1 Board work

1.1 Tuesday, 29 September 2015

1. For a cluster point every deleted neighborhood actually has infinitely many points of A.

 Example. Let 0 be a cluster point of A. Then there must be a point $a \in A$ such that $a \in D_1(0)$. Since $D_1|a|(0)$ is also a deleted neighborhood of 0 there must be a point $b \in A$ such that $b \in D_1|a|(0)$. Next there must be a point $c \in A$ with $c \in D_1|b|(0)$. And so on.

2. Sequence. Think of a sequence as a collection of a first term, a second term,..., an n^{th} term,..., ad infinitum.

3. Tail. A tail of a sequence is new sequence obtained by removing finitely many initial terms of the given sequence. Thus $x_N, x_{N+1}, x_{N+2}, \ldots$ is a tail of the sequence x_1, x_2, x_3, \ldots

 x_n converges to x if and only if for every $\epsilon > 0$ the number of terms of (x_n) outside $B_\epsilon(x)$ is finite. (In which case the number of terms of (x_n) inside $B_\epsilon(x)$ will automatically be infinity).

5. Note that (i) \iff (ii) \iff (iii) where
(i) \((x_n) \) has finitely many terms outside \(B_\epsilon(x) \),
(ii) \((x_n) \) has a tail with zero terms outside \(B_\epsilon(x) \), and
(iii) \((x_n) \) has a tail with all terms inside \(B_\epsilon(x) \).

It follows that \((x_n) \) converges to a limit \(l \) if and only if given any \(\epsilon > 0 \) there is a tail of \((x_n) \) with all terms of the tail inside \(B_\epsilon(l) \).

6. It follows that if for some \(\epsilon > 0 \) the number of terms of \((x_n) \) outside \(B_\epsilon(x) \) is infinity then \(x_n \) cannot converge to \(x \).

7. Every convergent sequence is bounded. Assume \(x_n \to l \). Then a tail of \((x_n) \) is entirely contained in \(B_1(l) \). So every element of the tail is bounded by \(|l| + 1\). What about the terms of the sequence that precede the tail? Are they bounded also? There are only finitely many terms in the sequence \((x_n) \) which do not belong to the tail. Since the maximum of finitely many finite numbers is also finite, we get a finite bound for the entire sequence.

1.2 Wednesday, 30 September 2015

1. Sandwich theorem. \(a_n \leq b_n \leq c_n \) with \(a_n \to a \) and \(c_n \to l \). Then \(b_n \to l \).

Since \(a_n \to l \), there exists \(n_a \) such that \(l - \epsilon < a_n \) for all \(n > n_a \). Since \(c_n \to l \), there exists \(n_c \) such that \(c_n < l + \epsilon \) for all \(n > n_c \). Therefore \(b_n \in B_\epsilon(l) \) whenever \(n \) greater than both \(n_a \) and \(n_b \). (In other words, every \(B_\epsilon(l) \) contains a tail of \((b_n) \).)

2. If \(a_n \to a \) the \(ca_n \to ca \) for every \(c \in \mathbb{R} \).

Trivial for \(c = 0 \).
For \(c \neq 0 \) there exists \(n_0 \) such that \(a_n \in B_{\epsilon/|c|}(a) \) for all \(n > n_0 \). So \(ca_n \in B_\epsilon(a) \) for all \(n > n_0 \). (In other words, an arbitrary neighbourhood of \(ca \) and contains a tail of the sequence \((ca_n) \).)

3. \(a_n \to a \) and \(b_n \to b \) implies that \(a_n + b_n \to a + b \).

Given arbitrary \(\epsilon > 0 \) there exists \(n_a \) such that
\[
|a - a_n| < \epsilon/2 \text{ for all } n > n_a.
\]