vecList.front() Returns the first element. (Does not check
whether the object is empty.)

vecList.back() Returns the last element. (Does not check
whether the object is empty.)

vecList.clear() Deletes all elements from the object.

vecList.push_back(elem) A copy of elem is inserted into vecList
at the end.

vecList.pop_back() Delete the last element of vecList.

vecList.empty() Returns true if the object vecList is
empty and false otherwise.

vecList.size()
Returns the number of elements currently
in the object vecList. The value returned
is an unsigned int value.

vecList.max_size()
Returns the maximum number of elements
that can be inserted into the object
vecList.

582 | Chapter 10: Applications of Arrays (Searching and Sorting) and the vector Type

Preview from Notesale.co.uk

Page 623 of 1392

EXERCISES

1. Mark the following statements as true or false.

a. A sequential search of a list assumes that the list elements are sorted in
ascending order.

b. A binary search of a list assumes that the list is sorted.

c. A binary search is faster on ordered lists and slower on unordered lists.

d. A binary search is faster on large lists, but a sequential search is faster on
small lists.

e. When you declare a vector object and specify its size as 10, then only
10 elements can be stored in the object.

2. Consider the following list:

63 45 32 98 46 57 28 100

Using a sequential search, how many comparisons are required to deter-
mine whether the following items are in the list or not? (Recall that
comparisons mean item comparisons, not index comparisons.)

a. 90 b. 57 c. 63 d. 120

3. a. Write a version of the sequential search algorithm that can be used to
search a sorted list.

b. Consider the following list:

5 12 17 35 46 65 78 85 93 110 115

Using a sequential search on ordered lists, which you designed in (a), how
many comparisons are required to determine whether the following items
are in the list or not? (Recall that comparisons mean item comparisons, not
index comparisons.)

i. 35 ii. 60 iii. 78 iv. 120

4. Consider the following list:

2 10 17 45 49 55 68 85 92 98 110

Using the binary search, how many comparisons are required to determine
whether the following items are in the list or not? Show the values of
first, last, and middle and the number of comparisons after each
iteration of the loop.

a. 15 b. 49 c. 98 d. 99

5. Sort the following list using the bubble sort algorithm as discussed in this
chapter. Show the list after each iteration of the outer for loop.

26, 45, 17, 65, 33, 55, 12, 18

1
0

Exercises | 603

Preview from Notesale.co.uk

Page 644 of 1392

21. Suppose that you have the following C++ code:

vector<int> myList(5);

unsigned int length;

myList[0] = 3;
for (int i = 1; i < 4; i++)

myList[i] = 2 * myList[i - 1] - 5;

myList.push_back(46);
myList.push_back(57);
myList.push_back(35);

a. Write a C++ statement that outputs the first and the last elements of
myList. (Do not use the array subscripting operator or the index of the
elements.)

b. Write a C++ statement that stores the size of myList into length.

c. Write a for loop that outputs the elements of myList.

22. What is the difference between the size and capacity of a vector?

PROGRAMMING EXERCISES

1. Write a program to test the function seqOrderedSearch. Use either the
function bubbleSort or selectionSort to sort the list before the search.

2. Write a program to test the function binarySearch. Use either the function
bubbleSort or selectionSort to sort the list before the search.

3. Write a function, remove, that takes three parameters: an array of integers,
the number of elements in the array, and an integer (say, removeItem). The
function should find and delete the first occurrence of removeItem in the
array. If the value does not exist or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in
the array is reduced by 1.) Assume that the array is unsorted.

4. Write a function, removeAt, that takes three parameters: an array of
integers, the number of elements in the array, and an integer (say,
index). The function should delete the array element indicated by
index. If index is out of range or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in
the array is reduced by 1.) Assume that the array is unsorted.

5. Write a function, removeAll, that takes three parameters: an array of integers,
the number of elements in the array, and an integer (say, removeItem). The
function should find and delete all of the occurrences of removeItem in the
array. If the value does not exist or the array is empty, output an appropriate
message. (Note that after deleting the element, the number of elements in the
array is reduced.) Assume that the array is unsorted.

606 | Chapter 10: Applications of Arrays (Searching and Sorting) and the vector Type

Preview from Notesale.co.uk

Page 647 of 1392

In C++, struct is a reserved word. The members of a struct, even though they
are enclosed in braces (that is, they form a block), are not considered to form a
compound statement. Thus, a semicolon (after the right brace) is essential to end the
struct statement. A semicolon at the end of the struct definition is, therefore, a
part of the syntax.

The statement:

struct employeeType
{

string firstName;
string lastName;
string address1;
string address2;
double salary;
string deptID;

};

defines a struct employeeType with six members. The members firstName,
lastName, address1, address2, and deptID are of type string, and the member
salary is of type double.

Like any type definition, a struct is a definition, not a declaration. That is, it defines
only a data type; no memory is allocated.

Once a data type is defined, you can declare variables of that type. Let us first define a
struct type, studentType, and then declare variables of that type.

struct studentType
{

string firstName;
string lastName;
char courseGrade;
int testScore;
int programmingScore;
double GPA;

};

//variable declaration
studentType newStudent;
studentType student;

These statements declare two struct variables, newStudent and student, of type
studentType. The memory allocated is large enough to store firstName, lastName,
courseGrade, testScore, programmingScore, and GPA (see Figure 11-1).

1
1

Records (structs) | 613

Preview from Notesale.co.uk

Page 654 of 1392

The structVariableName.memberName is just like any other variable. For example,
newStudent.courseGrade is a variable of type char, newStudent.firstName is a
string variable, and so on. As a result, you can do just about anything with struct
members that you normally do with variables. You can, for example, use them in assign-
ment statements or input/output (where permitted) statements.

In C++, the dot (.) is an operator called the member access operator.

Suppose you want to initialize the member GPA of newStudent to 0.0. The following
statement accomplishes this task:

newStudent.GPA = 0.0;

Similarly, the statements:

newStudent.firstName = "John";
newStudent.lastName = "Brown";

store "John" in the member firstName and "Brown" in the member lastName of
newStudent.

After the preceding three assignment statements execute, newStudent is as shown in
Figure 11-2.

The statement:

cin >> newStudent.firstName;

reads the next string from the standard input device and stores it in:

newStudent.firstName

The statement:

cin >> newStudent.testScore >> newStudent.programmingScore;

1
1

newStudent

firstName

lastName

courseGrade

testScore

programmingScore

GPA 0.0

Brown

John

FIGURE 11-2 struct newStudent

Records (structs) | 615

Preview from Notesale.co.uk

Page 656 of 1392

Suppose that a struct has several data members requiring a large amount of memory to
store the data, and you need to pass a variable of that struct type by value. The
corresponding formal parameter then receives a copy of the data of the variable. The
compiler must then allocate memory for the formal parameter in order to copy the value
of the actual parameter. This operation might require, in addition to a large amount of
storage space, a considerable amount of computer time to copy the value of the actual
parameter into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only
the address of the actual parameter. Therefore, an efficient way to pass a variable as a
parameter is by reference. If a variable is passed by reference, then when the formal
parameter changes, the actual parameter also changes. Sometimes, however, you do not
want the function to be able to change the values of the actual parameter. In C++, you
can pass a variable by reference and still prevent the function from changing its value.
This is done by using the keyword const in the formal parameter declaration, as shown
in the definition of the function seqSearch.

Likewise, we can also rewrite the sorting, binary search, and other list-processing functions.

structs in Arrays
Suppose a company has 50 full-time employees. We need to print their monthly
paychecks and keep track of how much money has been paid to each employee in the
year-to-date. First, let’s define an employee’s record:

struct employeeType
{

string firstName;
string lastName;
int personID;
string deptID;
double yearlySalary;
double monthlySalary;
double yearToDatePaid;
double monthlyBonus;

};

Each employee has the following members (components): first name, last name, personal
ID, department ID, yearly salary, monthly salary, year-to-date paid, and monthly bonus.

Because we have 50 employees and the data type of each employee is the same, we can
use an array of 50 components to process the employees’ data.

employeeType employees[50];

This statement declares the array employees of 50 components of type employeeType (see
Figure 11-7). Every element of employees is a struct. For example, Figure 11-7 also shows
employees[2].

622 | Chapter 11: Records (structs)

Preview from Notesale.co.uk

Page 663 of 1392

middle name, as well as an address and a way to be contacted. You can, therefore, quickly
put together a customer’s record by using the structs nameType, addressType,
contactType, and the members specific to the customer.

Next, let us declare a variable of type employeeType and discuss how to access its members.

Consider the following statement:

employeeType newEmployee;

This statement declares newEmployee to be a struct variable of type employeeType

(see Figure 11-8).

newEmployee

name first

middle

last

address 1

address 2

city

state

zip

phone

cellphone

fax

pager

email

month

day

year

month

day

year

empID

address

hireDate

quitDate

contact

deptID

salary

FIGURE 11-8 struct variable newEmployee

626 | Chapter 11: Records (structs)

Preview from Notesale.co.uk

Page 667 of 1392

1
1

The next step is to process the sales data. Processing the sales data is quite straightfor-
ward. For each entry in the file containing the sales data:

1. Read the salesperson’s ID, month, and sale amount for the month.

2. Search the array salesPersonList to locate the component
corresponding to this salesperson.

3. Determine the quarter corresponding to the month.

4. Update the sales for the quarter by adding the sale amount for themonth.

Once the sales data file is processed:

1. Calculate the total sales by salesperson.

2. Calculate the total sales by quarter.

3. Print the report.

This discussion translates into the following algorithm:

1. Initialize the array salesPersonList.

2. Process the sales data.

3. Calculate the total sales by quarter.

4. Calculate the total sales by salesperson.

5. Print the report.

6. Calculate and print the maximum sales by salesperson.

7. Calculate and print the maximum sales by quarter.

To reduce the complexity of the main program, let us write a separate function for
each of these seven steps.

Function

initialize

This function reads the salesperson’s ID from the input file and stores the salesperson’s ID
in the array salesPersonList. It also initializes the quarterly sales amount and the
total sales amount for each salesperson to 0. The definition of this function is:

void initialize(ifstream& indata, salesPersonRec list[],
int listSize)

{
int index;
int quarter;

for (index = 0; index < listSize; index++)
{

indata >> list[index].ID; //get salesperson's ID

for (quarter = 0; quarter < 4; quarter++)
list[index].saleByQuarter[quarter] = 0.0;

list[index].totalSale = 0.0;
}

} //end initialize

Programming Example: Sales Data Analysis | 631

Preview from Notesale.co.uk

Page 672 of 1392

Function

getData

This function reads the sales data from the input file and stores the appropriate
information in the array salesPersonList. The algorithm for this function is:

1. Read the salesperson’s ID, month, and sales amount for the month.

2. Search the array salesPersonList to locate the component
corresponding to the salesperson. (Because the salespeople’s IDs
are not sorted, we will use a sequential search to search the array.)

3. Determine the quarter corresponding to the month.

4. Update the sales for the quarter by adding the sales amount for the
month.

Suppose that the entry read is:

57373 2 350

Here, the salesperson’s ID is 57373, the month is 2, and the sale amount is 350.
Suppose that the array salesPersonList is as shown in Figure 11-11.

Now, ID 57373 corresponds to the array component salesPersonList[3], and
month 2 corresponds to quarter 1. Therefore, you add 350 to 354.80 to get the
new amount, 704.80. After processing this entry, the array salesPersonList is
as shown in Figure 11-12.

salesPersonList[0]

salesPersonList ID

12345 150.80 0.0 0.0 654.92 0.0

32214 0.0 439.90 0.0 0.0 0.0

23422 0.0 0.0 0.0 564.76 0.0

57373 354.80 0.0 0.0 0.0 0.0

35864 0.0 0.0 763.90 0.0 0.0

54654 783.45 0.0 0.0 563.80 0.0

saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 11-11 Array salesPersonList

632 | Chapter 11: Records (structs)

Preview from Notesale.co.uk

Page 673 of 1392

7. Consider the following statements (nameType is as defined in Exercise 6):

struct employeeType
{

nameType name;
int performanceRating;
int pID;
string dept;
double salary;

};
employeeType employees[100];
employeeType newEmployee;

Mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. newEmployee.name = "John Smith";

b. cout << newEmployee.name;

c. employees[35] = newEmployee;

d. if (employees[45].pID == 555334444)
employees[45].performanceRating = 1;

e. employees.salary = 0;

8. Assume the declarations of Exercises 6 and 7. Write C++ statements that do
the following:

a. Store the following information in newEmployee:

name: Mickey Doe
pID: 111111111
performanceRating: 2
dept: ACCT
salary: 34567.78

b. In the array employees, initialize each performanceRating to 0.

c. Copy the information of the 20th component of the array employees

into newEmployee.

d. Update the salary of the 50th employee in the array employees by
adding 5735.87 to its previous value.

9. Assume that you have the following definition of a struct.

struct partsType
{ string partName;

int partNum;
double price;
int quantitiesInStock;

};

Declare an array, inventory, of 100 components of type partsType.

644 | Chapter 11: Records (structs)

Preview from Notesale.co.uk

Page 685 of 1392

10. Assume the definition of Exercise 9.

a. Write a C++ code to initialize each component of inventory as
follows: partName to null string, partNum to -1, price to 0.0, and
quantitiesInStock to 0.

b. Write a C++ code that uses a loop to output the data stored in
inventory. Assume that the variable length indicates the number
of elements in inventory.

11. Assume the definition and declaration of Exercise 9. Write the definition of
a void function that can be used to input data in a variable of type
partsType. Also write a C++ code that uses your function to input data
in inventory.

12. Suppose that you have the following definitions:

struct timeType struct tourType
{ {

int hr; string cityName;
double min; int distance;
int sec; timeType travelTime;

}; };

a. Declare the variable destination of type tourType.

b. Write C++ statements to store the following data in destination:
cityName—Chicago, distance—550 miles, travelTime—9 hours
and 30 minutes.

c. Write the definition of a function to output the data stored in a variable
of type tourType.

d. Write the definition of a value-returning function that inputs data into
a variable of type tourType.

e. Write the definition of void function with a reference parameter of
type tourType to input data in a variable of type tourType.

PROGRAMMING EXERCISES

1. Assume the definition of Exercise 4, which defines the struct movieType.
Write a program that declares a variable of type movieType, prompts the
user to input data about a movie, and outputs the movie data.

2. Write a program that reads students’ names followed by their test scores.
The program should output each student’s name followed by the test scores
and the relevant grade. It should also find and print the highest test score
and the name of the students having the highest test score.

1
1

Programming Exercises | 645

Preview from Notesale.co.uk

Page 686 of 1392

• Function printCheck: This function calculates and prints the check.
(Note that the billing amount should include a 5% tax.)
A sample output is:

Welcome to Johnny's Restaurant
Bacon and Egg $2.45
Muffin $0.99
Coffee $0.50
Tax $0.20
Amount Due $4.14

Format your output with two decimal places. The name of each item in the
output must be left justified. You may assume that the user selects only one
item of a particular type.

5. Redo Exercise 4 so that the customer can select multiple items of a
particular type. A sample output in this case is:

Welcome to Johnny's Restaurant
1 Bacon and Egg $2.45
2 Muffin $1.98
1 Coffee $0.50

Tax $0.25
Amount Due $5.18

6. Write a program whose main function is merely a collection of variable
declarations and function calls. This program reads a text and outputs the
letters, together with their counts, as explained below in the function
printResult. (There can be no global variables! All information must
be passed in and out of the functions. Use a structure to store the informa-
tion.) Your program must consist of at least the following functions:

• Function openFile: Opens the input and output files. You must pass
the file streams as parameters (by reference, of course). If the file does not
exist, the program should print an appropriate message and exit. The
program must ask the user for the names of the input and output files.

• Function count: Counts every occurrence of capital letters A-Z and
small letters a-z in the text file opened in the function openFile. This
information must go into an array of structures. The array must be
passed as a parameter, and the file identifier must also be passed as a
parameter.

• Function printResult: Prints the number of capital letters and small
letters, as well as the percentage of capital letters for every letter A-Z and
the percentage of small letters for every letter a-z. The percentages
should look like this: ‘‘25%’’. This information must come from an array
of structures, and this array must be passed as a parameter.

1
1

Programming Exercises | 647

Preview from Notesale.co.uk

Page 688 of 1392

In Chapter 11, you learned how to group data items that are of different types by using a
struct. The definition of a struct given in Chapter 11 is similar to the definition of a
C-struct. However, the members of a C++ struct can be data items as well as functions.
C++ provides another structured data type, called a class, which is specifically designed to
group data and functions. This chapter first introduces classes and explains how to use them
and then discusses the similarities and differences between a struct and a class.

Chapter 11 is not a prerequisite for this chapter. In fact, a struct and a class have similar

capabilities, as discussed in the section ‘‘A struct versus a class’’ in this chapter.

Classes
Chapter 1 introduced the problem-solving methodology called object-oriented design

(OOD). In OOD, the first step is to identify the components, called objects. An object
combines data and the operations on that data in a single unit. In C++, the mechanism
that allows you to combine data and the operations on that data in a single unit is called a
class. Now that you know how to store and manipulate data in computer memory and
how to construct your own functions, you are ready to learn how objects are constructed.
This and subsequent chapters develop and implement programs using OOD. This chapter
first explains how to define a class and use it in a program.

A class is a collection of a fixed number of components. The components of a class are
called the members of the class.

The general syntax for defining a class is:

class classIdentifier
{

classMembersList
};

in which classMembersList consists of variable declarations and/or functions. That is,
a member of a class can be either a variable (to store data) or a function.

• If a member of a class is a variable, you declare it just like any other
variable. Also, in the definition of the class, you cannot initialize a
variable when you declare it.

• If a member of a class is a function, you typically use the function
prototype to declare that member.

• If a member of a class is a function, it can (directly) access anymember of the
class—member variables and member functions. That is, when you write
the definition of a member function, you can directly access any member
variable of the class without passing it as a parameter. The only obvious
condition is that you must declare an identifier before you can use it.

650 | Chapter 12: Classes and Data Abstraction

Preview from Notesale.co.uk

Page 691 of 1392

Functions and Classes
The following rules describe the relationship between functions and classes:

• Class objects can be passed as parameters to functions and returned as
function values.

• As parameters to functions, class objects can be passed either by value or
by reference.

• If a class object is passed by value, the contents of the member variables of
the actual parameter are copied into the corresponding member variables
of the formal parameter.

Reference Parameters and Class Objects (Variables)
Recall that when a variable is passed by value, the formal parameter copies the value of
the actual parameter. That is, memory space to copy the value of the actual parameter is
allocated for the formal parameter. As a parameter, a class object can be passed by value.

Suppose that a class has several member variables requiring a large amount of memory to store
data, and you need to pass a variable by value. The corresponding formal parameter then
receives a copy of the data of the variable. That is, the compiler must allocate memory for the
formal parameter, so as to copy the value of the member variables of the actual parameter.
This operation might require, in addition to a large amount of storage space, a considerable
amount of computer time to copy the value of the actual parameter into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only the
address of the actual parameter. Therefore, an efficient way to pass a variable as a parameter is
by reference. If a variable is passed by reference, then when the formal parameter changes, the
actual parameter also changes. Sometimes, however, you do not want the function to be able
to change the values of the member variables. In C++, you can pass a variable by reference
and still prevent the function from changing its value by using the keyword const in the
formal parameter declaration. As an example, consider the following function definition:

void testTime(const clockType& otherClock)
{

clockType dClock;
.
.
.

}

The function testTime contains a reference parameter, otherClock. The parameter
otherClock is declared using the keyword const. Thus, in a call to the function
testTime, the formal parameter otherClock receives the address of the actual para-
meter, but otherClock cannot modify the contents of the actual parameter. For example,
after the following statement executes, the value of myClock will not be altered:

testTime(myClock);

658 | Chapter 12: Classes and Data Abstraction

Preview from Notesale.co.uk

Page 699 of 1392

1
2

Next, let us give the definitions of the other member functions of the class clockType.
The definitions of these functions are simple and easy to follow:

void clockType::getTime(int& hours, int& minutes,
int& seconds) const

{
hours = hr;
minutes = min;
seconds = sec;

}

void clockType::printTime() const
{

if (hr < 10)
cout << "0";

cout << hr << ":";

if (min < 10)
cout << "0";

cout << min << ":";

if (sec < 10)
cout << "0";

cout << sec;
}

void clockType::incrementHours()
{

hr++;
if (hr > 23)

hr = 0;
}

void clockType::incrementMinutes()
{

min++;
if (min > 59)
{

min = 0;
incrementHours(); //increment hours

}
}

void clockType::incrementSeconds()
{

sec++;

if (sec > 59)
{

sec = 0;
incrementMinutes(); //increment minutes

}
}

Classes | 661

Preview from Notesale.co.uk

Page 702 of 1392

Accessor and Mutator Functions
Let us look at the member functions of the class clockType. The function setTime

sets the values of the member variables to the values specified by the user. In other
words, it alters or modifies the values of the member variables. Similarly, the functions
incrementSeconds, incrementMinutes, and incrementHours also modify the
member variables. On the other hand, functions such as getTime, printTime, and
equalTime only access the values of the member variables. They do not modify the
member variables. We can, therefore, categorize the member functions of the class
clockType into two categories: member functions that modify the member variables
and member functions that only access, and do not modify, the member variables.

This is typically true for any class. That is, every class has member functions that only
access and do not modify the member variables, called accessor functions, and member
functions that modify the member variables, called mutator functions.

Accessor function: A member function of a class that only accesses (that is, does not
modify) the value(s) of the member variable(s).

Mutator function: A member function of a class that modifies the value(s) of the member
variable(s).

Because an accessor function only accesses the values of the member variables, as a
safeguard, we typically include the reserved word const at the end of the headings of
these functions. Moreover, a constant member function of a class cannot modify the
member variables of that class. For example, see the headings of the member functions
getTime, printTime, and equalTime of the class clockType.

A member function of a class is called a constant function if its heading contains the reserved
word const at the end. For example, the member functions getTime, printTime, and
equalTime of the class clockType are constant functions. A constant member function
of a class cannot modify the member variables of that class, so these are accessor functions.
One thing that should be remembered about constant member functions is that a constant
member function of a class can only call other constant member functions of that class.
Therefore, you should be careful when you make a member function constant.

Example 12-2 shows how to use the class clockType in a program. Note that we
have combined the definition of the class, the definition of the member functions, and the
main function to create a complete program. Later in this chapter, you will learn how to
separate the definition of the class clockType, the definitions of the member func-
tions, and the main program, using three files.

EXAMPLE 12-2

//The program listing of the program that defines
//and uses the class clockType

664 | Chapter 12: Classes and Data Abstraction

Preview from Notesale.co.uk

Page 705 of 1392

You can now use the functions of the class clockType to manipulate the time for
each employee. For example, the following statement sets the arrival time, that is, hr,
min, and sec, of the 50th employee to 8, 5, and 10, respectively (see Figure 12-9).

arrivalTimeEmp[49].setTime(8, 5, 10); //Line 2

To output the arrival time of each employee, you can use a loop, such as the following:

for (int j = 0; j < 100; j++) //Line 3
{

cout << "Employee " << (j + 1)
<< " arrival time: ";

arrivalTimeEmp[j].printTime(); //Line 4
cout << endl;

}

The statement in Line 4 outputs the arrival time of an employee in the form
hr:min:sec.

arrivalTimeEmp[0]
arrivalTimeEmp[1]

arrivalTimeEmp[49]

arrivalTimeEmp[98]
arrivalTimeEmp[99]

arrivalTimeEmp

arrivalTimeEmp[49]
hr 8

min 5

sec 10

FIGURE 12-9 Array arrivalTimeEmp after setting the time of employee 49

arrivalTimeEmp[0]
arrivalTimeEmp[1]

arrivalTimeEmp[49]

arrivalTimeEmp[98]
arrivalTimeEmp[99]

arrivalTimeEmp

arrivalTimeEmp[49]
hr 0

min 0

sec 0

FIGURE 12-8 Array arrivalTimeEmp

676 | Chapter 12: Classes and Data Abstraction

Preview from Notesale.co.uk

Page 717 of 1392

The following program shows how to use the class die in a program.

//The user program that uses the class die

#include <iostream>
#include "die.h"

using namespace std;

int main()
{ //Line 1

die die1; //Line 2
die die2; //Line 3

cout << "Line 4: die1: " << die1.getNum() << endl; //Line 4

cout << "Line 5: die2: " << die2.getNum() << endl; //Line 5

cout << "Line 6: After rolling die1: "
<< die1.roll() << endl; //Line 6

cout << "Line 7: After rolling die2: "
<< die2.roll() << endl; //Line 7

cout << "Line 8: The sum of the numbers rolled"
<< " by the dice is: "
<< die1.getNum() + die2.getNum() << endl; //Line 8

cout << "Line 9: After again rolling, the sum of "
<< "the numbers rolled is: "
<< die1.roll() + die2.roll() << endl; //Line 9

return 0; //Line 10
}//end main //Line 11

Sample Run:

Line 4: die1: 1
Line 5: die2: 1
Line 6: After rolling die1: 3
Line 7: After rolling die2: 4
Line 8: The sum of the numbers rolled by the dice is: 7
Line 9: After again rolling, the sum of the numbers rolled is: 5

The preceding program works as follows. The statements in Lines 2 and 3 create the
objects die1 and die2, and, using the default constructor, set both the dice to 1. The
statements in Lines 4 and 5 output the number of both the dice. The statement in Line 6
rolls die1 and outputs the number rolled. Similarly, the statement in Line 7 rolls die2 and
outputs the number rolled. The statement in Line 8 outputs the sum of the numbers rolled
by die1 and die2. The statement in Line 9 again rolls both the dice and outputs the sum
of the numbers rolled.

688 | Chapter 12: Classes and Data Abstraction

Preview from Notesale.co.uk

Page 729 of 1392

The output of the statement:

illusObject1.print();

is:

x = 3, y = 1, count = 1

Similarly, the output of the statement:

illusObject2.print();

is:

x = 5, y = 1, count = 1

Now consider the statement:

illustrate::count++;

After this statement executes, the objects and static members are as shown in
Figure 12-14.

The output of the statements:

illusObject1.print();
illusObject2.print();

is:

x = 3, y = 1, count = 2
x = 5, y = 1, count = 2

The program in Example 12-11 further illustrates how static members of a class work.

illusObject2illusObject1

y 1

count 2

x 5x 3

FIGURE 12-14 illusObject1 and illusObject2 after the statement illustrate::
count++; executes

694 | Chapter 12: Classes and Data Abstraction

Preview from Notesale.co.uk

Page 735 of 1392

1
2

definition of the class, in the heading of the definition of the constructor, we do not
specify the default value. The definition of the constructor is as follows:

cashRegister::cashRegister(int cashIn)
{

if (cashIn >= 0)
cashOnHand = cashIn;

else
cashOnHand = 500;

}

Note that the definition of the constructor checks for valid values of the parameter
cashIn. If the value of cashIn is less than 0, the value assigned to the member
variable cashOnHand is 500.

Dispenser The dispenser releases the selected item if it is not empty. It should show the number
of items in the dispenser and the cost of the item. The following class defines the
properties of a dispenser. Let us call this class dispenserType:

class dispenserType
{
public:

int getNoOfItems() const;
//Function to show the number of items in the machine.
//Postcondition: The value of numberOfItems is returned.

int getCost() const;
//Function to show the cost of the item.
//Postcondition: The value of cost is returned.

void makeSale();
//Function to reduce the number of items by 1.
//Postcondition: numberOfItems--;

dispenserType(int setNoOfItems = 50, int setCost = 50);
//Constructor
//Sets the cost and number of items in the dispenser
//to the values specified by the user.
//Postcondition: numberOfItems = setNoOfItems;
// cost = setCost;
// If no value is specified for a
// parameter, then its default value is
// assigned to the corresponding member
// variable.

private:
int numberOfItems; //variable to store the number of

//items in the dispenser
int cost; //variable to store the cost of an item

};

Programming Example: Candy Machine | 699

Preview from Notesale.co.uk

Page 740 of 1392

1
2

deposited by the customer, the cash register is updated by adding the money
entered by the user.)

From this discussion, it is clear that the function sellProduct must have access to
the dispenser holding the product (to decrement the number of items in the dispenser
by 1 and to show the cost of the item) as well as the cash register (to update the cash).
Therefore, this function has two parameters: one corresponding to the dispenser and
the other corresponding to the cash register. Furthermore, both parameters must be
referenced.

In pseudocode, the algorithm for this function is:

1. If the dispenser is not empty,

a. Show and prompt the customer to enter the cost of the item.

b. Get the amount entered by the customer.

c. If the amount entered by the customer is less than the cost of the
product,

i. Show and prompt the customer to enter the additional
amount.

ii. Calculate the total amount entered by the customer.

d. If the amount entered by the customer is at least the cost of the
product,

i. Update the amount in the cash register.

ii. Sell the product—that is, decrement the number of items
in the dispenser by 1.

iii. Display an appropriate message.

e. If the amount entered by the user is less than the cost of the
item, return the amount.

2. If the dispenser is empty, tell the user that this product is sold out.

This definition of the function sellProduct is:

void sellProduct(dispenserType& product,
cashRegister& pCounter)

{
int amount; //variable to hold the amount entered
int amount2; //variable to hold the extra amount needed

if (product.getNoOfItems() > 0) //if the dispenser is not
//empty

{
cout << "Please deposit " << product.getCost()

<< " cents" << endl;
cin >> amount;

Programming Example: Candy Machine | 703

Preview from Notesale.co.uk

Page 744 of 1392

myClass::incrementCount();
myObject1.printCount();
cout << endl;
myObject2.printCount();
cout << endl;
myObject2.printX();
cout << endl;
myObject1.setX(14);
myObject1.incrementCount();
myObject1.printX();
cout << endl;
myObject1.printCount();
cout << endl;
myObject2.printCount();
cout << endl;

14. In Example 12-8, we designed the class die. Using this class, declare an
array named rolls, of 100 components of type die. Write C++ state-
ments to roll each die of the array rolls, find and output the heighest
number rolled and the number of times this number was rolled, and find
and output the number that is rolled the maximum number of times
together with its count. Also write a program to test your statements.

PROGRAMMING EXERCISES

1. Write a program that converts a number entered in Roman numerals to
decimal. Your program should consist of a class, say, romanType. An
object of type romanType should do the following:

a. Store the number as a Roman numeral.

b. Convert and store the number into decimal form.

c. Print the number as a Roman numeral or decimal number as requested
by the user.

The decimal values of the Roman numerals are:

M 1000

D 500

C 100

L 50

X 10

V 5

I 1

d. Test your program using the following Roman numerals: MCXIV,
CCCLIX, MDCLXVI.

718 | Chapter 12: Classes and Data Abstraction

Preview from Notesale.co.uk

Page 759 of 1392

ii. Include the member functions to perform the various operations on
objects of type bookType. For example, the usual operations that
can be performed on the title are to show the title, set the title, and
check whether a title is the same as the actual title of the book.
Similarly, the typical operations that can be performed on the
number of copies in stock are to show the number of copies in stock,
set the number of copies in stock, update the number of copies in
stock, and return the number of copies in stock. Add similar opera-
tions for the publisher, ISBN, book price, and authors. Add the
appropriate constructors and a destructor (if one is needed).

b. Write the definitions of the member functions of the class bookType.

c. Write a program that uses the class bookType and tests various
operations on the objects of the class bookType. Declare an array
of 100 components of type bookType. Some of the operations that you
should perform are to search for a book by its title, search by ISBN, and
update the number of copies of a book.

7. In this exercise, you will design a class memberType.

a. Each object of memberType can hold the name of a person, member
ID, number of books bought, and amount spent.

b. Include the member functions to perform the various operations on the
objects of memberType—for example, modify, set, and show a person’s
name. Similarly, update, modify, and show the number of books bought
and the amount spent.

c. Add the appropriate constructors.

d. Write the definitions of the member functions of memberType.

e. Write a program to test various operations of your class memberType.

8. Using the classes designed in Programming Exercises 6 and 7, write a
program to simulate a bookstore. The bookstore has two types of customers:
those who are members of the bookstore and those who buy books from the
bookstore only occasionally. Each member has to pay a $10 yearly member-
ship fee and receives a 5% discount on each book purchased.

For each member, the bookstore keeps track of the number of books
purchased and the total amount spent. For every eleventh book that a
member buys, the bookstore takes the average of the total amount of the
last 10 books purchased, applies this amount as a discount, and then resets the
total amount spent to 0.

Write a program that can process up to 1000 book titles and 500 members. Your
program should contain a menu that gives the user different choices to effectively
run the program; in other words, your program should be user driven.

9. The method sellProduct of the Candy Machine programming example
gives the user only two chances to enter enough money to buy the product.

720 | Chapter 12: Classes and Data Abstraction

Preview from Notesale.co.uk

Page 761 of 1392

base classes. The derived classes inherit the properties of the base classes. So rather than
create completely new classes from scratch, we can take advantage of inheritance and
reduce software complexity.

Each derived class, in turn, becomes a base class for a future derived class. Inheritance
can be either single inheritance or multiple inheritance. In single inheritance, the
derived class is derived from a single base class; in multiple inheritance, the derived
class is derived from more than one base class. This chapter concentrates on single
inheritance.

Inheritance can be viewed as a tree-like, or hierarchical, structure wherein a base class is
shown with its derived classes. Consider the tree diagram shown in Figure 13-1.

In this diagram, shape is the base class. The classes circle and rectangle are
derived from shape, and the class square is derived from rectangle. Every
circle and every rectangle is a shape. Every square is a rectangle.

The general syntax of a derived class is:

class className: memberAccessSpecifier baseClassName
{

member list
};

in which memberAccessSpecifier is public, protected, or private. When no
memberAccessSpecifier is specified, it is assumed to be a private inheritance. (We
discuss protected inheritance later in this chapter.)

1
3

circle rectangle

square

shape

FIGURE 13-1 Inheritance hierarchy

Inheritance | 725

Preview from Notesale.co.uk

Page 766 of 1392

points, B is equivalent to three points, C is equivalent to two points, D is equivalent to
one point, and F is equivalent to zero points.

Input A file containing the data in the form given previously. For easy reference,
let us assume that the name of the input file is stData.txt.

Output A file containing the output in the form given previously.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

We must first identify the main components of the program. The university has
students, and every student takes courses. Thus, the two main components are the
student and the course.

Let us first describe the course component.

Course The main characteristics of a course are the course name, course number, and
number of credit hours.

Some of the basic operations that need to be performed on an object of the course
type are:

1. Set the course information.

2. Print the course information.

3. Show the credit hours.

4. Show the course number.

The following class defines the course as an ADT:

class courseType
{
public:

void setCourseInfo(string cName, string cNo, int credits);
//Function to set the course information.
//The course information is set according to the
//parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseCredits = credits;

void print(ostream& outF);
//Function to print the course information.
//This function sends the course information to the
//output device specified by the parameter outF. If the
//actual parameter to this function is the object cout,
//then the output is shown on the standard output device.
//If the actual parameter is an ofstream variable, say,
//outFile, then the output goes to the file specified by
//outFile.

int getCredits();
//Function to return the credit hours.
//Postcondition: The value of courseCredits is returned.

760 | Chapter 13: Inheritance and Composition

Preview from Notesale.co.uk

Page 801 of 1392

The definition of the function print is as follows:

void studentType::print(ostream& outF, double tuitionRate)
{

int i;

outF << "Student Name: " << getFirstName()
<< " " << getLastName() << endl; //Step 1

outF << "Student ID: " << sId << endl; //Step 2

outF << "Number of courses enrolled: "
<< numberOfCourses << endl; //Step 3

outF << endl;

outF << left;
outF << "Course No" << setw(15) << " Course Name"

<< setw(8) << "Credits"
<< setw(6) << "Grade" << endl; //Step 4

outF << right;
for (i = 0; i < numberOfCourses; i++) //Step 5
{

coursesEnrolled[i].print(outF); //Step 5a

if (isTuitionPaid) //Step 5b
outF <<setw(4) << coursesGrade[i] << endl;

else
outF << setw(4) << "***" << endl;

}
outF << endl;

outF << "Total number of credit hours: "
<< getHoursEnrolled() << endl; //Step 6

outF << fixed << showpoint << setprecision(2); //Step 7

if (isTuitionPaid) //Step 8
outF << "Mid-Semester GPA: " << getGpa()

<< endl;
else
{

outF << "*** Grades are being held for not paying "
<< "the tuition. ***" << endl;

outF << "Amount Due: $" << billingAmount(tuitionRate)
<< endl;

}

outF << "-*"
<< "-*-*-*-*-" << endl << endl;

} //end print

768 | Chapter 13: Inheritance and Composition

Preview from Notesale.co.uk

Page 809 of 1392

10. If in the heading of the definition of a derived class’s constructor, no call to
a constructor (with parameters) of a base class is specified, then during the
derived class’s object declaration and initialization, the default constructor
(if any) of the base class executes.

11. When initializing the object of a derived class, the constructor of the base
class is executed first.

12. Review the inheritance rules given in this chapter.

13. In composition (aggregation), a member of a class is an object of another class.

14. In composition (aggregation), a call to the constructor of the member
objects is specified in the heading of the definition of the class’s constructor.

15. The three basic principles of OOD are encapsulation, inheritance, and
polymorphism.

16. An easy way to identify classes, objects, and operations is to describe the
problem in English and then identify all of the nouns and verbs. Choose your
classes (objects) from the list of nouns and operations from the list of verbs.

EXERCISES

1. Mark the following statements as true or false.

a. The constructor of a derived class can specify a call to the constructor of
the base class in the heading of the function definition.

b. The constructor of a derived class can specify a call to the constructor of
the base class using the name of the class.

c. Suppose that x and y are classes, one of the member variables of x is an
object of type y, and both classes have constructors. The constructor of x
specifies a call to the constructor of y by using the object name of type y.

2. Draw a class hierarchy in which several classes are derived from a single base
class.

3. Suppose that a class employeeType is derived from the class
personType (see Example 12-9 in Chapter 12). Give examples of
members—data and functions—that can be added to the class
employeeType.

4. Consider the following statements:

class dog: public animal
{

...
};

In this declaration, which class is the base class, and which class is the derived class?

780 | Chapter 13: Inheritance and Composition

Preview from Notesale.co.uk

Page 821 of 1392

check whether the date is valid before storing the date in the member
variables. Rewrite the definitions of the function setDate and the con-
structor so that the values for the month, day, and year are checked before
storing the date into the member variables. Add a member function,
isLeapYear, to check whether a year is a leap year. Moreover, write a
test program to test your class.

3. A point in the x-y plane is represented by its x-coordinate and y-coordinate.
Design a class, pointType, that can store and process a point in the x-y
plane. You should then perform operations on the point, such as setting the
coordinates of the point, printing the coordinates of the point, returning the
x-coordinate, and returning the y-coordinate. Also, write a program to test
various operations on the point.

4. Every circle has a center and a radius. Given the radius, we can determine
the circle’s area and circumference. Given the center, we can determine its
position in the x-y plane. The center of the circle is a point in the x-y plane.
Design a class, circleType, that can store the radius and center of the
circle. Because the center is a point in the x-y plane and you designed the
class to capture the properties of a point in Programming Exercise 3, you
must derive the class circleType from the class pointType. You
should be able to perform the usual operations on the circle, such as setting
the radius, printing the radius, calculating and printing the area and circum-
ference, and carrying out the usual operations on the center. Also, write a
program to test various operations on a circle.

5. Every cylinder has a base and height, wherein the base is a circle. Design a
class, cylinderType, that can capture the properties of a cylinder and
perform the usual operations on the cylinder. Derive this class from the
class circleType designed in Programming Exercise 4. Some of the
operations that can be performed on a cylinder are as follows: calculate and
print the volume, calculate and print the surface area, set the height, set the
radius of the base, and set the center of the base. Also, write a program to test
various operations on a cylinder.

6. Using classes, design an online address book to keep track of the names,
addresses, phone numbers, and dates of birth of family members, close
friends, and certain business associates. Your program should be able to
handle a maximum of 500 entries.

a. Define a class, addressType, that can store a street address, city,
state, and ZIP code. Use the appropriate functions to print and store the
address. Also, use constructors to automatically initialize the member
variables.

b. Define a class extPersonType using the class personType (as
defined in Example 12-9, Chapter 12), the class dateType (as designed
in this chapter’s Programming Exercise 2), and the class addressType.
Add a member variable to this class to classify the person as a family

788 | Chapter 13: Inheritance and Composition

Preview from Notesale.co.uk

Page 829 of 1392

In Chapter 2, you learned that C++’s data types are classified into three categories:
simple, structured, and pointers. Until now, you have studied only the first two data
types. This chapter discusses the third data type called the pointer data type. You will first
learn how to declare pointer variables (or pointers, for short) and manipulate the data to
which they point. Later, you will use these concepts when you study dynamic arrays and
linked lists. Linked lists are discussed in Chapter 18.

Pointer Data Type and Pointer Variables
Chapter 2 defined a data type as a set of values together with a set of operations. Recall that
the set of values is called the domain of the data type. In addition to these two properties,
until now, all of the data types you have encountered have one more thing associated with
them: the name of the data type. For example, there is a data type called int. The set of
values belonging to this data type includes integers that range between –2147483648 and
2147483647, and the operations allowed on these values are the arithmetic operators
described in Chapter 2. To manipulate numeric integer data in the range –2147483648
to 2147483647, you can declare variables using the word int. The name of the data type
allows you to declare a variable. Next, we describe the pointer data type.

The values belonging to pointer data types are the memory addresses of your computer.
As in many other languages, there is no name associated with the pointer data type in
C++. Because the domain—that is, the set of values of a pointer data type—is the
addresses (memory locations), a pointer variable is a variable whose content is an address,
that is, a memory location.

Pointer variable: A variable whose content is an address (that is, a memory address).

Declaring Pointer Variables
As remarked previously, there is no name associated with pointer data types. Moreover,
pointer variables store memory addresses. So the obvious question is: If no name is
associated with a pointer data type, how do you declare pointer variables?

The value of a pointer variable is an address. That is, the value refers to another memory
space. The data is typically stored in this memory space. Therefore, when you declare a
pointer variable, you also specify the data type of the value to be stored in the memory
location pointed to by the pointer variable.

In C++, you declare a pointer variable by using the asterisk symbol (*) between the data
type and the variable name. The general syntax to declare a pointer variable is:

dataType *identifier;

As an example, consider the following statements:

int *p;
char *ch;

794 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

Preview from Notesale.co.uk

Page 835 of 1392

the statement:

p = &x;

assigns the address of x to p. That is, x and the value of p refer to the same memory
location.

Dereferencing Operator (*)
Every chapter until now has used the asterisk character, *, as the binary multiplication
operator. C++ also uses * as a unary operator. When used as a unary operator, *, commonly
referred to as the dereferencing operator or indirection operator, refers to the object to
which its operand (that is, the pointer) points. For example, given the statements:

int x = 25;
int *p;
p = &x; //store the address of x in p

the statement:

cout << *p << endl;

prints the value stored in the memory space pointed to by p, which is the value of x. Also,
the statement:

*p = 55;

stores 55 in the memory location pointed to by p—that is, in x.

EXAMPLE 14-1

Let us consider the following statements:

int *p;
int num;

In these statements, p is a pointer variable of type int, and num is a variable of type int.
Let us assume that memory location 1200 is allocated for p, and memory location 1800 is
allocated for num. (See Figure 14-1.)

1200
p

1800
num

.

FIGURE 14-1 Variables p and num

796 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

Preview from Notesale.co.uk

Page 837 of 1392

1
4

Let us note the following:

1. p is a pointer variable.

2. The content of p points only to a memory location of type int.

3. Memory location x exists and is of type int. Therefore, the assignment
statement:
p = &x;

is legal. After this assignment statement executes, *p is valid and
meaningful.

The program in Example 14-3 further illustrates how a pointer variable works.

EXAMPLE 14-3

The following program illustrates how pointer variables work:

//Chapter 14: Example 14-3

#include <iostream>

using namespace std;

int main()
{

int *p;
int x = 37;

cout << "Line 1: x = " << x << endl; //Line 1

p = &x; //Line 2

cout << "Line 3: *p = " << *p
<< ", x = " << x << endl; //Line 3

*p = 58; //Line 4

cout << "Line 5: *p = " << *p
<< ", x = " << x << endl; //Line 5

cout << "Line 6: Address of p = " << &p << endl; //Line 6

cout << "Line 7: Value of p = " << p << endl; //Line 7

cout << "Line 8: Value of the memory location "
<< "pointed to by *p = " << *p << endl; //Line 8

cout << "Line 9: Address of x = " << &x << endl; //Line 9
cout << "Line 10: Value of x = " << x << endl; //Line 10

return 0;
}

Dereferencing Operator (*) | 799

Preview from Notesale.co.uk

Page 840 of 1392

Before describing how to overcome this deficiency, let us describe one more situation that
could also lead to a shallow copying of the data. The solution to both these problems is the same.

Recall that as parameters to a function, class objects can be passed either by reference or
by value. Remember that the class ptrMemberVarType has the destructor, which
deallocates the memory space pointed to by p. Suppose that objectOne is as shown in
Figure 14-19.

Let us consider the following function prototype:

void destroyList(ptrMemberVarType paramObject);

The function destroyList has a formal value parameter, paramObject. Now consider
the following statement:

destroyList(objectOne);

In this statement, objectOne is passed as a parameter to the function destroyList.
Because paramObject is a value parameter, the copy constructor copies the member
variables of objectOne into the corresponding member variables of paramObject. Just
as in the previous case, paramObject.p and objectOne.p would point to the same
memory space, as shown in Figure 14-20.

paramObject

destroyList

objectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 14-20 Pointer member variables of objects objectOne and paramObject pointing to the
same array

objectOne
x

5 36

8

50

24 15 ...

p

lenP

FIGURE 14-19 Object objectOne

822 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

Preview from Notesale.co.uk

Page 863 of 1392

When the function destroyList exits, the formal parameter paramObject goes
out of scope, and the destructor for the object paramObject deallocates the memory space
pointed to by paramObject.p. However, this deallocation has no effect on objectOne.

The general syntax to include the copy constructor in the definition of a class is:

className(const className& otherObject);

Notice that the formal parameter of the copy constructor is a constant reference parameter.

Example 14-7 illustrates how to include the copy constructor in a class and how it works.

EXAMPLE 14-7

Consider the following class:

class ptrMemberVarType
{
public:

void print() const;
//Function to output the data stored in the array p.

void insertAt(int index, int num);
//Function to insert num into the array p at the
//position specified by index.
//If index is out of bounds, the program is terminated.
//If index is within bounds, but greater than the index
//of the last item in the list, num is added at the end
//of the list.

ptrMemberVarType(int size = 10);
//Constructor
//Creates an array of the size specified by the
//parameter size; the default array size is 10.

~ptrMemberVarType();
//Destructor
//deallocates the memory space occupied by the array p.

ptrMemberVarType(const ptrMemberVarType& otherObject);
//Copy constructor

private:
int maxSize; //variable to store the maximum size of p
int length; //variable to store the number elements in p
int *p; //pointer to an int array

};

Suppose that the definitions of the members of the class ptrMemberVarType are as
follows:

824 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

Preview from Notesale.co.uk

Page 865 of 1392

void ptrMemberVarType::print() const
{

for (int i = 0; i < length; i++)
cout << p[i] << " ";

}

void ptrMemberVarType::insertAt(int index, int num)
{

//if index is out of bounds, terminate the program
assert(index >= 0 && index < maxSize);

if (index < length)
p[index] = num;

else
{

p[length] = num;
length++;

}
}

ptrMemberVarType::ptrMemberVarType(int size)
{

if (size <= 0)
{

cout << "The array size must be positive." << endl;
cout << "Creating an array of the size 10." << endl;

maxSize = 10;
}
else

maxSize = size;

length = 0;

p = new int[maxSize];

}

ptrMemberVarType::~ptrMemberVarType()
{

delete [] p;
}

//copy constructor
ptrMemberVarType::ptrMemberVarType

(const ptrMemberVarType& otherObject)
{

maxSize = otherObject.maxSize;
length = otherObject.length;

1
4

Classes and Pointers: Some Peculiarities | 825

Preview from Notesale.co.uk

Page 866 of 1392

the default array size. The for loop in Line 5 reads and stores five integers in listOne.p.
The statement in Line 9 outputs the numbers stored in listOne, that is, the five numbers
stored in p. (See the output of the line marked Line 8 in the sample run.)

The statement in Line 11 declares listTwo to be an object of type ptrMemberVarType and
also initializes listTwo using the values of listOne. The statement in Line 13 outputs the
numbers stored in listTwo. (See the output of the line marked Line 12 in the sample run.)

The statements in Lines 15 and 16 modify listTwo, and the statement in Line 18 outputs
the modified data of listTwo. (See the output of the line marked Line 17 in the sample
run.) The statement in Line 21 outputs the data stored in listOne. Notice that the data
stored in listOne is unchanged, even though listTwo modified its data. It follows that
the copy constructor used to initialize listTwo using listOne (at Line 11) provides
listTwo its own copy of the data.

The statements in Lines 23 through 28 show that when listOne is passed as a parameter by
value to the function testCopyConst (see Line 24), the corresponding formal parameter
temp has its own copy of data. Notice that the function testCopyConst modifies the
object temp; however, the object listOne remains unchanged. See the outputs of the lines
marked Line 23 (before the function testCopyConst is called) and Line 25 (after the
function testCopyConst terminates) in the sample run. Also notice that when the function
testCopyConst terminates, the destructor of the class ptrMemberVarType deallocates
the memory space occupied by temp.p, which has no effect on listOne.p.

For classes with pointer member variables, three things are normally done:

1. Include the destructor in the class.

2. Overload the assignment operator for the class.

3. Include the copy constructor.

Chapter 15 discusses overloading the assignment operator. Until then, whenever we
discuss classes with pointer member variables, out of the three items in the previous list,
we will implement only the destructor and the copy constructor.

Inheritance, Pointers, and Virtual Functions
Recall that as a parameter, a class object can be passed either by value or by reference.
Earlier chapters also said that the types of the actual and formal parameters must match.
However, in the case of classes, C++ allows the user to pass an object of a derived class to a
formal parameter of the base class type.

First, let us discuss the case in which the formal parameter is either a reference parameter
or a pointer. To be specific, let us consider the following classes:

class petType
{
public:

828 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

Preview from Notesale.co.uk

Page 869 of 1392

1
4

class petType
{
public:

virtual void print(); //virtual function
petType(string n = "");

private:
string name;

};

class dogType: public petType
{
public:

void print();
dogType(string n = "", string b = "");

private:
string breed;

};

Note that we need to declare a virtual function only in the base class.

The definition of the member function print is the same as before. If we execute the
previous program with these modifications, the output is as follows.

Sample Run:

Name: Lucky
Name: Tommy, Breed: German Shepherd
*** Calling the function callPrint ***
Name: Lucky
Name: Tommy, Breed: German Shepherd

This output shows that for the statement in Line 9, the print function of dogType is
executed (see the last two lines of the output).

The previous discussion also applies when a formal parameter is a pointer to a class, and a
pointer of the derived class is passed as an actual parameter. To illustrate this feature,
suppose we have the preceding classes. (We assume that the definition of the class
petType is in the header file petType.h, and the definition of the class dogType is in
the header file dogType.h.) Consider the following program:

#include <iostream>
#include "petType.h"
#include "dogType.h"

using namespace std;

void callPrint(petType *p);

int main()
{

petType *q; //Line 1
dogType *r; //Line 2

q = new petType("Lucky"); //Line 3
r = new dogType("Tommy", "German Shepherd"); //Line 4

Inheritance, Pointers, and Virtual Functions | 831

Preview from Notesale.co.uk

Page 872 of 1392

private:
double empSalary;
double empBonus;

};

The definitions of the constructor and functions of the class fullTimeEmployee are:

void fullTimeEmployee::set(string first, string last,
long id,
double salary, double bonus)

{
setName(first, last);
setId(id);
empSalary = salary;
empBonus = bonus;

}

void fullTimeEmployee::setSalary(double salary)
{

empSalary = salary;
}

double fullTimeEmployee::getSalary()
{

return empSalary;
}

void fullTimeEmployee::setBonus(double bonus)
{

empBonus = bonus;
}

double fullTimeEmployee::getBonus()
{

return empBonus;
}

void fullTimeEmployee::print() const
{

cout << "Id: " << getId() << endl;
cout << "Name: ";
personType::print();
cout << endl;
cout << "Wages: $" << calculatePay() << endl;

}

double fullTimeEmployee::calculatePay() const
{

return empSalary + empBonus;
}

840 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

Preview from Notesale.co.uk

Page 881 of 1392

fullTimeEmployee::fullTimeEmployee(string first, string last,
long id, double salary,
double bonus)

: employeeType(first, last, id)
{

empSalary = salary;
empBonus = bonus;

}

The definition of the class partTimeEmployee is:

#include "employeeType.h"

class partTimeEmployee: public employeeType
{
public:

void set(string first, string last, long id, double rate,
double hours);

//Function to set the first name, last name, id,
//payRate, and hoursWorked according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// personId = id;
// payRate = rate; hoursWorked = hours

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned.

void setPayRate(double rate);
//Function to set the salary.
//Postcondition: payRate = rate;

double getPayRate();
//Function to retrieve the salary.
//Postcondition: returns payRate;

void setHoursWorked(double hours);
//Function to set the bonus.
//Postcondition: hoursWorked = hours

double getHoursWorked();
//Function to retrieve the bonus.
//Postcondition: returns empBonus;

void print() const;
//Function to output the id, first name, last name,
//and the wages.
//Postcondition: Outputs
// Id:
// Name: firstName lastName
// Wages: $$$$.$$

1
4

Abstract Classes and Pure Virtual Functions | 841

Preview from Notesale.co.uk

Page 882 of 1392

16. What is the output of the following code?

int *secret;
int j;

secret = new int[10];
secret[0] = 10;
for (j = 1; j < 10; j++)

secret[j] = secret[j - 1] + 5;
for (j = 0; j < 10; j++)

cout << secret[j] << " ";
cout << endl;

17. Consider the following statement:
int *num;

a. Write the C++ statement that dynamically creates an array of 10
components of type int and num contains the base address of the array.

b. Write a C++ code that inputs data into the array num from the standard
input device.

c. Write a C++ statement that deallocates the memory space of array to
which num points.

18. Consider the following C++ code:

int *p;
p = new int[10];
for (int j = 0; j < 10; j++)

p[i] = 2 * j - 2;

Write the C++ statement that deallocates the memory space occupied by
the array to which p points.

19. Explain the difference between a shallow copy and a deep copy of data.

20. What is wrong with the following code?

int *p; //Line 1
int *q; //Line 2

p = new int[5]; //Line 3
*p = 2; //Line 4

for (int i = 1; i < 5; i++) //Line 5
p[i] = p[i - 1] + i; //Line 6

q = p; //Line 7

delete [] p; //Line 8

for (int j = 0; j < 5; j++) //Line 9
cout << q[j] << " "; //Line 10

cout << endl; //Line 11

1
4

Exercises | 853

Preview from Notesale.co.uk

Page 894 of 1392

Rewrite the definition of the class studentType so that the functions print and
calculateGPA are pure virtual functions.

31. Suppose that the definitions of the classes employeeType,
fullTimeEmployee, and partTimeEmployee are as given in Example
14-8 of this chapter. Which of the following statements is legal?

a. employeeType tempEmp;

b. fullTimeEmployee newEmp();

c. partTimeEmployee pEmp("Molly", "Burton", 101, 0.0, 0);

PROGRAMMING EXERCISES

1. Redo Programming Exercise 5 of Chapter 9 using dynamic arrays.

2. Redo Programming Exercise 6 of Chapter 9 using dynamic arrays.

3. Redo Programming Exercise 7 of Chapter 9 using dynamic arrays. You
must ask the user for the number of candidates and then create the appro-
priate arrays to hold the data.

4. Programming Exercise 11 in Chapter 9 explains how to add large integers using
arrays. However, in that exercise, the program could add only integers of, at
most, 20 digits. This chapter explains how to work with dynamic integers.
Design a class named largeIntegers such that an object of this class can
store an integer of any number of digits. Add operations to add, subtract,
multiply, and compare integers stored in two objects. Also add constructors
to properly initialize objects and functions to set, retrieve, and print the values
of objects.

5. Banks offer various types of accounts, such as savings, checking, certificate
of deposits, and money market, to attract customers as well as meet with
their specific needs. Two of the most commonly used accounts are savings
and checking. Each of these accounts has various options. For example, you
may have a savings account that requires no minimum balance but has a
lower interest rate. Similarly, you may have a checking account that limits
the number of checks you may write. Another type of account that is used
to save money for the long term is certificate of deposit (CD).

In this programming exercise, you use abstract classes and pure virtual
functions to design classes to manipulate various types of accounts. For
simplicity, assume that the bank offers three types of accounts: savings,
checking, and certificate of deposit, as described next.

Savings accounts: Suppose that the bank offers two types of savings
accounts: one that has no minimum balance and a lower interest rate and
another that requires a minimum balance and has a higher interest rate.

Checking accounts: Suppose that the bank offers three types of checking
accounts: one with a monthly service charge, limited check writing, no

1
4

Programming Exercises | 857

Preview from Notesale.co.uk

Page 898 of 1392

minimum balance, and no interest; another with no monthly service charge, a
minimum balance requirement, unlimited check writing and lower interest;
and a third with no monthly service charge, a higher minimum requirement, a
higher interest rate, and unlimited check writing.

Certificate of deposit (CD): In an account of this type, money is left for
some time, and these accounts draw higher interest rates than savings or
checking accounts. Suppose that you purchase a CD for six months. Then
we say that the CD will mature in six months. Penalty for early withdrawal
is stiff.

Figure 14-22 shows the inheritance hierarchy of these bank accounts.

Note that the classes bankAccount and checkingAccount are abstract.
That is, we cannot instantiate objects of these classes. The other classes in
Figure 14-22 are not abstract.

bankAccount: Every bank account has an account number, the name of
the owner, and a balance. Therefore, instance variables such as name,
accountNumber, and balance should be declared in the abstract class
bankAccount. Some operations common to all types of accounts are retrieve
account owner’s name, account number, and account balance; make deposits;
withdraw money; and create monthly statement. So include functions to imple-
ment these operations. Some of these functions will be pure virtual.

checkingAccount: A checking account is a bank account. Therefore, it
inherits all the properties of a bank account. Because one of the objectives of
a checking account is to be able to write checks, include the pure virtual
function writeCheck to write a check.

bankAccount

checkingAccount savingsAccount

highInterestSavingsserviceChargeChecking noServiceChargeChecking

highInterestChecking

certificateOfDeposit

FIGURE 14-22 Inheritance hierarchy of banking accounts

858 | Chapter 14: Pointers, Classes, Virtual Functions, and Abstract Classes

Preview from Notesale.co.uk

Page 899 of 1392

Syntax for Operator Functions
The result of an operation is a value. Therefore, the operator function is a value-returning
function.

The syntax of the heading for an operator function is:

returnType operator operatorSymbol(formal parameter list)

In C++, operator is a reserved word.

Recall that the only built-in operations on classes are assignment (=) and member
selection. To use other operators on class objects, they must be explicitly overloaded.
Operator overloading provides the same concise expressions for user-defined data types as
it does for built-in data types.

To overload an operator for a class:

1. Include the statement to declare the function to overload the operator
(that is, the operator function) prototype in the definition of the class.

2. Write the definition of the operator function.

Certain rules must be followed when you include an operator function in a class
definition. These rules are described in the section, ‘‘Operator Functions as Member
Functions and Nonmember Functions’’ later in this chapter.

Overloading an Operator: Some Restrictions
When overloading an operator, keep the following in mind:

1. You cannot change the precedence of an operator.

2. The associativity cannot be changed. (For example, the associativity of
the arithmetic operator addition is from left to right, and it cannot be
changed.)

3. Default parameters cannot be used with an overloaded operator.

4. You cannot change the number of parameters an operator takes.

5. You cannot create new operators. Only existing operators can be over-
loaded.

6. The operators that cannot be overloaded are:

. .* :: ?: sizeof

7. The meaning of how an operator works with built-in types, such as int,
remains the same.

8. Operators can be overloaded either for objects of the user-defined types,
or for a combination of objects of the user-defined type and objects of
the built-in type.

864 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 905 of 1392

1
5

type rectangleType, the operator function that overloads the insertion operator for
rectangleType must be a nonmember function of the class rectangleType.

Similarly, the operator function that overloads the stream extraction operator for
rectangleType must be a nonmember function of the class rectangleType.

OVERLOADING THE STREAM INSERTION OPERATOR (<<)

The general syntax to overload the stream insertion operator, <<, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend ostream& operator<<(ostream&, const className&);

Function Definition:

ostream& operator<<(ostream& osObject, const className& cObject)
{

//local declaration, if any
//Output the members of cObject.
//osObject << . . .

//Return the stream object.
return osObject;

}

In this function definition:

• Both parameters are reference parameters.

• The first parameter—that is, osObject— is a reference to an ostream
object.

• The second parameter is usually a const reference to a particular class,
because (recall from Chapter 12) the most effective way to pass an object
as a parameter to a class is by reference. In this case, the formal parameter
does not need to copy the member variables of the actual parameter. The
word const appears before the class name because we want to print only
the member variables of the object. That is, the function should not
modify the member variables of the object.

• The function return type is a reference to an ostream object.

The return type of the function to overload the operator << must be a reference to an
ostream object for the following reasons.

Suppose that the operator << is overloaded for the class rectangleType. The statement:

cout << myRectangle;

is equivalent to the statement:

operator<<(cout, myRectangle);

Operator Overloading | 883

Preview from Notesale.co.uk

Page 924 of 1392

the formal parameter rightObject also refers to the object myRectangle. Therefore,
in the expression:

this != &rightObject

this and &rightObject both mean the address of myRectangle. Thus, the expres-
sion will evaluate to false and, therefore, the body of the if statement will be skipped.

This note illustrates another reason why the body of the operator function must prevent

self-assignments. Let us consider the following class:

class arrayClass
{
public:

const arrayClass& operator= (const& arrayClass);
.
.
.

private:
int *list;
int length;
int maxSize;

};

The class arrayClass has a pointer member variable, list, which is used to

create an array to store integers. Suppose that the definition of the function to overload

the assignment operator for the class arrayClass is written without the if
statement, as follows:

const arrayClass & arrayClass::operator=
(const arrayClass& otherList)

{
delete [] list; //Line 1
maxSize = otherList.maxSize; //Line 2
length = otherList.length; //Line 3

list = new int[maxSize]; //Line 4

for (int i = 0; i < length; i++) //Line 5
list[i] = otherList.list[i]; //Line 6

return *this; //Line 7
}

Suppose that we have the following declaration in a user program:

arrayClass myList;

Consider the following statement:

myList = myList;

890 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 931 of 1392

int i; //Line 12
int number; //Line 13

cout << "Line 14: Enter 5 integers: "; //Line 14

for (i = 0; i < 5; i++) //Line 15
{

cin >> number; //Line 16
intList1.insertEnd(number); //Line 17

}

cout << endl; //Line 18
cout << "Line 19: intList1: "; //Line 19
intList1.print(); //Line 20

intList3 = intList2 = intList1; //Line 21

cout << "Line 22: intList2: "; //Line 22
intList2.print(); //Line 23

intList2.destroyList(); //Line 24

cout << endl; //Line 25
cout << "Line 26: intList2: "; //Line 26
intList2.print(); //Line 27

cout << "Line 28: After destroying intList2, "
<< "intList1: "; //Line 28

intList1.print(); //Line 29

cout << "Line 30: After destroying intList2, "
<< "intList3: "; //Line 30

intList3.print(); //Line 31
cout << endl; //Line 32

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 14: Enter 5 integers: 8 5 3 7 2

Line 19: intList1: 8 5 3 7 2
Line 22: intList2: 8 5 3 7 2

Line 26: intList2: The list is empty.
Line 28: After destroying intList2, intList1: 8 5 3 7 2
Line 30: After destroying intList2, intList3: 8 5 3 7 2

The statement in Line 9 creates intList1 of size 10; the statements in Lines 10 and 11
create intList2 and intList3 of (default) size 50. The statements in Lines 15 through
17 input the data into intList1, and the statement in Line 20 outputs intList1. The

894 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 935 of 1392

//Overload the equality operator.
bool clockType::operator==(const clockType& otherClock) const
{

return (hr == otherClock.hr && min == otherClock.min
&& sec == otherClock.sec);

}

The definition of the function operator<= is given next. The first time is less than
or equal to the second time if:

1. The hours of the first time are less than the hours of the second time, or

2. The hours of the first time and the second time are the same, but the
minutes of the first time are less than the minutes of the second time, or

3. The hours and minutes of the first time and the second time are the
same, but the seconds of the first time are less than or equal to the
seconds of the second time.

The definition of the function operator<= is:

//Overload the less than or equal to operator.
bool clockType::operator<=(const clockType& otherClock) const
{

return ((hr < otherClock.hr) ||
(hr == otherClock.hr && min < otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec <= otherClock.sec));

}

In a similar manner, we can write the definitions of the other relational operator
functions as follows:

//Overload the not equal operator.
bool clockType::operator!=(const clockType& otherClock) const
{

return (hr != otherClock.hr || min != otherClock.min
|| sec != otherClock.sec);

}

//Overload the less than operator.
bool clockType::operator<(const clockType& otherClock) const
{

return ((hr < otherClock.hr) ||
(hr == otherClock.hr && min < otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec < otherClock.sec));

}

//Overload the greater than or equal to operator.
bool clockType::operator>=(const clockType& otherClock) const

906 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 947 of 1392

cout << "Line 4: yourClock = " << yourClock
<< endl; //Line 4

cout << "Line 5: Enter the time in the form "
<< "hr:min:sec "; //Line 5

cin >> myClock; //Line 6
cout << endl; //Line 7

cout << "Line 8: The new time of myClock = "
<< myClock << endl; //Line 8

++myClock; //Line 9

cout << "Line 10: After incrementing the time, "
<< "myClock = " << myClock << endl; //Line 10

yourClock.setTime(13, 35, 38); //Line 11

cout << "Line 12: After setting the time, "
<< "yourClock = " << yourClock << endl; //Line 12

if (myClock == yourClock) //Line 13
cout << "Line 14: The times of myClock and "

<< "yourClock are equal." << endl; //Line 14
else //Line 15

cout << "Line 16: The times of myClock and "
<< "yourClock are not equal." << endl; //Line 16

if (myClock <= yourClock) //Line 17
cout << "Line 18: The time of myClock is "

<< "less than or equal to " << endl
<< "the time of yourClock." << endl; //Line 18

else //Line 19
cout << "Line 20: The time of myClock is "

<< "greater than the time of "
<< "yourClock." << endl; //Line 20

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 3: myClock = 05:06:23
Line 4: yourClock = 00:00:00
Line 5: Enter the time in the form hr:min:sec 4:50:59

Line 8: The new time of myClock = 04:50:59
Line 10: After incrementing the time, myClock = 04:51:00
Line 12: After setting the time, yourClock = 13:35:38
Line 16: The times of myClock and yourClock are not equal.
Line 18: The time of myClock is less than or equal to
the time of yourClock.

910 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 951 of 1392

1
5

To output a complex number in the form:

(a, b)

in which a is the real part and b is the imaginary part, clearly the algorithm is:

a. Output the left parenthesis, (.

b. Output the real part.

c. Output the comma and a space.

d. Output the imaginary part.

e. Output the right parenthesis,).

Therefore, the definition of the function operator<< is:

ostream& operator<<(ostream& osObject,
const complexType& complex)

{
osObject << "("; //Step a
osObject << complex.realPart; //Step b
osObject << ", "; //Step c
osObject << complex.imaginaryPart; //Step d
osObject << ")"; //Step e

return osObject; //return the ostream object
}

Next, we discuss the definition of the function to overload the stream extraction
operator, >>.

The input is of the form:

(3, 5)

In this input, the real part of the complex number is 3, and the imaginary part is 5.
Clearly, the algorithm to read this complex number is:

a. Read and discard the left parenthesis.

b. Read and store the real part.

c. Read and discard the comma.

d. Read and store the imaginary part.

e. Read and discard the right parenthesis.

Following these steps, the definition of the function operator>> is:

istream& operator>>(istream& isObject, complexType& complex)
{

char ch;

isObject >> ch; //Step a
isObject >> complex.realPart; //Step b

Programming Example: Complex Numbers | 913

Preview from Notesale.co.uk

Page 954 of 1392

1
5

Type& operator[](int index);
//Overload the operator for nonconstant arrays

const Type& operator[](int index) const;
//Overload the operator for constant arrays
.
.
.

private:
Type *list; //pointer to the array
int arraySize;

};

in which Type is the data type of the array elements.

The definitions of the functions to overload the operator [] for classTest are:

//Overload the operator [] for nonconstant arrays
Type& classTest::operator[](int index)
{

assert(0 <= index && index < arraySize);
return list[index]; //return a pointer of the

//array component
}

//Overload the operator [] for constant arrays
const Type& classTest::operator[](int index) const
{

assert(0 <= index && index < arraySize);
return list[index]; //return a pointer of the

//array component
}

The preceding function definitions use the assert statement. (For an explanation of the

assert statement, see Chapter 4 or the Appendix.)

Consider the following statements:

classTest list1;
classTest list2;
const classTest list3;

In the case of the statement:

list1[2] = list2[3];

the body of the operator function operator[] for nonconstant arrays is executed. In the
case of the statement:

list1[2] = list3[5];

first, the body of the operator function operator[] for constant arrays is executed
because list3 is a constant array. Next, the body of the operator function operator[]
for nonconstant arrays is executed to complete the execution of the assignment statement.

Overloading the Array Index (Subscript) Operator ([]) | 917

Preview from Notesale.co.uk

Page 958 of 1392

//Default constructor to store the null string
newString::newString()
{

strLength = 0;
strPtr = new char[1];
strcpy(strPtr, "");

}

newString::newString(const newString& rightStr) //copy constructor
{

strLength = rightStr.strLength;
strPtr = new char[strLength + 1];
strcpy(strPtr, rightStr.strPtr);

}

newString::~newString() //destructor
{

delete [] strPtr;
}

//overload the assignment operator
const newString& newString::operator=(const newString& rightStr)
{

if (this != &rightStr) //avoid self-copy
{

delete [] strPtr;
strLength = rightStr.strLength;
strPtr = new char[strLength + 1];
strcpy(strPtr, rightStr.strPtr);

}

return *this;
}

char& newString::operator[] (int index)
{

assert(0 <= index && index < strLength);
return strPtr[index];

}

const char& newString::operator[](int index) const
{

assert(0 <= index && index < strLength);
return strPtr[index];

}

//Overload the relational operators.
bool newString::operator==(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) == 0);
}

920 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 961 of 1392

Most of these functions are quite straightforward. Let us explain the functions that over-
load the conversion constructor, the assignment operator, and the copy constructor.

The conversion constructor is a single-parameter function that converts its argu-
ment to an object of the constructor’s class. In our case, the conversion constructor
converts a string to an object of the newString type.

Note that the assignment operator is explicitly overloaded only for objects of the
newString type. However, the overloaded assignment operator also works if we
want to store a C-string into a newString object. Consider the declaration:

newString str;

and the statement:

str = "Hello there";

The compiler translates this statement into:

str.operator=("Hello there");

1. First, the compiler automatically invokes the conversion constructor
to create an object of the newString type to temporarily store the
string "Hello there".

2. Second, the compiler invokes the overloaded assignment operator to
assign the temporary newString object to the object str.

Hence, it is not necessary to explicitly overload the assignment operator to store a
C-string into an object of type newString.

Next, we write a C++ program that tests some of the operations of the class
newString.

//**
// Author: D.S. Malik
//
// This program shows how to use the class newString.
//**

#include <iostream>
#include "myString.h"

using namespace std;

int main()
{

newString str1 = "Sunny"; //initialize str1 using
//the assignment operator

const newString str2("Warm"); //initialize str2 using the
//conversion constructor

922 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 963 of 1392

Function Overloading
The previous section discussed operator overloading. Operator overloading provides the
programmer with the same concise notation for user-defined data types as the operator
has for built-in types. The types of parameters used with an operator determine the action
to take. Similar to operator overloading, C++ allows the programmer to overload a
function name. Chapter 7 introduced function overloading. For easy reference in the
following discussion, let us review this concept.

Recall that a class can have more than one constructor, but all constructors of a class have
the same name, which is the name of the class. This is an example of overloading a
function. Further recall that overloading a function refers to having several functions
with the same name but different parameter lists. The parameter list determines which
function will execute.

For function overloading to work, we must give the definition of each function. The
next section teaches you how to overload functions with a single code segment and leave
the job of generating code for separate functions for the compiler.

Line 6: Enter a string with a length of at least 7: 123456789
Line 9: The new value of str1 = 123456789
Line 11: str3 = Birth Day, str4 = Birth Day
Line 13: The new value of str3 = 123456789
Line 16: After replacing the second character of str3 = 1t3456789
Line 18: After replacing the third character of str3 = 1tW456789
Line 20: After replacing the sixth character of str3 = 1tW45g789

The preceding program works as follows. The statement in Line 1 outputs the values
of str1, str2, and str3. Notice that the value of str3 is to be printed between
*** and ###. Because str3 is empty, nothing is printed between *** and ###; see
Line 1 in the sample run. The statements in Lines 2 through 5 compare str1 and
str2 and output the result. The statement in Line 7 inputs a string with a length of at
least 7 into str1, and the statement in Line 9 outputs the new value of str1. Note
that in the statement (see Line 10):

str4 = str3 = "Birth Day";

Because the associativity of the assignment operator is from right to left, first the
statement str3 = "Birth Day"; executes, and then the statement str4 = str3;
executes. The statement in Line 11 outputs the values of str3 and str4. The
statements in Lines 15, 17, and 19 use the array subscripting operator [] to indivi-
dually manipulate the characters of str3. The meanings of the remaining statements
are straightforward.

924 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 965 of 1392

void insert(const elemType& newElement);
//Function to insert newElement in the list.
//Precondition: Prior to insertion, the list must
// not be full.
//Postcondition: The list is the old list plus
// newElement.

void remove(const elemType& removeElement);
//Function to remove removeElement from the list.
//Postcondition: If removeElement is found in the list,
// it is deleted from the list, and the
// list is the old list minus removeElement.
// If the list is empty, output the message
// "Cannot delete from the empty list."

void destroyList();
//Function to destroy the list.
//Postcondition: length = 0;

void printList();
//Function to output the elements of the list.

listType();
//Default constructor
//Sets the length of the list to 0.
//Postcondition: length = 0;

protected:
elemType list[100]; //array to hold the list elements
int length; //variable to store the number of

//elements in the list
};

This definition of the class template listType is a generic definition and includes only
the basic operations on a list. To derive a specific list from this list and to add or rewrite
the operations, we declare the array containing the list elements and the length of the list
as protected.

Next, we describe a specific list. Suppose that you want to create a list to process integer
data. The statement:

listType<int> intList; //Line 1

declares intList to be an object of listType. The protectedmember list is an array
of 100 components, with each component being of type int. Similarly, the statement:

listType<newString> stringList; //Line 2

declares stringList to be an object of listType. The protected member list is
an array of 100 components, with each component being of type newString.

928 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 969 of 1392

e. The precedence of an operator cannot be changed, but its associativity
can be changed.

f. Every instance of an overloaded function has the same number of
parameters.

g. It is not necessary to overload relational operators for classes that have
only int member variables.

h. The member function of a class template is a function template.

i. When writing the definition of a friend function, the keyword
friend must appear in the function heading.

j. Templates provide the capability for software reuse.

k. The function heading of the operator function to overload the pre-
increment operator (++) and the post-increment operator (++) is the
same because both operators have the same symbols.

2. What is a friend function?

3. What is the difference between a friend function of a class and a member
function of a class?

4. Consider the definition of the class dateType given in Chapter 13.

a. Write the statement that includes a friend function named before in the
class dateType that takes as parameters two objects of type dateType
and returns true if the date represented by the first object comes before the
date represented by the second object; otherwise the function returns false.

b. Write the definition of the function you defined in part a.

5. Suppose that the operator << is to be overloaded for a user-defined class
mystery. Why must << be overloaded as a friend function?

6. Suppose that the binary operator + is overloaded as a member function for a
class strange. How many parameters does the function operator+ have?

7. When should a class overload the assignment operator and define the copy
constructor?

8. Consider the following declaration:

class strange
{

.

.

.
};

a. Write a statement that shows the declaration in the class strange to
overload the operator >>.

b. Write a statement that shows the declaration in the class strange to
overload the operator =.

c. Write a statement that shows the declaration in the class strange to
overload the binary operator + as a member function.

938 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 979 of 1392

1
5

4. a. The increment and relational operators in the class clockType are
overloaded as member functions. Rewrite the definition of the class
clockType so that these operators are overloaded as nonmember func-
tions. Also, overload the post-increment operator for the class
clockType as a nonmember.

b. Write the definitions of the member functions of the class clockType
as designed in part a.

c. Write a test program that tests various operations on the class as designed
in parts a and b.

5. a. Extend the definition of the class complexType so that it performs
the subtraction and division operations. Overload the operators subtrac-
tion and division for this class as member functions.

If (a, b) and (c, d) are complex numbers:

(a, b) - (c, d) = (a - c, b - d).

If (c, d) is nonzero:

(a, b) / (c, d) = ((ac + bd) / (c2 + d 2), (-ad + bc) / (c2 + d 2)).

b. Write the definitions of the functions to overload the operators - and / as
defined in part a.

c. Write a test program that tests various operations on the class
complexType. Format your answer with two decimal places.

6. a. Rewrite the definition of the class complexType so that the arith-
metic and relational operators are overloaded as nonmember functions.

b. Write the definitions of the member functions of the class complexType
as designed in part a.

c. Write a test program that tests various operations on the class
complexType as designed in parts a and b. Format your answer with
two decimal places.

7. a. Extend the definition of the class newString as follows:

i. Overload the operators + and += to perform the string concatena-
tion operations.

ii. Add the function length to return the length of the string.

b. Write the definition of the function to implement the operations defined
in part a.

c. Write a test program to test various operations on the newString objects.

8. a. Rewrite the definition of the class newString as defined and
extended in Programming Exercise 7 so that the relational operators
are overloaded as nonmember functions.

b. Write the definition of the class newString as designed in part a.

c. Write a test program that tests various operations on the class
newString.

Programming Exercises | 943

Preview from Notesale.co.uk

Page 984 of 1392

vert a Roman number into its equivalent decimal number.

Modify the definition of the class romanType so that the member
variables are declared as protected. Use the class newString, as
designed in Programming Exercise 7, to manipulate strings. Further-
more, overload the stream insertion and stream extraction operators for
easy input and output. The stream insertion operator outputs the
Roman number in the Roman format.

Also, include a member function, decimalToRoman, that converts the
decimal number (the decimal number must be a positive integer) to an
equivalent Roman number format. Write the definition of the member
function decimalToRoman.

For simplicity, we assume that only the letter I can appear in front of
another letter and that it appears only in front of the letters V and X. For
example, 4 is represented as IV, 9 is represented as IX, 39 is represented
as XXXIX, and 49 is represented as XXXXIX. Also, 40 will be repre-
sented as XXXX, 190 will be represented as CLXXXX, and so on.

b. Derive a class extRomanType from the class romanType to do
the following: In the class extRomanType, overload the arithmetic
operators +, -, *, and / so that arithmetic operations can be performed on
Roman numbers. Also, overload the pre- and post-increment and decre-
ment operators as member functions of the class extRomanType.

To add (subtract, multiply, or divide) Roman numbers, add (subtract,
multiply, or divide, respectively) their decimal representations and then
convert the result to the Roman number format. For subtraction, if the
first number is smaller than the second number, output a message saying
that, ‘‘Because the first number is smaller than the second,
the numbers cannot be subtracted’’. Similarly, for division, the
numerator must be larger than the denominator. Use similar conventions
for the increment and decrement operators.

c. Write the definitions of the functions to overload the operators
described in part b.

d. Test your class extRomanType on the following program. (Include
the appropriate header files.)

int main()
{

extRomanType num1("XXXIV");
extRomanType num2("XV");
extRomanType num3;

cout << "Num1 = " << num1 << endl;
cout << "Num2 = " << num2 << endl;
cout << "Num1 + Num2 = " << num1 + num2 << endl;

946 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 987 of 1392

1
5

********* First Investor's Heaven **********
********* Financial Report **********
Stock Today Previous Percent
Symbol Open Close High Low Close Gain Volume
------ ----- ----- ----- ----- -------- ------- ------

ABC 123.45 130.95 132.00 125.00 120.50 8.67% 10000
AOLK 80.00 75.00 82.00 74.00 83.00 -9.64% 5000
CSCO 100.00 102.00 105.00 98.00 101.00 0.99% 25000
IBD 68.00 71.00 72.00 67.00 75.00 -5.33% 15000

MSET 120.00 140.00 145.00 140.00 115.00 21.74% 30920
Closing Assets: $9628300.00
-*

Develop this programming exercise in two steps. In the first step (part a), design and
implement a stock object. In the second step (part b), design and implement an
object to maintain a list of stocks.

a. (Stock Object) Design and implement the stock object. Call the class
that captures the various characteristics of a stock object stockType.

The main components of a stock are the stock symbol, stock price, and
number of shares. Moreover, we need to output the opening price,
closing price, high price, low price, previous price, and the percent
gain/loss for the day. These are also all the characteristics of a stock.
Therefore, the stock object should store all this information.

Perform the following operations on each stock object:

i. Set the stock information.

ii. Print the stock information.

iii. Show the different prices.

iv. Calculate and print the percent gain/loss.

v. Show the number of shares.

a.1. The natural ordering of the stock list is by stock symbol.
Overload the relational operators to compare two stock
objects by their symbols.

a.2. Overload the insertion operator, <<, for easy output.

a.3. Because the data is stored in a file, overload the stream
extraction operator, >>, for easy input.

For example, suppose infile is an ifstream object and the input file
was opened using the object infile. Further suppose that myStock is
a stock object. Then, the statement:

infile >> myStock;

reads the data from the input file and stores it in the object myStock.
(Note that this statement reads and stores the data in the relevant
components of myStock.)

Programming Exercises | 949

Preview from Notesale.co.uk

Page 990 of 1392

b. Now that you have designed and implemented the class stockType
to implement a stock object in a program, it is time to create a list of
stock objects.

Let us call the class to implement a list of stock objects stockListType.

The class stockListType must be derived from the class
listType, which you designed and implemented in the previous
exercise. However, the class stockListType is a very specific
class, designed to create a list of stock objects. Therefore, the class
stockListType is no longer a template.

Add and/or overwrite the operations of the class listType to
implement the necessary operations on a stock list.

The following statement derives the class stockListType from
the class listType.

class stockListType: public listType<stockType>
{

member list
};

The member variables to hold the list elements, the length of the list,
and the max listSize were declared as protected in the class
listType. Therefore, these members can be directly accessed in the
class stockListType.

Because the company also requires you to produce the list ordered by the
percent gain/loss, you need to sort the stock list by this component. How-
ever, you are not to physically sort the list by the component percent gain/
loss. Instead, you will provide a logical ordering with respect to this compo-
nent.

To do so, add a member variable, an array, to hold the indices of the
stock list ordered by the component percent gain/loss. Call this array
sortIndicesGainLoss. When printing the list ordered by the com-
ponent percent gain/loss, use the array sortIndicesGainLoss to
print the list. The elements of the array sortIndicesGainLoss will
tell which component of the stock list to print next.

c. Write a program that uses these two classes to automate the company’s
analysis of stock data.

950 | Chapter 15: Overloading and Templates

Preview from Notesale.co.uk

Page 991 of 1392

1
6

Suppose there is a statement that can generate an exception, for example, division by 0.
Usually, before executing such a statement, we check whether certain conditions are met.
For example, before performing the division, we check whether the divisor is nonzero. If
the conditions are not met, we typically generate an exception, which in C++ terminology
is called throwing an exception. This is typically done using the throw statement, which
we will explain shortly. We will show what is typically thrown to generate an exception.

Let us now note the following about try/catch blocks.

• If no exception is thrown in a try block, all catch blocks associated
with that try block are ignored and program execution resumes after the
last catch block.

• If an exception is thrown in a try block, the remaining statements in that
try block are ignored. The program searches the catch blocks in the
order they appear after the try block and looks for an appropriate excep-
tion handler. If the type of thrown exception matches the parameter type
in one of the catch blocks, the code of that catch block executes, and
the remaining catch blocks after this catch block are ignored.

• The last catch block that has an ellipses (three dots) is designed to catch
any type of exception.

Consider the following catch block:

catch (int x)
{

//exception-handling code
}

In this catch block:

• The identifier x acts as a parameter. In fact, it is called a catch block parameter.

• The data type int specifies that this catch block can catch an exception
of type int.

• A catch block can have at most one catch block parameter.

Essentially, the catch block parameter becomes a placeholder for the value thrown. In
this case, x becomes a placeholder for any thrown value that is of type int. In other
words, if the thrown value is caught by this catch block, then the thrown value is stored
in the catch block parameter. This way, if the exception-handling code wants to do
something with that value, it can be accessed via the catch block parameter.

Suppose in a catch block heading only the data type is specified, that is, there is no
catch block parameter. The thrown value then may not be accessible in the catch block
exception-handling code.

THROWING AN EXCEPTION

In order for an exception to occur in a try block and be caught by a catch block, the
exception must be thrown in the try block. The general syntax to throw an exception is:

throw expression;

Handling Exceptions within a Program | 957

Preview from Notesale.co.uk

Page 998 of 1392

1
6

void doDivision()
{

int dividend, divisor, quotient; //Line 3

try
{

cout << "Line 4: Enter the dividend: "; //Line 4
cin >> dividend; //Line 5
cout << endl; //Line 6

cout << "Line 7: Enter the divisor: "; //Line 7
cin >> divisor; //Line 8
cout << endl; //Line 9

if (divisor == 0) //Line 10
throw divisionByZero(); //Line 11

quotient = dividend / divisor; //Line 12
cout << "Line 13: Quotient = " << quotient

<< endl; //Line 13
}
catch (divisionByZero divByZeroObj) //Line 14
{

cout << "Line 15: In the function "
<< "doDivision: "
<< divByZeroObj.what() << endl; //Line 15

}
}

Sample Run 1: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 34

Line 7: Enter the divisor: 5

Line 13: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 56

Line 7: Enter the divisor: 0

Line 15: In the function doDivision: Division by zero

Rethrowing and Throwing an Exception
When an exception occurs in a try block, control immediately passes to one of the
catch blocks. Typically, a catch block either handles the exception or partially processes
the exception and then rethrows the same exception, or it rethrows another exception in
order for the calling environment to handle the exception. The catch block in Examples
16-4 through 16-13 handles the exception. The mechanism of rethrowing or throwing
an exception is quite useful in cases in which a catch block catches the exception but
cannot handle the exception, or if the catch block decides that the exception should be

Creating Your Own Exception Classes | 973

Preview from Notesale.co.uk

Page 1014 of 1392

1
6

int main()
{

try //Line 1
{

doDivision(); //Line 2
}
catch (divisionByZero divByZeroObj) //Line 3
{

cout << "Line 4: In main: "
<< divByZeroObj.what() << endl; //Line 4

}

return 0; //Line 5
}

void doDivision() throw (divisionByZero)
{

int dividend, divisor, quotient; //Line 6

try //Line 7
{

cout << "Line 8: Enter the dividend: "; //Line 8
cin >> dividend; //Line 9
cout << endl; //Line 10

cout << "Line 11: Enter the divisor: "; //Line 11
cin >> divisor; //Line 12
cout << endl; //Line 13

if (divisor == 0) //Line 14
throw divisionByZero("Found division by 0!"); //Line 15

quotient = dividend / divisor; //Line 16
cout << "Line 17: Quotient = " << quotient

<< endl; //Line 17
}
catch (divisionByZero) //Line 18
{

throw; //Line 19
}

}

Sample Run 1: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 34

Line 11: Enter the divisor: 5

Line 17: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 56

Line 11: Enter the divisor: 0

Line 4: In main: Found division by 0!

Creating Your Own Exception Classes | 975

Preview from Notesale.co.uk

Page 1016 of 1392

1
6

cout << endl; //Line 10

if (!cin) //Line 11
throw str; //Line 12

done = true; //Line 13
cout << "Line 14: Number = " << number

<< endl; //Line 14
} //Line 15
catch (string messageStr) //Line 16
{ //Line 17

cout << "Line 18: " << messageStr
<< endl; //Line 18

cout << "Line 19: Restoring the "
<< "input stream." << endl; //Line 19

cin.clear(); //Line 20
cin.ignore(100, '\n'); //Line 21

} //Line 22
}
while (!done); //Line 23

return 0; //Line 24
}

Sample Run: In this sample run, the user input is shaded.

Line 8: Enter an integer: r5

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: d45

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: hw3

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: 48

Line 14: Number = 48

This program prompts the user to enter an integer. If the input is invalid, the standard
input stream enters the fail state. In the try block, the statement in Line 12 throws an
exception, which is a string object. Control passes to the catch block, and the
exception is caught and processed. The statement in Line 20 restores the input stream
to its good state, and the statement in Line 21 clears the rest of the input from the line.
The do. . .while loop continues to prompt the user until the user inputs a valid
number.

Exception-Handling Techniques | 979

Preview from Notesale.co.uk

Page 1020 of 1392

QUICK REVIEW

1. An exception is an occurrence of an undesirable situation that can be
detected during program execution.

2. Some typical ways of dealing with exceptions are to use an if statement or
the assert function.

3. The function assert can check whether an expression meets the required
condition(s). If the conditions are not met, it terminates the program.

4. The try/catch block is used to handle exceptions within a program.

5. Statements that may generate an exception are placed in a try block. The
try block also contains statements that should not be executed if an
exception occurs.

6. The try block is followed by one or more catch blocks.

7. A catch block specifies the type of exception it can catch and contains an
exception handler.

8. If the heading of a catch block contains...(ellipses) in place of parameters,
then this catch block can catch exceptions of all types.

9. If no exceptions are thrown in a try block, all catch blocks associated
with that try block are ignored and program execution resumes after the
last catch block.

10. If an exception is thrown in a try block, the remaining statements in the try
block are ignored. The program searches the catch blocks, in the order they
appear after the try block, and looks for an appropriate exception handler. If
the type of the thrown exception matches the parameter type in one of the
catch blocks, then the code in that catch block executes and the remaining
catch blocks after this catch block are ignored.

11. The data type of the catch block parameter specifies the type of exception
that the catch block can catch.

12. A catch block can have, at most, one catch block parameter.

13. If only the data type is specified in a catch block heading, that is, if there is
no catch block parameter, then the thrown value may not be accessible in
the catch block exception-handling code.

14. In order for an exception to occur in a try block and be caught by a catch
block, the exception must be thrown in the try block.

15. The general syntax to throw an exception is:

throw expression;

in which expression is a constant value, variable, or object. The object
being thrown can be either a specific object or an anonymous object.

16. C++ provides support to handle exceptions via a hierarchy of classes.

984 | Chapter 16: Exception Handling

Preview from Notesale.co.uk

Page 1025 of 1392

1
6

17. The class exception is the base class of the exception classes provided by
C++.

18. The function what returns the string containing the exception object
thrown by C++’s built-in exception classes.

19. The class exception is contained in the header file exception.

20. The two classes that are immediately derived from the class exception

are logic_error and runtime_error. Both of these classes are defined in
the header file stdexcept.

21. The class invalid_argument is designed to deal with illegal arguments
used in a function call.

22. The class out_of_range deals with the string subscript out_of_range
error.

23. If a length greater than the maximum allowed for a string object is used, the
class length_error deals with the error that occurs when a length
greater than the maximum size allowed for the object being manipulated
is used.

24. If the operator new cannot allocate memory space, this operator throws a
bad_alloc exception.

25. The class runtime_error is designed to deal with errors that can be
detected only during program execution. For example, to deal with arith-
metic overflow and underflow exceptions, the classes overflow_error

and underflow_error are derived from the class runtime_error.

26. A catch block typically handles the exception or partially processes the
exception and then either rethrows the same exception or rethrows another
exception in order for the calling environment to handle the exception.

27. C++ enables programmers to create their own exception classes to handle
both the exceptions not covered by C++’s exception classes and their own
exceptions.

28. C++ uses the same mechanism to process the exceptions you define as it
uses for built-in exceptions. However, you must throw your own excep-
tions using the throw statement.

29. In C++, any class can be considered an exception class. It need not be
inherited from the class exception. What makes a class an exception is
how it is used.

30. The general syntax to rethrow an exception caught by a catch block is:

throw;

(in this case, the same exception is rethrown) or:

throw expression;

in which expression is a constant value, variable, or object. The object
being thrown can be either a specific object or an anonymous object.

Quick Review | 985

Preview from Notesale.co.uk

Page 1026 of 1392

In previous chapters, to devise solutions to problems, we used the most common
technique called iteration. For certain problems, however, using the iterative technique
to obtain the solution is quite complicated. This chapter introduces another problem-
solving technique called recursion and provides several examples demonstrating how
recursion works.

Recursive Definitions
The process of solving a problem by reducing it to smaller versions of itself is called
recursion. Recursion is a very powerful way to solve certain problems for which the
solution would otherwise be very complicated. Let us consider a problem that is familiar
to most everyone.

In mathematics, the factorial of a nonnegative integer is defined as follows:

0! ¼ 1 ð17-1Þ
n! ¼ n� ðn� 1Þ! if n > 0 ð17-2Þ
In this definition, 0! is defined to be 1, and if n is an integer greater than 0, first we find
(n � 1)! and then multiply it by n. To find (n � 1)!, we apply the definition again. If
(n � 1) > 0, then we use Equation 17-2; otherwise, we use Equation 17-1. Thus, for an
integer n greater than 0, n! is obtained by first finding (n � 1)! (that is, n! is reduced to a
smaller version of itself) and then multiplying (n � 1)! by n.

Let us apply this definition to find 3!. Here, n = 3. Because n > 0, we use Equation 17-2
to obtain:

3! ¼ 3� 2!

Next, we find 2! Here, n = 2. Because n > 0, we use Equation 17-2 to obtain:

2! ¼ 2� 1!

Now, to find 1!, we again use Equation 17-2 because n = 1 > 0. Thus:

1! ¼ 1� 0!

Finally, we use Equation 17-1 to find 0!, which is 1. Substituting 0! into 1! gives 1! = 1.
This gives 2! = 2 � 1! = 2 � 1 = 2, which, in turn, gives 3! = 3 � 2! = 3 � 2 = 6.

The solution in Equation 17-1 is direct—that is, the right side of the equation
contains no factorial notation. The solution in Equation 17-2 is given in terms of a
smaller version of itself. The definition of the factorial given in Equations 17-1 and
17-2 is called a recursive definition. Equation 17-1 is called the base case (that is,
the case for which the solution is obtained directly); Equation 17-2 is called the
general case.

Recursive definition: A definition in which something is defined in terms of a smaller
version of itself.

992 | Chapter 17: Recursion

Preview from Notesale.co.uk

Page 1033 of 1392

The following recursive function implements this algorithm.

int rFibNum(int a, int b, int n)
{

if (n == 1)
return a;

else if (n == 2)
return b;

else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

}

Let us trace the execution of the following statement:

cout << rFibNum(2, 3, 5) << endl;

In this statement, the first number is 2, the second number is 3, and we want to determine
the fifth Fibonacci number of the sequence. Figure 17-5 traces the execution of the
expression rFibNum(2,3,5). The value returned is 13, which is the fifth Fibonacci
number of the sequence whose first number is 2 and second number is 3.

1
7

return rFibNum(2,3,4) + rFibNum(2,3,3)

rFibNum(2,3,5)

return rFibNum(2,3,3) + rFibNum(2,3,2)

rFibNum(2,3,4)

return rFibNum(2,3,2) + rFibNum(2,3,1)

rFibNum(2,3,3)

return b

rFibNum(2,3,2)

return a

rFibNum(2,3,1)

return rFibNum(2,3,2) + rFibNum(2,3,1)

return b

rFibNum(2,3,2)

return a

rFibNum(2,3,1)

return b

rFibNum(2,3,2)rFibNum(2,3,3)

return 3 return 2

return 5
return 3 return 3

return 2

return 5
return 8

return 13

2a 3b 5n

2a 3b 4n 2a 3b 3n

2a 3b 3n 2a 3b 2n 2a 3b 2n 2a 3b 1n

2a 3b 2n 2a 3b 1n

FIGURE 17-5 Execution of rFibNum(2, 3, 5)

Problem Solving Using Recursion | 1001

Preview from Notesale.co.uk

Page 1042 of 1392

The following C++ program uses the function rFibNum:

//Chapter 17: Fibonacci Number

#include <iostream>

using namespace std;

int rFibNum(int a, int b, int n);

int main()
{

int firstFibNum;
int secondFibNum;
int nth;

cout << "Enter the first Fibonacci number: ";
cin >> firstFibNum;
cout << endl;

cout << "Enter the second Fibonacci number: ";
cin >> secondFibNum;
cout << endl;

cout << "Enter the position of the desired Fibonacci number: ";
cin >> nth;
cout << endl;

cout << "The Fibonacci number at position " << nth
<< " is: " << rFibNum(firstFibNum, secondFibNum, nth)
<< endl;

return 0;
}

int rFibNum(int a, int b, int n)
{

if (n == 1)
return a;

else if (n == 2)
return b;

else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

}

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1

Enter the first Fibonacci number: 2

Enter the second Fibonacci number: 5

1002 | Chapter 17: Recursion

Preview from Notesale.co.uk

Page 1043 of 1392

1
7

Because the if statement in call 5 fails, this call does not print anything. The first
output is produced by call 4, which prints 1; the second output is produced by call 3,
which prints 1; the third output is produced by call 2, which prints 0; and the fourth
output is produced by call 1, which prints 1. Thus, the output of the statement:

decToBin(13, 2);

is:

1101

The following C++ program tests the function decToBin.

//**
// Author: D. S. Malik
//
// Program: Decimal to binary
// This program uses recursion to find the binary
// representation of a nonnegative integer.
//**

#include <iostream>

using namespace std;

void decToBin(int num, int base);

int main()
{

int decimalNum;
int base;

base = 2;

cout << "Enter number in decimal: ";
cin >> decimalNum;
cout << endl;

cout << "Decimal " << decimalNum << " = ";
decToBin(decimalNum, base);
cout << " binary" << endl;

return 0;
}

void decToBin(int num, int base)
{

if (num > 0)
{

decToBin(num / base, base);
cout << num % base;

}
}

Programming Example: Converting a Number from Decimal to Binary | 1013

Preview from Notesale.co.uk

Page 1054 of 1392

1
7

17. To design a recursive function, you must do the following:

a. Understand the problem requirements.

b. Determine the limiting conditions. For example, for a list, the limiting
condition is the number of elements in the list.

c. Identify the base cases and provide a direct solution to each base case.

d. Identify the general cases and provide a solution to each general case in
terms of smaller versions of itself.

EXERCISES

1. Mark the following statements as true or false.

a. Every recursive definition must have one or more base cases.

b. Every recursive function must have one or more base cases.

c. The general case stops the recursion.

d. In the general case, the solution to the problem is obtained directly.

e. A recursive function always returns a value.

2. What is a base case?

3. What is a recursive case?

4. What is direct recursion?

5. What is indirect recursion?

6. What is tail recursion?

7. Consider the following recursive function:

int mystery(int number) //Line 1
{

if (number == 0) //Line 2
return number; //Line 3

else //Line 4
return(number + mystery(number – 1)); //Line 5

}

a. Identify the base case.

b. Identify the general case.

c. What valid values can be passed as parameters to the function mystery?

d. If mystery(0) is a valid call, what is its value? If not, explain why.

e. If mystery(5) is a valid call, what is its value? If not, explain why.

f. If mystery(-3) is a valid call, what is its value? If not, explain why.

8. Consider the following recursive function:

void funcRec(int u, char v) //Line 1
{

if (u == 0) //Line 2
cout << v; //Line 3

Exercises | 1015

Preview from Notesale.co.uk

Page 1056 of 1392

This linked list has four nodes. The address of the first node is stored in the pointer head.
Each node has two components: info, to store the info, and link, to store the address of
the next node. For simplicity, we assume that info is of type int.

Suppose that the first node is at location 2000, the second node is at location 2800,
the third node is at location 1500, and the fourth node is at location 3600. Therefore,
the value of head is 2000, the value of the component link of the first node is 2800,
the value of the component link of the second node is 1500, and so on. Also, the
value 0 in the component link of the last node means that this value is NULL, which
we indicate by drawing a down arrow. The number at the top of each node is the
address of that node. The following table shows the values of head and some other
nodes in the list shown in Figure 18-4.

Suppose that current is a pointer of the same type as the pointer head. Then, the
statement:

current = head;

copies the value of head into current (see Figure 18-5).

Clearly, in Figure 18-5:

Value Explanation

head 2000

head->info 17 Because head is 2000 and the info of
the node at location 2000 is 17

head->link 2800

head->link->info 92 Because head->link is 2800 and the
info of the node at location 2800 is 92

head
2000

current 2000

17

info link info link info link info link

2000 2800 1500 3600

2800 92 1500 63 45 03600

FIGURE 18-5 Linked list after the statement current = head; executes

Value

current 2000
current->info 17

current->link 2800

current->link->info 92

1026 | Chapter 18: Linked Lists

Preview from Notesale.co.uk

Page 1067 of 1392

Deletion
Consider the linked list shown in Figure 18-10.

Suppose that the node with info 34 is to be deleted from the list. The following
statement removes the node from the list.

p->link = p->link->link;

Figure 18-11 shows the resulting list after the preceding statement executes.

From Figure 18-11, it is clear that the node with info 34 is removed from the list.
However, the memory is still occupied by this node, and this memory is inaccessible; that
is, this node is dangling. To deallocate the memory, we need a pointer to this node. The

1
8

TABLE 18-2 Inserting a Node in a Linked List Using Two Pointers

Statement Effect

p->link = newNode;

newNode->link = q;

p

45 7665 34head

50newNode

q

p

45 7665 34head

50newNode
q

p

45 65 34 76head

FIGURE 18-10 Node to be deleted is with info 34

p

45 7665 34 head

FIGURE 18-11 List after the statement newNode->link = q; executes

Linked Lists | 1031

Preview from Notesale.co.uk

Page 1072 of 1392

1
8

template <class Type>
bool linkedListIterator<Type>::operator!=

(const linkedListIterator<Type>& right) const
{

return (current != right.current);
}

Now that we have defined the classes to implement the node of a linked list and an
iterator to a linked list, next we describe the class linkedListType to implement the
basic properties of a linked list.

The following abstract class defines the basic properties of a linked list as an ADT.

template <class Type>
class linkedListType
{
public:

const linkedListType<Type>& operator=
(const linkedListType<Type>&);

//Overload the assignment operator.

void initializeList();
//Initialize the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise it returns false.

void print() const;
//Function to output the data contained in each node.
//Postcondition: none

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

void destroyList();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL, last = NULL, count = 0;

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be
// empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the first
// element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be
// empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

Linked List as an ADT | 1041

Preview from Notesale.co.uk

Page 1082 of 1392

nodeType<Type> *first; //pointer to the first node of the list
nodeType<Type> *last; //pointer to the last node of the list

private:
void copyList(const linkedListType<Type>& otherList);

//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and
// assigned to this list.

};

Figure 18-20 shows the UML class diagram of the class linkedListType.

Note that typically, in the UML diagram, the name of an abstract class and abstract
function is shown in italics.

The instance variables first and last, as defined earlier, of the class
linkedListType are protected, not private, because as noted previously, we will
derive the classes unorderedLinkedList and orderedLinkedList from the
class linkedListType. Because each of the classes unorderedLinkedList

1
8linkedListType<Type>

#count: int
#*first: nodeType<Type>
#*last: nodeType<Type>

+operator=(const linkedListType<Type>&):
const linkedListType<Type>&

+initializeList(): void
+isEmptyList() const: bool
+print() const: void
+length() const: int
+destroyList(): void
+front() const: Type
+back() const: Type
+search(const Type&) const = 0: bool
+insertFirst(const Type&) = 0: void
+insertLast(const Type&) = 0: void
+deleteNode(const Type&) = 0: void
+begin(): linkedListIterator<Type>
+end(): linkedListIterator<Type>
+linkedListType()
+linkedListType(const linkedListType<Type>&)
+~linkedListType()
-copyList(const linkedListType<Type>&): void

FIGURE 18-20 UML class diagram of the class linkedListType

Linked List as an ADT | 1043

Preview from Notesale.co.uk

Page 1084 of 1392

newNode->link = first; //insert newNode before first
first = newNode; //make first point to the

//actual first node
count++; //increment count

if (last == NULL) //if the list was empty, newNode is also
//the last node in the list

last = newNode;
}//end insertFirst

Insert the Last Node
The definition of the member function insertLast is similar to the definition of the
member function insertFirst. Here, we insert the new node after last. Essentially,
the function insertLast is:

template <class Type>
void unorderedLinkedList<Type>::insertLast(const Type& newItem)
{

nodeType<Type> *newNode; //pointer to create the new node

newNode = new nodeType<Type>; //create the new node
newNode->info = newItem; //store the new item in the node
newNode->link = NULL; //set the link field of newNode

//to NULL

if (first == NULL) //if the list is empty, newNode is
//both the first and last node

{
first = newNode;
last = newNode;
count++; //increment count

}
else //the list is not empty, insert newNode after last
{

last->link = newNode; //insert newNode after last
last = newNode; //make last point to the actual

//last node in the list
count++; //increment count

}
}//end insertLast

DELETE A NODE

Next, we discuss the implementation of the member function deleteNode,
which deletes a node from the list with a given info. We need to consider several
cases:

Case 1: The list is empty.

Case 2: The first node is the node with the given info. In this case, we need to adjust
the pointer first.

1052 | Chapter 18: Linked Lists

Preview from Notesale.co.uk

Page 1093 of 1392

1
8

values of first and last. The link field of the previous node—that is, 17—changes.
After deletion, the node with info 17 contains the address of the node with 24.)

Case 3b: The node to be deleted is the last node.

Consider the list shown in Figure 18-27. Suppose that the node to be deleted is 54.

After deleting 54, the node with info 24 becomes the last node. Therefore, the
deletion of 54 requires us to change the value of the pointer last. After deleting 54,
last contains the address of the node with info 24. Also, count is decremented
by 1. Figure 18-28 shows the resulting list.

Case 4: The node to be deleted is not in the list. In this case, the list requires no
adjustment. We simply output an error message, indicating that the item to be
deleted is not in the list.

28 17 37 24first

list

last

4count

FIGURE 18-28 list after deleting 54

28 17 37 24 54first

list

last

5count

FIGURE 18-27 list before deleting 54

28 17 24 54first

list

last

4count

FIGURE 18-26 list after deleting 37

Unordered Linked Lists | 1055

Preview from Notesale.co.uk

Page 1096 of 1392

Suppose that 10 is to be inserted. After inserting 10 in the list, the node with info 10

becomes the first node of list. This requires us to change the value of first. Also,
count is incremented by 1. Figure 18-32 shows the resulting list.

Case 3: The list is not empty, and the item to be inserted is larger than the first item in
the list. As indicated previously, this case has two scenarios.

Case 3a: The item to be inserted is larger than the largest item in the list; that is, it goes at
the end of the list. Consider the list shown in Figure 18-33.

Suppose that we want to insert 65 in the list. After inserting 65, the resulting list is as
shown in Figure 18-34.

17 27 38 54 65first

list

last

5count

FIGURE 18-34 list after inserting 65

10 17 27 38 54first

list

last

5count

FIGURE 18-32 list after inserting 10

17 27 38 54first

list

last

4count

FIGURE 18-33 list before inserting 65

1062 | Chapter 18: Linked Lists

Preview from Notesale.co.uk

Page 1103 of 1392

Doubly Linked Lists
A doubly linked list is a linked list in which every node has a next pointer and a back
pointer. In other words, every node contains the address of the next node (except the last
node), and every node contains the address of the previous node (except the first node)
(see Figure 18-39).

A doubly linked list can be traversed in either direction. That is, we can traverse the list
starting at the first node or, if a pointer to the last node is given, we can traverse the list
starting at the last node.

As before, the typical operations on a doubly linked list are:

1. Initialize the list.

2. Destroy the list.

3. Determine whether the list is empty.

4. Search the list for a given item.

5. Retrieve the first element of the list.

6. Retrieve the last element of the list.

7. Insert an item in the list.

8. Delete an item from the list.

9. Find the length of the list.

10. Print the list.

11. Make a copy of the doubly linked list.

Next, we describe these operations for an ordered doubly linked list. The following class
defines a doubly linked list as an ADT.

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *next;
nodeType<Type> *back;

};

first

last

FIGURE 18-39 Doubly linked list

1072 | Chapter 18: Linked Lists

Preview from Notesale.co.uk

Page 1113 of 1392

template <class Type>
class doublyLinkedList
{
public:

const doublyLinkedList<Type>& operator=
(const doublyLinkedList<Type> &);

//Overload the assignment operator.

void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise returns false.

void destroy();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL; last = NULL; count = 0;

void print() const;
//Function to output the info contained in each node.

void reversePrint() const;
//Function to output the info contained in each node
//in reverse order.

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the first
// element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in
// the list, otherwise returns false.

1
8

Doubly Linked Lists | 1073

Preview from Notesale.co.uk

Page 1114 of 1392

of the functions copyList, the copy constructor, overloading the assignment operator,
and the destructor are left as exercises for you. (See Programming Exercise 11 at the end
of this chapter.) Moreover, the function copyList is used only to implement the copy
constructor and overload the assignment operator.

Default Constructor
The default constructor initializes the doubly linked list to an empty state. It sets first
and last to NULL and count to 0.

template <class Type>
doublyLinkedList<Type>::doublyLinkedList()
{

first= NULL;
last = NULL;
count = 0;

}

isEmptyList

This operation returns true if the list is empty; otherwise, it returns false. The list is
empty if the pointer first is NULL.

template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const
{

return (first == NULL);
}

Destroy the List
This operation deletes all of the nodes in the list, leaving the list in an empty state. We
traverse the list starting at the first node and then delete each node. Furthermore, count
is set to 0.

template <class Type>
void doublyLinkedList<Type>::destroy()
{

nodeType<Type> *temp; //pointer to delete the node

while (first != NULL)
{

temp = first;
first = first->next;
delete temp;

}

last = NULL;
count = 0;

}

1
8

Doubly Linked Lists | 1075

Preview from Notesale.co.uk

Page 1116 of 1392

//Postcondition: videoTitle = title; movieStar1 = star1;
// movieStar2 = star2; movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

int getNoOfCopiesInStock() const;
//Function to check the number of copies in stock.
//Postcondition: The value of copiesInStock is returned.

void checkOut();
//Function to rent a video.
//Postcondition: The number of copies in stock is
// decremented by one.

void checkIn();
//Function to check in a video.
//Postcondition: The number of copies in stock is
// incremented by one.

void printTitle() const;
//Function to print the title of a movie.

void printInfo() const;
//Function to print the details of a video.
//Postcondition: The title of the movie, stars,
// director, and so on are displayed
// on the screen.

bool checkTitle(string title);
//Function to check whether the title is the same as the
//title of the video.
//Postcondition: Returns the value true if the title
// is the same as the title of the video;
// false otherwise.

void updateInStock(int num);
//Function to increment the number of copies in stock by
//adding the value of the parameter num.
//Postcondition: copiesInStock = copiesInStock + num;

void setCopiesInStock(int num);
//Function to set the number of copies in stock.
//Postcondition: copiesInStock = num;

string getTitle() const;
//Function to return the title of the video.
//Postcondition: The title of the video is returned.

videoType(string title = "", string star1 = "",
string star2 = "", string producer = "",

1086 | Chapter 18: Linked Lists

Preview from Notesale.co.uk

Page 1127 of 1392

Now:

current->info

refers to the info part of the node. Suppose that we want to know whether the title
of the video stored in this node is the same as the title specified by the variable
title. The expression:

current->info.checkTitle(title)

is true if the title of the video stored in this node is the same as the title specified by the
parameter title, and false otherwise. (Note that the member function checkTitle

is a value-returning function. See its declaration in the class videoType.)

As another example, suppose that we want to set copiesInStock of this node to 10.
Because copiesInStock is a private member, it cannot be accessed directly.
Therefore, the statement:

current->info.copiesInStock = 10; //illegal

is incorrect and will generate a compile-time error. We have to use the member
function setCopiesInStock as follows:

current->info.setCopiesInStock(10);

Now that we know how to access a member variable of a video stored in a node, let
us describe the algorithm to search the video list.

while (not found)
if the title of the current video is the same as the desired

title, stop the search
else

check the next node

The following function definition performs the desired search.

void videoListType::searchVideoList(string title, bool& found,
nodeType<videoType>* ¤t) const

{
found = false; //set found to false

current = first; //set current to point to the first node
//in the list

while (current != NULL && !found) //search the list
if (current->info.checkTitle(title)) //the item is found

found = true;
else

current = current->link; //advance current to
//the next node

}//end searchVideoList

1094 | Chapter 18: Linked Lists

Preview from Notesale.co.uk

Page 1135 of 1392

list of videos owned by the video store. The data in the input file is in the following
form:

video title (that is, the name of the movie)
movie star1
movie star2
movie producer
movie director
movie production co.
number of copies
.
.
.

We will write a function, createVideoList, to read the data from the input file
and create the list of videos. We will also write a function, displayMenu, to show
the different choices—such as check in a movie or check out a movie—that the user
can make. The algorithm of the function main is:

1. Open the input file.
If the input file does not exist, exit the program.

2. Create the list of videos (createVideoList).

3. Show the menu (displayMenu).

4. While not done
Perform various operations.

Opening the input file is straightforward. Let us describe Steps 2 and 3, which
are accomplished by writing two separate functions: createVideoList and
displayMenu.

createVideoList This function reads the data from the input file and creates a linked list of videos.
Because the data will be read from a file and the input file was opened in the function
main, we pass the input file pointer to this function. We also pass the video list pointer,
declared in the function main, to this function. Both parameters are reference
parameters. Next, we read the data for each video and then insert the video in the
list. The general algorithm is:

a. Read the data and store it in a video object.

b. Insert the video in the list.

c. Repeat steps a and b for each video’s data in the file.

displayMenu This function informs the user what to do. It contains the following output statements:

Select one of the following:

1. To check whether the store carries a particular video

2. To check out a video

1098 | Chapter 18: Linked Lists

Preview from Notesale.co.uk

Page 1139 of 1392

1
8

//process the requests
while (choice != 9)
{

switch (choice)
{
case 1:

cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
cout << "The store carries " << title

<< endl;
else

cout << "The store does not carry "
<< title << endl;

break;

case 2:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
{

videoList.videoCheckOut(title);
cout << "Enjoy your movie: "

<< title << endl;
}
else

cout << "Currently " << title
<< " is out of stock." << endl;

}
else

cout << "The store does not carry "
<< title << endl;

break;

case 3:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

videoList.videoCheckIn(title);
cout << "Thanks for returning "

<< title << endl;
}

Programming Example: Video Store | 1101

Preview from Notesale.co.uk

Page 1142 of 1392

else
cout << "The store does not carry "

<< title << endl;
break;

case 4:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
cout << title << " is currently in "

<< "stock." << endl;
else

cout << title << " is currently out "
<< "of stock." << endl;

}
else

cout << "The store does not carry "
<< title << endl;

break;

case 5:
videoList.videoPrintTitle();
break;

case 6:
videoList.print();
break;

default:
cout << "Invalid selection." << endl;

}//end switch

displayMenu(); //display menu

cout << "Enter your choice: ";
cin >> choice; //get the next request
cin.get(ch);
cout << endl;

}//end while

return 0;
}

1102 | Chapter 18: Linked Lists

Preview from Notesale.co.uk

Page 1143 of 1392

This chapter discusses two very useful data structures, stacks and queues. Both stacks and
queues have numerous applications in computer science.

Stacks
Suppose that you have a program with several functions. To be specific, suppose that you
have functions A, B, C, and D in your program. Now suppose that function A calls
function B, function B calls function C, and function C calls function D. When function
D terminates, control goes back to function C; when function C terminates, control goes
back to function B; and when function B terminates, control goes back to function A.
During program execution, how do you think the computer keeps track of the function
calls? What about recursive functions? How does the computer keep track of the
recursive calls? In Chapter 18, we designed a recursive function to print a linked list
backward. What if you want to write a nonrecursive algorithm to print a linked list
backward?

This section discusses the data structure called the stack, which the computer uses to
implement function calls. You can also use stacks to convert recursive algorithms into
nonrecursive algorithms, especially recursive algorithms that are not tail recursive. Stacks
have numerous applications in computer science. After developing the tools necessary to
implement a stack, we will examine some applications of stacks.

A stack is a list of homogeneous elements in which the addition and deletion of elements
occur only at one end, called the top of the stack. For example, in a cafeteria, the second
tray in a stack of trays can be removed only if the first tray has been removed. For another
example, to get to your favorite computer science book, which is underneath your math
and history books, you must first remove the math and history books. After removing
these books, the computer science book becomes the top book—that is, the top element
of the stack. Figure 19-1 shows some examples of stacks.

Stack of
coins

Stack of
trays

Stack of
boxes

Stack of
books

5

Chemistry
English

C++ Programming
World History

Applied Math

FIGURE 19-1 Various types of stacks

1116 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1157 of 1392

Implementation of Stacks as Arrays
Because all of the elements of a stack are of the same type, you can use an array to
implement a stack. The first element of the stack can be put in the first array slot, the
second element of the stack in the second array slot, and so on. The top of the stack is the
index of the last element added to the stack.

In this implementation of a stack, stack elements are stored in an array, and an array is a
random access data structure; that is, you can directly access any element of the array.
However, by definition, a stack is a data structure in which the elements are accessed
(popped or pushed) at only one end—that is, a Last In First Out data structure. Thus, a
stack element is accessed only through the top, not through the bottom or middle. This
feature of a stack is extremely important and must be recognized in the beginning.

To keep track of the top position of the array, we can simply declare another variable
called stackTop.

The following class, stackType, implements the functions of the abstract class
stackADT. By using a pointer, we can dynamically allocate arrays, so we will leave it
for the user to specify the size of the array (that is, the stack size). We assume that the
default stack size is 100. Because the class stackType has a pointer member variable
(the pointer to the array to store the stack elements), we must overload the assignment
operator and include the copy constructor and destructor. Moreover, we give a generic
definition of the stack. Depending on the specific application, we can pass the stack
element type when we declare a stack object.

template <class Type>
class stackType: public stackADT<Type>
{
public:

const stackType<Type>& operator=(const stackType<Type>&);
//Overload the assignment operator.

void initializeStack();
//Function to initialize the stack to an empty state.
//Postcondition: stackTop = 0;

bool isEmptyStack() const;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty,
// otherwise returns false.

bool isFullStack() const;
//Function to determine whether the stack is full.
//Postcondition: Returns true if the stack is full,
// otherwise returns false.

void push(const Type& newItem);
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem
// is added to the top of the stack.

1120 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1161 of 1392

Assume newItem is 'y'. After the push operation, the stack is as shown in Figure 19-9.

1
9

maxStackSize 100

stackTop 4

list

stack

S

u

n

n

.

.

.

.

.

[0]

[1]

[2]

[99]

stack
elements

[3]

FIGURE 19-8 Stack before pushing y

maxStackSize 100

5

list

stack

S

u

n

n

.

.

.

.

[0]

[1]

[2]

[99]

stack
elements

[3]

y [4]

stackTop

FIGURE 19-9 Stack after pushing y

Implementation of Stacks as Arrays | 1125

Preview from Notesale.co.uk

Page 1166 of 1392

After the pop operation, the stack is as shown in Figure 19-11.

1
9

maxStackSize 100

3

list

stack

B

O

L

D

.

.

.

.

.

[0]

[1]

[2]

[99]

stack
elements

[3]

stackTop

FIGURE 19-11 Stack after popping D

maxStackSize 100

4

list

stack

B

O

L

D

.

.

.

.

.

[0]

[1]

[2]

[99]

stack
elements

[3]

stackTop

FIGURE 19-10 Stack before popping D

Implementation of Stacks as Arrays | 1127

Preview from Notesale.co.uk

Page 1168 of 1392

1
9

Output The highest GPA and all of the names associated with the highest GPA.
For example, for the above data, the highest GPA is 3.9, and the students
with that GPA are Kathy and David.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

We read the first GPA and the name of the student. Because this data is the first item
read, it is the highest GPA so far. Next, we read the second GPA and the name of the
student. We then compare this (second) GPA with the highest GPA so far. Three
cases arise:

1. The new GPA is greater than the highest GPA so far. In this case, we:

a. Update the value of the highest GPA so far.

b. Initialize the stack—that is, remove the names of the students
from the stack.

c. Save the name of the student having the highest GPA so far in
the stack.

2. The new GPA is equal to the highest GPA so far. In this case, we
add the name of the new student to the stack.

3. The new GPA is smaller than the highest GPA so far. In this case,
we discard the name of the student having this grade.

We then read the next GPA and the name of the student and repeat Steps 1 through 3.
We continue this process until we reach the end of the input file.

From this discussion, it is clear that we need the following variables:

double GPA; //variable to hold the current GPA
double highestGPA; //variable to hold the highest GPA
string name; //variable to hold the name of the student
stackType<string> stack(100); //object to implement the stack

The preceding discussion translates into the following algorithm:

1. Declare the variables and initialize stack.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Set the output of the floating-point numbers to a fixed decimal
format with a decimal point and trailing zeroes. Also, set the
precision to two decimal places.

5. Read the GPA and the student name.

6. highestGPA = GPA;

Programming Example: Highest GPA | 1135

Preview from Notesale.co.uk

Page 1176 of 1392

1
9

infile.open("HighestGPAData.txt"); //Step 2

if (!infile) //Step 3
{

cout << "The input file does not "
<< "exist. Program terminates!"
<< endl;

return 1;
}

cout << fixed << showpoint; //Step 4
cout << setprecision(2); //Step 4

infile >> GPA >> name; //Step 5

highestGPA = GPA; //Step 6

while (infile) //Step 7
{

if (GPA > highestGPA) //Step 7.1
{

stack.initializeStack(); //Step 7.1.1

if (!stack.isFullStack()) //Step 7.1.2
stack.push(name);

highestGPA = GPA; //Step 7.1.3
}
else if (GPA == highestGPA) //Step 7.2

if (!stack.isFullStack())
stack.push(name);

else
{

cout << "Stack overflows. "
<< "Program terminates!"
<< endl;

return 1; //exit program
}

infile >> GPA >> name; //Step 7.3
}

cout << "Highest GPA = " << highestGPA
<< endl; //Step 8

cout << "The students holding the "
<< "highest GPA are:" << endl;

while (!stack.isEmptyStack()) //Step 9
{

cout << stack.top() << endl;
stack.pop();

}

Programming Example: Highest GPA | 1137

Preview from Notesale.co.uk

Page 1178 of 1392

{
return (stackTop == NULL);

} //end isEmptyStack

template <class Type>
bool linkedStackType<Type>:: isFullStack() const
{

return false;
} //end isFullStack

Recall that in the linked implementation of stacks, the function isFullStack does not
apply because, logically, the stack is never full. However, you must provide its definition
because it is included as an abstract function in the parent class stackADT.

Initialize Stack
The operation initializeStack reinitializes the stack to an empty state. Because the
stack may contain some elements and we are using a linked implementation of a stack, we
must deallocate the memory occupied by the stack elements and set stackTop to NULL.
The definition of this function is:

template <class Type>
void linkedStackType<Type>:: initializeStack()
{

nodeType<Type> *temp; //pointer to delete the node

while (stackTop != NULL) //while there are elements in
//the stack

{
temp = stackTop; //set temp to point to the

//current node
stackTop = stackTop->link; //advance stackTop to the

//next node
delete temp; //deallocate memory occupied by temp

}
} //end initializeStack

Next, we consider the push, top, and pop operations. From Figure 19-12(b), it is clear
that the newElement will be added (in the case of push) at the beginning of the linked
list pointed to by stackTop. In the case of pop, the node pointed to by stackTop will
be removed. In both cases, the value of the pointer stackTop is updated. The operation
top returns the info of the node that stackTop is pointing to.

Push
Consider the stack shown in Figure 19-13.

1142 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1183 of 1392

{
if (this != &otherStack) //avoid self-copy

copyStack(otherStack);

return *this;
}//end operator=

The definition of a stack and the functions to implement the stack operations discussed
previously are generic. Also, as in the case of an array representation of a stack, in the
linked representation of a stack, we must put the definition of the stack and the functions
to implement the stack operations together in a (header) file. A client’s program can
include this header file via the include statement.

Example 19-3 illustrates how a linkedStack object is used in a program.

EXAMPLE 19-3

We assume that the definition of the class linkedStackType and the functions to
implement the stack operations are included in the header file "linkedStack.h".

//This program tests various operations of a linked stack

#include <iostream>
#include "linkedStack.h"

using namespace std;

void testCopy(linkedStackType<int> OStack);

int main()
{

linkedStackType<int> stack;
linkedStackType<int> otherStack;
linkedStackType<int> newStack;

//Add elements into stack
stack.push(34);
stack.push(43);
stack.push(27);

//Use the assignment operator to copy the elements
//of stack into newStack

newStack = stack;

cout << "After the assignment operator, newStack: "
<< endl;

//Output the elements of newStack
while (!newStack.isEmptyStack())
{

cout << newStack.top() << endl;
newStack.pop();

}

1148 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1189 of 1392

1
9

template <class Type>
void linkedStackType<Type>::push(const Type& newElement)
{

unorderedLinkedList<Type>::insertFirst(newElement);
}

template <class Type>
Type linkedStackType<Type>::top() const
{

return unorderedLinkedList<Type>::front();
}

template <class Type>
void linkedStackType<Type>::pop()
{

nodeType<Type> *temp;

temp = first;
first = first->link;
delete temp;

}

Application of Stacks: Postfix Expressions
Calculator
The usual notation for writing arithmetic expressions (the notation we learned in elemen-
tary school) is called infix notation, in which the operator is written between the operands.
For example, in the expression a + b, the operator + is between the operands a and b. In
infix notation, the operators have precedence. That is, we must evaluate expressions from
left to right, and multiplication and division have higher precedence than do addition and
subtraction. If we want to evaluate the expression in a different order, we must include
parentheses. For example, in the expression a + b * c, we first evaluate * using the operands
b and c, and then we evaluate + using the operand a and the result of b * c.

In the early 1920s, the Polish mathematician Jan Lukasiewicz discovered that if operators
were written before the operands (prefix or Polish notation; for example, + a b), the
parentheses could be omitted. In the late 1950s, the Australian philosopher and early
computer scientist Charles L. Hamblin proposed a scheme in which the operators follow
the operands (postfix operators), resulting in the Reverse Polish notation. This has the
advantage that the operators appear in the order required for computation.

For example, the expression:

a + b * c

in a postfix expression is:

a b c * +

The following example shows various infix expressions and their equivalent postfix
expressions.

Application of Stacks: Postfix Expressions Calculator | 1151

Preview from Notesale.co.uk

Page 1192 of 1392

EXAMPLE 19-4

Shortly after Lukasiewicz’s discovery, it was realized that postfix notation had important
applications in computer science. In fact, many compilers now first translate arithmetic
expressions into some form of postfix notation and then translate this postfix expression
into machine code. Postfix expressions can be evaluated using the following algorithm:

Scan the expression from left to right. When an operator is found, back up to get the
required number of operands, perform the operation, and continue.

Consider the following postfix expression:

6 3 + 2 * =

Let us evaluate this expression using a stack and the previous algorithm. Figure 19-17
shows how this expression gets evaluated.

Infix Expression Equivalent Postfix Expression

a + b a b +

a + b * c a b c * +

a * b + c a b * c +

(a + b) * c a b + c *

(a � b) * (c + d) a b � c d + *

(a + b) * (c � d / e) + f a b + c d e / � * f +

96

Push
6
into
stack

(a)

3
6

(b)

+
Pop
stack
twice
op2 = 3;
op1 = 6;

(c)

op1 + op2
= 9
Push 9
into
stack

(d)

Expression: 6 3 + 2 * =

Push
3
into
stack

2
9

(e)

Push
2
into
stack

*
Pop
stack
twice
op2 = 2;
op1 = 9;

(f)

op1 * op2
= 18
Push 18
into
stack 18

(g)

=
Pop
stack
and
print:
18

(h)

FIGURE 19-17 Evaluating the postfix expression: 6 3 + 2 * ¼

1152 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1193 of 1392

if no error was found, then
{

read next ch;
output ch;

}
else

Discard the expression
} //end while

From this algorithm, it follows that this method has five parameters—one to access the input file,
one to access the output file, one to access the stack, one to pass a character of the expression,
and one to indicate whether there is an error in the expression. The definition of this function is:

void evaluateExpression(ifstream& inpF, ofstream& outF,
stackType<double>& stack,
char& ch, bool& isExpOk)

{
double num;

while (ch != '=')
{

switch (ch)
{
case '#':

inpF >> num;
outF << num << " ";
if (!stack.isFullStack())

stack.push(num);
else
{

cout << "Stack overflow. "
<< "Program terminates!" << endl;

exit(0); //terminate the program
}

break;
default:

evaluateOpr(outF, stack, ch, isExpOk);
}//end switch

if (isExpOk) //if no error
{

inpF >> ch;
outF << ch;

if (ch != '#')
outF << " ";

}
else

discardExp(inpF, outF, ch);
} //end while (!= '=')

}

1
9

Application of Stacks: Postfix Expressions Calculator | 1155

Preview from Notesale.co.uk

Page 1196 of 1392

Because the array containing the queue is circular, we can use the following statement to
advance queueRear (queueFront) to the next array position.

queueRear = (queueRear + 1) % maxQueueSize;

If queueRear < maxQueueSize - 1, then queueRear + 1 <= maxQueueSize - 1, so
(queueRear + 1) % maxQueueSize = queueRear + 1. If queueRear == maxQueue-

Size - 1 (that is, queueRear points to the last array position), queueRear + 1 ==

maxQueueSize, so (queueRear + 1) % maxQueueSize = 0. In this case, queueRear
will be set to 0, which is the first array position.

This queue design seems to work well. Before we write the algorithms to implement the
queue operations, consider the following two cases.

Case 1: Suppose that after certain operations, the array containing the queue is as shown
in Figure 19-32(a).

After the operation deleteQueue();, the resulting array is as shown in Figure 19-32(b).

Case 2: Let us now consider the queue shown in Figure 19-33(a).

After the operation addQueue(Queue,'Z');, the resulting array is as shown in
Figure 19-33(b).

1
9

[0]

queueFront queueRear

[97]
..... X

[98][99]

98 98 queueFront queueRear99 98

(b) After deleteQueue();

[0] [97]
.....

[98][99]

(a) Before deleteQueue();

FIGURE 19-32 Queue before and after the delete operation

[0]

queueFront queueRear

[97]
.....

[98][99]

99 97 queueFront queueRear99 98

(a) Before addQueue(Queue,'Z'); (b) After addQueue(Queue,'Z');

queue
elements

[0] [97]
..... Z

[98][99]

queue elements

FIGURE 19-33 Queue before and after the add operation

Queues | 1171

Preview from Notesale.co.uk

Page 1212 of 1392

void initializeQueue();
//Function to initialize the queue to an empty state.
//Postcondition: queueFront = NULL; queueRear = NULL

Type front() const;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first
// element of the queue is returned.

Type back() const;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last
// element of the queue is returned.

void addQueue(const Type& queueElement);
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement
// is added to the queue.

void deleteQueue();
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first
// element is removed from the queue.

linkedQueueType();
//Default constructor

linkedQueueType(const linkedQueueType<Type>& otherQueue);
//Copy constructor

~linkedQueueType();
//Destructor

private:
nodeType<Type> *queueFront; //pointer to the front of

//the queue
nodeType<Type> *queueRear; //pointer to the rear of

//the queue
};

The UML class diagram of the class linkedQueueType is left as an exercise for you.
(See Exercise 29 at the end of this chapter.)

Next, we write the definitions of the functions of the class linkedQueueType.

EMPTY AND FULL QUEUE

The queue is empty if queueFront is NULL. Memory to store the queue elements
is allocated dynamically. Therefore, the queue is never full, so the function to implement

1178 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1219 of 1392

the isFullQueue operation returns the value false. (The queue is full only if we run
out of memory.)

template <class Type>
bool linkedQueueType<Type>::isEmptyQueue() const
{

return (queueFront == NULL);
} //end

template <class Type>
bool linkedQueueType<Type>::isFullQueue() const
{

return false;
} //end isFullQueue

Note that in reality, in the linked implementation of queues, the function isFullQueue

does not apply because, logically, the queue is never full. However, you must provide its
definition because it is included as an abstract function in the parent class queueADT.

INITIALIZE QUEUE

The operation initializeQueue initializes the queue to an empty state. The queue is
empty if there are no elements in the queue. Note that the constructor initializes the
queue when the queue object is declared. So this operation must remove all of the
elements, if any, from the queue. Therefore, this operation traverses the list containing
the queue starting at the first node, and it deallocates the memory occupied by the queue
elements. The definition of this function is:

template <class Type>
void linkedQueueType<Type>::initializeQueue()
{

nodeType<Type> *temp;

while (queueFront!= NULL) //while there are elements left
//in the queue

{
temp = queueFront; //set temp to point to the

//current node
queueFront = queueFront->link; //advance first to

//the next node
delete temp; //deallocate memory occupied by temp

}

queueRear = NULL; //set rear to NULL
} //end initializeQueue

addQueue, front, back, AND deleteQueue OPERATIONS

The addQueue operation adds a new element at the end of the queue. To implement this
operation, we access the pointer queueRear.

1
9

Queues | 1179

Preview from Notesale.co.uk

Page 1220 of 1392

customerType::customerType(int customerN, int arrvTime,
int wTime, int tTime)

{
setCustomerInfo(customerN, arrvTime, wTime, tTime);

}

The function getWaitingTime returns the current waiting time. The definition of the
function getWaitingTime is:

int customerType::getWaitingTime() const
{

return waitingTime;
}

The function incrementWaitingTime increments the value of waitingTime. Its
definition is:

void customerType::incrementWaitingTime()
{

waitingTime++;
}

The definitions of the functions setWaitingTime, getArrivalTime,
getTransactionTime, and getCustomerNumber are left as an exercise for you.

Server
At any given time unit, the server is either busy serving a customer or is free. We use
a string variable to set the status of the server. Every server has a timer and,
because the program might need to know which customer is served by which server,
the server also stores the information of the customer being served. Thus, three
member variables are associated with a server: the status, the transactionTime,
and the currentCustomer. Some of the basic operations that must be performed on
a server are as follows: check whether the server is free; set the server as free; set the
server as busy; set the transaction time (that is, how long it takes to serve the
customer); return the remaining transaction time (to determine whether the server
should be set to free); if the server is busy after each time unit, decrement the
transaction time by one time unit; and so on. The following class, serverType,
implements the server as an ADT.

class serverType
{
public:

serverType();
//Default constructor
//Sets the values of the instance variables to their default
//values.
//Postcondition: currentCustomer is initialized by its
// default constructor; status = "free"; and
// the transaction time is initialized to 0.

1188 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1229 of 1392

bool isFree() const;
//Function to determine if the server is free.
//Postcondition: Returns true if the server is free,
// otherwise returns false.

void setBusy();
//Function to set the status of the server to busy.
//Postcondition: status = "busy";

void setFree();
//Function to set the status of the server to "free".
//Postcondition: status = "free";

void setTransactionTime(int t);
//Function to set the transaction time according to the
//parameter t.
//Postcondition: transactionTime = t;

void setTransactionTime();
//Function to set the transaction time according to
//the transaction time of the current customer.
//Postcondition:
// transactionTime = currentCustomer.transactionTime;

int getRemainingTransactionTime() const;
//Function to return the remaining transaction time.
//Postcondition: The value of transactionTime is returned.

void decreaseTransactionTime();
//Function to decrease the transactionTime by one unit.
//Postcondition: transactionTime--;

void setCurrentCustomer(customerType cCustomer);
//Function to set the info of the current customer
//according to the parameter cCustomer.
//Postcondition: currentCustomer = cCustomer;

int getCurrentCustomerNumber() const;
//Function to return the customer number of the current
//customer.
//Postcondition: The value of customerNumber of the
// current customer is returned.

int getCurrentCustomerArrivalTime() const;
//Function to return the arrival time of the current
//customer.
//Postcondition: The value of arrivalTime of the current
// customer is returned.

int getCurrentCustomerWaitingTime() const;
//Function to return the current waiting time of the
//current customer.

1
9

Application of Queues: Simulation | 1189

Preview from Notesale.co.uk

Page 1230 of 1392

The addQueue operation inserts the element at the end of the queue. If we perform the
deleteQueue operation followed by the addQueue operation for each element of the
queue, then eventually the front element again becomes the front element. Given that
each deleteQueue operation is followed by an addQueue operation, how do we
determine that all of the elements of the queue have been processed? We cannot use
the isEmptyQueue or isFullQueue operations on the queue, because the queue will
never be empty or full.

One solution to this problem is to create a temporary queue. Every element of the
original queue is removed, processed, and inserted into the temporary queue. When the
original queue becomes empty, all of the elements in the queue are processed. We can
then copy the elements from the temporary queue back into the original queue.
However, this solution requires us to use extra memory space, which could be significant.
Also, if the queue is large, extra computer time is needed to copy the elements from the
temporary queue back into the original queue. Let us look into another solution.

In the second solution, before starting to update the elements of the queue, we can insert
a dummy customer with a wait time of, say, -1. During the update process, when we
arrive at the customer with the wait time of -1, we can stop the update process without
processing the customer with the wait time of -1. If we do not process the customer with
the wait time of -1, this customer is removed from the queue and, after processing all of
the elements of the queue, the queue will contain no extra elements. This solution does
not require us to create a temporary queue, so we do not need extra computer time to
copy the elements back into the original queue. We will use this solution to update the
queue. Therefore, the definition of the function updateWaitingQueue is:

void waitingCustomerQueueType::updateWaitingQueue()
{

customerType cust;

cust.setWaitingTime(-1);
int wTime = 0;

addQueue(cust);

while (wTime != -1)
{

cust = front();
deleteQueue();

wTime = cust.getWaitingTime();
if (wTime == -1)

break;
cust.incrementWaitingTime();
addQueue(cust);

}
}

1
9

Application of Queues: Simulation | 1197

Preview from Notesale.co.uk

Page 1238 of 1392

3. Set the free server to begin the transaction.

serverList.setServerBusy(serverID, customer, transTime);

To run the simulation, we need to know the number of customers arriving at a given
time unit and how long it takes to serve the customer. We use the Poisson distribution
from statistics, which says that the probability of y events occurring at a given time is
given by the formula:

PðyÞ ¼ �ye��

y!
; y ¼ 0; 1; 2; . . . ;

in which l is the expected value that y events occur at that time. Suppose that, on
average, a customer arrives every four minutes. During this four-minute period, the
customer can arrive at any one of the four minutes. Assuming an equal likelihood of each
of the four minutes, the expected value that a customer arrives in each of the four minutes
is, therefore, 1 / 4 = .25. Next, we need to determine whether or not the customer
actually arrives at a given minute.

Now, P(0) = e-l is the probability that no event occurs at a given time. One of the basic
assumptions of the Poisson distribution is that the probability of more than one outcome
occurring in a short time interval is negligible. For simplicity, we assume that only one
customer arrives at a given time unit. Thus, we use e-l as the cutoff point to determine
whether a customer arrives at a given time unit. Suppose that, on average, a customer arrives
every four minutes. Then, l = 0.25.We can use an algorithm to generate a number between
0 and 1. If the value of the number generated is > e-0.25, we can assume that the customer
arrived at a particular time unit. For example, suppose that rNum is a random number such
that 0
 rNum
 1. If rNum> e-0.25, the customer arrived at the given time unit.

We now describe the function runSimulation to implement the simulation. Suppose
that we run the simulation for 100 time units and customers arrive at time units 93, 96, and
100. The average transaction time is five minutes—that is, five time units. For simplicity,
assume that we have only one server and that the server becomes free at time unit 97, and
that all customers arriving before time unit 93 have been served. When the server becomes
free at time unit 97, the customer arriving at time unit 93 starts the transaction. Because the
transaction of the customer arriving at time unit 93 starts at time unit 97 and it takes five
minutes to complete a transaction, when the simulation loop ends, the customer arriving at
time unit 93 is still at the server. Moreover, customers arriving at time units 96 and 100 are
in the queue. For simplicity, we assume that when the simulation loop ends, the customers
at the servers are considered served. The general algorithm for this function is:

1. Declare and initialize the variables, such as the simulation parameters,
customer number, clock, total and average waiting times, number of
customers arrived, number of customers served, number of customers
left in the waiting queue, number of customers left with the servers,
waitingCustomersQueue, and a list of servers.

1
9

Application of Queues: Simulation | 1199

Preview from Notesale.co.uk

Page 1240 of 1392

Customer number 3 arrived at time unit 9
Customer number 4 arrived at time unit 12
From server number 2 customer number 2

departed at time unit 13
From server number 1 customer number 3

departed at time unit 14
From server number 2 customer number 4

departed at time unit 18
Customer number 5 arrived at time unit 21
From server number 1 customer number 5

departed at time unit 26
Customer number 6 arrived at time unit 37
Customer number 7 arrived at time unit 38
Customer number 8 arrived at time unit 41
From server number 1 customer number 6

departed at time unit 42
From server number 2 customer number 7

departed at time unit 43
Customer number 9 arrived at time unit 43
Customer number 10 arrived at time unit 44
From server number 1 customer number 8

departed at time unit 47
From server number 2 customer number 9

departed at time unit 48
Customer number 11 arrived at time unit 49
Customer number 12 arrived at time unit 51
From server number 1 customer number 10

departed at time unit 52
Customer number 13 arrived at time unit 52
Customer number 14 arrived at time unit 53
From server number 2 customer number 11

departed at time unit 54
Customer number 15 arrived at time unit 54
From server number 1 customer number 12

departed at time unit 57
From server number 2 customer number 13

departed at time unit 59
Customer number 16 arrived at time unit 59
From server number 1 customer number 14

departed at time unit 62
From server number 2 customer number 15

departed at time unit 64
Customer number 17 arrived at time unit 66
From server number 1 customer number 16

departed at time unit 67
From server number 2 customer number 17

departed at time unit 71
Customer number 18 arrived at time unit 71
From server number 1 customer number 18

departed at time unit 76
Customer number 19 arrived at time unit 78
From server number 1 customer number 19

departed at time unit 83
Customer number 20 arrived at time unit 90
Customer number 21 arrived at time unit 92
From server number 1 customer number 20

departed at time unit 95

1202 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1243 of 1392

for (int i = 0; i < 7; i++)
s1.push(list[i]);

mystery(s1, s2);

while (!s2.isEmptyStack())
{

cout << s2.top() << " ";
s2.pop();

}
cout << endl;

}

template <class type>
void mystery(stackType<type>& s, stackType<type>& t)
{

while (!s.isEmptyStack())
{

t.push(s.top());
s.pop();

}
}

9. What is the output of the following program?

#include <iostream>
#include <string>
#include "myStack.h"

using namespace std;

void mystery(stackType<int>& s, stackType<int>& t);

int main()
{

int list[] = {5, 10, 15, 20, 25};

stackType<int> s1;
stackType<int> s2;

for (int i = 0; i < 5; i++)
s1.push(list[i]);

mystery(s1, s2);

while (!s2.isEmptyStack())
{

cout << s2.top() << " ";
s2.pop();

}
cout << endl;

}

1206 | Chapter 19: Stacks and Queues

Preview from Notesale.co.uk

Page 1247 of 1392

Operator Associativity

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= Right to left

<<= >>= &= |= ^= Right to left

throw Right to left

, (the sequencing operator) Left to right

1218 | Appendix B: Operator Precedence

Preview from Notesale.co.uk

Page 1259 of 1392

This page intentionally left blank

Preview from Notesale.co.uk

Page 1263 of 1392

We use the weight of each bit to find the equivalent decimal number. For each bit, we

multiply the bit by 2 to the power of its weight and then we add all of the numbers. For

the above binary number, the equivalent decimal number is:

1� 26 þ 0� 25 þ 0� 24 þ 1� 23 þ 1� 22 þ 0� 21 þ 1� 20

¼ 64þ 0þ 0þ 8þ 4þ 0þ 1

¼ 77:

Converting a Binary Number (Base 2) to Octal (Base 8)
and Hexadecimal (Base 16)
The previous sections described how to convert a binary number to a decimal number

(base 2). Even though the language of a computer is binary, if the binary number is too

long, then it will be hard to manipulate it manually. To effectively deal with binary

numbers, two more number systems, octal (base 8) and hexadecimal (base 16), are of

interest to computer scientists.

The digits in the octal number system are 0, 1, 2, 3, 4, 5, 6, and 7. The digits in the

hexadecimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. So A in

hexadecimal is 10 in decimal, B in hexadecimal is 11 in decimal, and so on.

The algorithm to convert a binary number into an equivalent number in octal (or

hexadecimal) is quite simple. Before we describe the method to do so, let us review

some notations. Suppose ab represents the number a to the base b. For example, 2A016
means 2A0 to the base 16, and 638 means 63 to the base 8.

First we describe how to convert a binary number into an equivalent octal number and

vice versa. Table E-1 describes the first eight octal numbers.

Consider the binary number 1101100010101. To find the equivalent octal number,

starting from right to left we consider three digits at a time and write their octal

representation. Note that the binary number 1101100010101 has only 13 digits. So when

TABLE E-1 Binary representation of first eight octal numbers

Binary Octal Binary Octal

000 0 100 4

001 1 101 5

010 2 110 6

011 3 111 7

1228 | Appendix E: Additional C++ Topics

Preview from Notesale.co.uk

Page 1269 of 1392

Function Name and
Parameters

Parameter(s) Type Function Return Value

strcpy(destStr, srcStr) destStr and
srcStr are

null-terminated char
arrays

The base address of
destStr is returned;
srcStr is copied into
destStr

strlen(str) str is a null-terminated
char array

An integer value � 0

specifying the length of
the str (excluding the
'\0') is returned

HEADER FILE string

This header file—not to be confused with the header file cstring—supplies a programmer-

defined data type named string. Associated with the string type are a data type

string::size_type and a named constant string::npos. These are defined as follows:

string::size_type An unsigned integer type

string::npos The maximum value of type string::size_type

The type string contains several functions for string manipulation. In addition to the

string functions listed in Table 8-1, the following table describes additional string functions.

In this table, we assume that strVar is a string variable and str is a string variable, a

string constant, or a character array.

Expression Effect

getline(istreamVar, strVar); istreamVar is an input stream variable (of type
istream or ifstream).

Characters until the newline character are input

from istreamVar and stored in strVar. (The
newline character is read but not stored into
strVar.) The value returned by this function is

usually ignored.

strVar.append(str, n) The first n characters of the character array str are
appended to strVar.

strVar.c_str() The base address of a null-terminated C-string
corresponding to the characters in strVar.

1254 | Appendix F: Header Files

Preview from Notesale.co.uk

Page 1295 of 1392

Random Number Generator
To generate a random number, you can use the C++ function rand. To use the function

rand, the program must include the header file cstdlib. The header file cstdlib also

contains the constant RAND_MAX. Typically, the value of RAND_MAX is 32767. To find

the exact value of RAND_MAX, check your system’s documentation. The function rand

generates an integer between 0 and RAND_MAX. The following program illustrates how to

use the function rand. It also prints the value of RAND_MAX:

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main()
{

cout << fixed << showpoint << setprecision(5);
cout << "The value of RAND_MAX: " << RAND_MAX << endl;

cout << "A random number: " << rand() << endl;
cout << "A random number between 0 and 9: "

<< rand() % 10 << endl;
cout << "A random number between 0 and 1: "

<< static_cast<double> (rand())
/ static_cast<double>(RAND_MAX)

<< endl;

return 0;
}

Sample Run:

The value of RAND_MAX: 32767
A random number: 41
A random number between 0 and 9: 7
A random number between 0 and 1: 0.19330

1258 | Appendix G: Memory Size on a System and Random Number Generator

Preview from Notesale.co.uk

Page 1299 of 1392

vector<int> intList;

declares intList to be a vector and the component type is int. Similarly, the statement:

vector<string> stringList;

declares stringList to be a vector container and the component type is string.

DECLARING VECTOR OBJECTS

The class vector contains several constructors, including the default construc-

tor. Therefore, a vector container can be declared and initialized several ways.

Table H-1 describes how a vector container of a specific type can be declared and

initialized.

TABLE H-1 Various Ways to Declare and Initialize a Vector Container

Statement Effect

vector<elemType> vecList;

Creates the empty vector container
vecList. (The default
constructor is invoked.)

vector<elemType> vecList(otherVecList);

Creates the vector container
vecList, and initializes
vecList to the elements of the
vector otherVecList.
vecList and otherVecList

are of the same type.

vector<elemType> vecList(size);

Creates the vector container
vecList of size size.
vecList is initialized using the
default constructor.

vector<elemType> vecList(n, elm);

Creates the vector container
vecList of size n. vecList is
initialized using n copies of the
element elm.

vector<elemType> vecList(beg, end);

Creates the vector container
vecList. vecList is
initialized to the elements in the
range [beg, end), that is, all
the elements in the range
beg...end-1. Both beg and
end are pointers, called iterators in
STL terminology. (Later in this
appendix, we explain how iterators
are used.)

Container Types | 1261

Preview from Notesale.co.uk

Page 1302 of 1392

Member Function Description

ct.size() Returns the number of elements currently in
container ct.

ct.max_size() Returns the maximum number of elements that
can be inserted in container ct.

ct1.swap(ct2) Swaps the elements of containers ct1 and ct2.

ct.begin() Returns an iterator to the first element into
container ct.

ct.end() Returns an iterator to the position after the last
element into container ct.

ct.rbegin()
Reverse begin. Returns a pointer to the last
element into container ct. This function is used
to process the elements of ct in reverse.

ct.rend() Reverse end. Returns a pointer to the position
before the first element into container ct.

ct.insert(position, elem)
Inserts elem into container ct at the position
specified by position. Note that here
position is an iterator.

ct.erase(beg, end)
Deletes all the elements between beg...end-1
from container ct. Both beg and end are
iterators.

ct.clear() Deletes all the elements from the container. After
a call to this function, container ct is empty.

Operator Functions

ct1 = ct2;
Copies the elements of ct2 into ct1. After this
operation, the elements in both containers are the
same.

ct1 == ct2
Returns true if containers ct1 and ct2 are
equal, false otherwise.

ct1 != ct2
Returns true if containers ct1 and ct2 are not
equal, false otherwise.

TABLE H-5 Operations Common to All Containers (continued)

1270 | Appendix H: Standard Template Library (STL)

Preview from Notesale.co.uk

Page 1311 of 1392

copy(vecList.begin(), vecList.end(), screen); //Line 17
cout << endl; //Line 18

return 0;
}

Sample Run:

Line 4: intArray: 5 6 8 3 40 36 98 29 75
Line 8: vecList: 5 6 8 3 40 36 98 29 75
Line 12: After shifting the elements one position to the left,

intArray: 6 8 3 40 36 98 29 75 75
Line 16: After shifting the elements down by two positions,

vecList: 5 6 5 6 8 3 40 36 98

Sequence Container: deque
This section describes the sequence container deque. The term deque stands for double-

ended queue. Deque containers are implemented as dynamic arrays in such a way that the

elements can be inserted at both ends. Thus, a deque can expand in either direction.

Elements can also be inserted in the middle. Inserting elements at the beginning or the

end is fast; inserting elements in the middle, however, is time consuming because the

elements in the queue need to be shifted.

The name of the class defining the deque containers is deque. Also, the definition of the

class deque, and the functions to implement the various operations on a deque

object, are contained in the header file deque. Therefore, to use a deque container in

a program, the program must include the following statement:

#include <deque>

The class deque contains several constructors. Thus, a deque object can be initialized

in various ways when it is declared. Table H-7 describes various ways a deque object can

be declared.

TABLE H-7 Various Ways to Declare a deque Object

Statement Description

deque<elementType> deq;
Creates an empty deque container
deq. (The default constructor is
invoked.)

deque<elementType> deq(otherDeq);

Creates the deque container deq
and initializes it to the elements
of otherDeq; deq and
otherDeq are of the same type.

1276 | Appendix H: Standard Template Library (STL)

Preview from Notesale.co.uk

Page 1317 of 1392

copy(intDeq.begin(), intDeq.end(), screen); //Line 23
cout << endl; //Line 24

return 0;
}

Sample Run:

Line 7: intDeq: 13 75 28 35
Line 12: After adding two more elements, one at the front

and one at the back, intDeq: 0 13 75 28 35 100
Line 17: After removing the first two elements,

intDeq: 75 28 35 100
Line 22: After removing the last two elements,

intDeq: 75 28

The statement in Line 1 declares a deque container intDeq of type int, that is, all the
elements of intDeq are of type int. The statement in Line 2 declares screen to be an
ostream iterator initialized to the standard output device. The statements in Lines 3
through 6 use the push_back operation to insert four numbers—13, 75, 28, and 35—
into intDeq. The statement in Line 8 outputs the elements of intDeq. In the output,
see the line marked Line 7, which contains the output of the statements in Lines 7
through 9.

The statement in Line 10 inserts 0 at the beginning of intDeq; the statement in Line 11
inserts 100 at the end of intDeq. The statement in Line 13 outputs the modified
intDeq.

The statements in Lines 15 and 16 use the operation pop_front to remove the first two
elements of intDeq, and the statement in Line 18 outputs the modified intDeq. The
statements in Lines 20 and 21 use the operation pop_back to remove the last two
elements of intDeq, and the statement in Line 23 outputs the modified intDeq.

Sequence Container: list
This section describes the sequence container list. List containers are implemented as

doubly linked lists. Thus, every element in a list points to its immediate predecessor and

immediate successor (except the first and the last elements). Recall that a linked list is not

a random access data structure, such as an array. Therefore, to access, say, the fifth

element in a list, we must first traverse the first four elements.

The name of the class containing the definition of the class list is list. Also, the

definition of the class list, and the definitions of the functions to implement the

various operations on a list, are contained in the header file list. Therefore, to use list

in a program, the program must include the following statement:

#include <list>

Container Types | 1279

Preview from Notesale.co.uk

Page 1320 of 1392

Like other container classes, the class list also contains several constructors. Thus, a

list object can be initialized several ways when it is declared. Table H-9 shows various

ways to declare and initialize a list object.

Table H-5 described the operations that are common to all containers, and Table H-6

described the operations that are common to all sequence containers. In addition to these

common operations, Table H-10 describes operations that are specific to a list con-

tainer. The name of the function implementing the operation is shown in bold. (Suppose

that listCont, listCont1, and listCont2 are containers of type list.)

TABLE H-9 Various Ways to Declare a list Object

Statement Description

list<elementType> listCont;

Creates the empty list
container listCont. (The
default constructor is
invoked.)

list<elementType> listCont(otherList);

Creates the list container
listCont and initializes
it to the elements of
otherList. listCont
and otherList are of the
same type.

list<elementType> listCont(size);

Creates the list container
listCont of size size.
listCont is initialized
using the default constructor.

list<elementType> listCont(n, elm);

Creates the list container
listCont of size n.
listCont is initialized
using n copies of the
element elm.

list<elementType> listCont(beg, end);

Creates the list container
listCont. listCont is
initialized to the elements in
the range [beg, end),
that is, all the elements in
the range beg...end-1.
Both beg and end are
iterators.

1280 | Appendix H: Standard Template Library (STL)

Preview from Notesale.co.uk

Page 1321 of 1392

Chapter 1
1. a. false; b. false; c. true; d. false; e. false; f; false; g. false; h. true; i. true; j. false;

k. true; l. false

3. Screen and printer.

5. An operating system monitors the overall activity of the computer and provides

services. Some of these services include memory management, input/output activ-

ities, and storage management.

7. In machine language, the programs are written using the binary codes, whereas in

high-level language, the programs are closer to the natural language. For execution,

a high-level language program is translated into machine language, whereas a

machine language need not be translated into any other language.

9. Because the computer cannot directly execute instructions written in a high-level

language, a compiler is needed to translate a program written in high-level language

into machine code.

11. Every computer directly understands its own machine language. Therefore, for the

computer to execute a program written in a high-level language, the high-level

language program must be translated into the computer’s machine language.

13. In linking, an object program is combined with other programs in the library used

in the program to create the executable code.

15. To find the weighted average of the four test scores, first you need to know each

test score and its weight. Next, you multiply each test score with its weight and

then add these numbers to get the average. Therefore:

1. Get testScore1, weightTestScore1

2. Get testScore2, weightTestScore2

3. Get testScore3, weightTestScore3

4. Get testScore4, weightTestScore4

5. weightedAverage = testScore1 * weightTestScore1 +
testScore2 * weightTestScore2 +
testScore3 * weightTestScore3 +
testScore4 * weightTestScore4;

APPENDIX I

ANSWERS TO
ODD-NUMBERED
EXERCISES

1301

Preview from Notesale.co.uk

Page 1342 of 1392

Chapter 2
1. a. false; b. false; c. false; d. true; e. true; f. false; g. true; h. true; i. false; j. true; k. false

3. b, d, e

5. The identifiers firstName and FirstName are not the same. C++ is case

sensitive. The first letter of firstName is lowercase f, whereas the first character

of FirstName is uppercase F. So these identifiers are different.

7. a. 3

b. Not possible. Both of the operands of the operator % must be integers. Because

the second operand, w, is a floating-point value, the expression is invalid.

c. Not possible. Both of the operands of the operator % must be integers. Because

the first operand, which is y + w, is a floating-point value, the expression is

invalid.

d. 38.5

e. 1

f. 2

g. 2

h. 420.0

9. 7

11. a and c are valid.

13. a. 32 * a + b

b. '8'

c. "Julie Nelson"

d. (b * b – 4 * a * c) / (2 * a)

e. (a + b) / c * (e * f) - g * h

f. (-b + (b * b - 4 * a * c)) / (2 * a)

15. x = 20
y = 15
z = 6
w = 11.5
t = 4.5

17. a. 0.50; b. 24.50; c. 37.6; d. 8.3; e. 10; f. 38.75

19. a and c are correct.

21. a. int num1;
int num2;

b. cout << "Enter two numbers separated by spaces." << endl;

c. cin >> num1 >> num2;

d. cout << "num1 = " << num1 << "num2 = " << num2
<< "2 * num1 - num2 = " << 2 * num1 - num2 << endl;

1304 | Appendix I: Answers to Odd-Numbered Exercises

Preview from Notesale.co.uk

Page 1345 of 1392

int main()
{

string firstName, lastName;
int num;
double salary;

cout << "Enter first name: ";
cin >> firstName;
cout << endl;

cout << "Enter last name: ";
cin >> lastName;
cout << endl;

cout << "Enter a positive integer less than 70: ";
cin >> num;
cout << endl;

salary = num * X;

cout << "Name: " << firstName << BLANK << lastName << endl;
cout << "Wages: $" << salary << endl;
cout << "X = " << X << endl;
cout << "X + Y = " << X + Y << endl;

return 0;
}

Chapter 3
1. a. true; b. true; c. false; d. false; e. true; f. true

3. a. x = 37, y = 86, z = 0.56

b. x = 37, y = 32, z = 86.56

c. Input failure: z = 37.0, x = 86, trying to read the . (period) into y.

5. Input failure: Trying to read A into y, which is an int variable. x = 46, y = 18, and

z = 'A'. The values of y and z are unchanged.

7. iomanip

9. getline(cin, name);

11. a. name ¼ " Lance Grant", age ¼ 23

b. name ¼ " ", age ¼ 23

13. #include <iostream>
#include <fstream>

using namespace std;

int main()
{

int num1, num2;
ifstream infile;
ostream outfile;

1306 | Appendix I: Answers to Odd-Numbered Exercises

Preview from Notesale.co.uk

Page 1347 of 1392

29. a. both

b. do . . . while
c. while
d. while

31. In a pretest loop, the loop condition is evaluated before executing the body of the

loop. In a posttest loop, the loop condition is evaluated after executing the body of

the loop. A posttest loop executes at least once, whereas a pretest loop may not

execute at all.

33. int num;
do
{

cout << "Enter a number less than 20 or greater than 75: ";
cin >> num;

}
while (20 <= num && num <= 75);

35. int i = 0, value = 0;
do
{

if (i % 2 == 0 && i <= 10)
value = value + i * i;

else if (i % 2 == 0 && i > 10)
value = value + i;

else
value = value - i;

i = i + 1;
}
while (i <= 20);

cout << "value = " << value << endl;

The Output is: Value = 200

37. cin >> number;
while (number != -1)
{

total = total + number;
cin >> number;

}
cout << endl;
cout << total << endl;

39. a.
number = 1;
while (number <= 10)
{

cout << setw(3) << number;
number++;

}

1310 | Appendix I: Answers to Odd-Numbered Exercises

Preview from Notesale.co.uk

Page 1351 of 1392

9. 10, 12, 18, 21, 25, 28, 30, 71, 32, 58, 15

11. Bubble sort: 49,995,000; selection sort: 49,995,000; insertion sort: 25,007,499

13. 26

15. To use a vector object in a program, the program must include the header file

vector.

17. 1 3 5 7 9

19. a. vector<int> secretList;

b. secretList.push_back(56);
secretList.push_back(28);
secretList.push_back(32);
secretList.push_back(96);
secretList.push_back(75);

c. for (unsigned int i = 0; i < secretList.size(); i++)
cout << secretList[i] << " ";

cout << endl;

21. a. cout << myList.front() << " " << myList.back() << endl;

b. length = myList.size();

c. for (int i = 0; i < myList.size(); i++)
cout << myListi] << " ";

cout << endl;

Chapter 11
1. a. false; b. false; c. true; d. true; e. true; f. true; g. false

3. checkingAccount newAcct;

newAcct.name = "Jason Miller";

newAcct.accountNum = 17328910;

newAcct.balance = 24476.38;

newAcct.interestRate = 0.025;

5. movieType newRelease;

newRelease.name = "Summer Vacation";

newRelease.director = "Tom Blair";

newRelease.producer = "Rajiv Merchant";

newRelease.yearReleased = 2005;

newRelease.copiesInStock = 34;

Chapter 11 | 1317

Preview from Notesale.co.uk

Page 1358 of 1392

f. xClass::xClass()
{

u = 0;
w = 0;

}

g. x.print();

h. xClass t(20, 35.0);

5. a. int testClass::sum()
{

return x + y;
}

void testClass::print() const
{

cout << "x = " << x << ", y = " << y << endl;
}

testClass::testClass()
{

x = 0;
y = 0;

}

testClass::testClass(int a, int b)
{

x = a;
y = b;

}

b. One possible solution. (We assume that the name of the header file containing

the definition of the class testClass is Exercise5Ch12.h.)

#include <iostream>
#include "Exercise5Ch12.h"

int main()
{

testClass one;
testClass two(4, 5);

one.print();
two.print();

return 0;
}

7. a. personType student("Buddy", "Arora");

b. student.print();

c. student.setName("Susan", "Gilbert");

Chapter 12 | 1319

Preview from Notesale.co.uk

Page 1360 of 1392

13. The members setX, print, y, and setY are protected members in class
third. The private member x of class first is hidden in class third, and

it can be accessed in class third only through the protected and public
members of class first.

15. Because the memberAccessSpecifier is not specified, it is a private inheritance.

Therefore, all of the members of the class first become private members in

class fifth.

17. a. void two::setData(int a, int b, int c)
{

one::setData(a, b);
z = c;

}

b. void two::print() const
{

one::print();
cout << z << endl;

}

19. In base: x = 7
In derived: x = 3, y = 8; x + y = 11
****7
####11

Chapter 14
1. a. false; b. false; c. false; d. true; e. true; f. true; g. false; h. false

3. The operator * is used to declare a pointer variable and to access the memory space

to which a pointer variable points.

5. 98 98
98 98

7. b and c

9. 78 78

11. 27 35
73 27
36 36

13. 4 4 5 7 10 14 19 25 32 40

15. The operator delete deallocates the memory space to which a pointer points.

17. a. num ¼ new int[10];

b. for (int j = 0; j < 10; j++)

cin >> num[j];

c. delete [] num;

19. In a shallow copy of data, two or more pointers point to the same memory space. In

a deep copy of data, each pointer has its own copy of the data.

1322 | Appendix I: Answers to Odd-Numbered Exercises

Preview from Notesale.co.uk

Page 1363 of 1392

23. template <class Type>
void reverseStack(stackType<Type> &s)
{

linkedQueueType<Type> q;
Type elem;

while (!s.isEmptyStack())
{

elem = s.top();
s.pop();
q.addQueue(elem);

}

while (!q.isEmptyQueue())
{

elem = q.front();
q.deleteQueue();
s.push(elem);

}
}

25. template <class Type>
int queueType<Type>::queueCount()
{

return count;
}

27. Answer to this question is available at the Web site accompanying this book.

29. Answer to this question is available at the Web site accompanying this book.

Chapter 19 | 1329

Preview from Notesale.co.uk

Page 1370 of 1392

functions and, 321
information hiding and, 682
inheritance and, 742–744
input/output (I/O) and, 118, 142, 143
linked lists and, 1057–1058, 1066–1069
multiple inclusions of, 735–746
namespaces and, 452, 458
naming conventions, 1244–1245
overview, 1247–1255
stacks and, 1130–1134, 1148
templates and, 929
vectors and, 585

hexadecimal numbers, 1228–1230
high-level languages, 9
Hollerith, Herman, 2

I

IBM (International Business Machines)
character sets and, 37
encoding schemes and, 8
history of, 2–3

identifiers
described, 33
functions and, 382–386
global, 382
local, 382
naming, 85–86
namespaces and, 452, 455
overview, 33–34
self-documenting, 86

IDEs (integrated development environments)
debugging and, 299
filename extensions and, 78
identifiers and, 34
indentation and, 212
input/output (I/O) and, 137
overview, 11–12

if statements, 188–212, 952, 1013
comparing if. . .else statements with,

198–199
functions and, 334
linked lists and, 1070
nested, 195, 196, 197–199

if. . .else statements, 198–199
ignore function, 128–130, 744

implementation files
described, 682
templates and, 929

implicit type coercion, 47
#include preprocessor directive, 75, 81, 512,

744
functions and, 322–323
input/output (I/O) and, 118
string data type and, 458

increment operators, 65, 66–67, 1039
incrementHours function, 651, 652, 664
incrementMinutes function, 651, 652, 662,

664
incrementSeconds, 651, 652, 653, 659, 662,

664
indexes. See array indexes
indirectly recursive, use of the term, 995
infinite loops, 250
infix notation, 1151, 1152
information hiding, 681–685
inheritance

described, 724
hierarchy, 738, 740–741
linked lists and, 1037
overview, 723–792
pointers and, 828–835

initializeList function, 1045, 1076
initializeQueue function, 1166, 1171, 1174,

1179, 1181
initializeStack function, 1118, 1123–1124
input. See also I/O (input/output)

devices, 5
failure, 124, 133, 134–136, 206–207
memory allocation and, 50–53
overview, 50–65
statement, 58–61
stream variables, 119
streams, 118
string, 514–515

input/output (I/O). See also input; output
c-Strings and, 515–517
debugging and, 149–152
enumeration types and, 438
EOF-controlled while loops and, 263, 264
file, 152–165, 516
functions and, 321

Index | 1341

Preview from Notesale.co.uk

Page 1382 of 1392

S

sales data analysis program, 628–641
scope resolution operator, 386, 454, 457, 659,

691
search function, 1044, 1058, 1077,

1297–1299
searching. See also search function

arrays, for specific items, 507–510
lists, 564–565

secondary storage, 5
seekg function, 1236, 1237–1241
seekp function, 1236, 1237–1238
selection sort algorithm, 569, 570–572
selection structures

multiple, 195–199
one-way, 189–191
overview, 176–177, 188–212
two-way, 191–184

selectionSort function, 571
selectors, 215
semantic(s)

described, 85
errors, 194
rules, 31

semicolon (;), 85, 651, 836
sentinel(s), 257, 259

-controlled while loops, 255, 256
described, 255

seqSearch function, 508–509, 621–622
sequence containers, 1260–1269,

1271–1272, 1276–1284
sequence structures, 176–177
sequential search algorithm, 507, 508–510,

564–565, 621–622
serverListType class, 1192–1194
servers

described, 1184
lists of, 1191–1195
queues and, 1184–1185, 1188–1191,

1198–1199
serverType class, 1188–1191
setCustomerInfo function, 1187
setData function, 748, 749, 752, 753
setDimension function, 733
setfill manipulator, 144–146
setLastName function, 868

setName function, 868
setprecision manipulator, 137–138, 140–141
setServerBusy function, 1194
setTime function, 651, 652, 653, 656, 659,

660, 664, 670
setw manipulator, 142–144, 146
shallow copy, 816, 817, 818
shape class, 725, 835–837
short-circuit evaluation, 199, 200
showpoint manipulator, 139–142
side effects, 386–390
simple data types, 53, 433–483, 486
simulation example, 1183–1203
single inheritance, 725
size function, 463, 582, 1286, 1288
slicing problem, 834
software. See also programs

operating system, 6
overview of, 6

sort function, 1297–1299
source

code, 10, 77
file, 77
program, 10

sqrt function, 321, 322
square brackets ([]), 495
squareFirst function, 381
stack(s)

container adapters and, 1286
copying, 1128, 1146–1147
described, 1116
emptying, 1124, 1141–1142
full, 1124, 1141–1142
implementation of, as arrays, 1120–1138
initializing, 1123–1124
linked implementation of, 1138–1151
operations, 1118–1119
overview, 1116–1165
recursion and, 1161–1165
top element of, returning to, 1144

stackADT class, 1119, 1120, 1139–1140,
1142

stackType class, 1120–1123, 1129–1134
Standard C++

library, 458
namingconventions forheader files,1244–1245

1348 | Index

Preview from Notesale.co.uk

Page 1389 of 1392

W

waitingCustomerQueueType class, 1196–1197
walk-throughs, 56, 65, 214, 292
while loops

binary search algorithm and, 579, 580
counter-controlled, 252, 253–255
described, 249
designing, 251–252
EOF-controlled, 263, 264–268, 294–295
expressions in, 268–269

Fibonacci numbers and, 269,
270–273

flag-controlled, 259, 260, 268
functions and, 366
nested, 293
overview, 249–284
sentinel-controlled, 255, 256

whitespace, 34, 120, 129, 149
Wozniak, Stephen, 3
write function, 1236

Index | 1351

Preview from Notesale.co.uk

Page 1392 of 1392

