
Preview from Notesale.co.uk

Page 1 of 900

NETWORK SECURITY ESSENTIALS, FOURTH EDITION
A tutorial and survey on network security technology. The book covers
important network security tools and applications, including S/MIME, IP
Security, Kerberos, SSL/TLS, SET, and X509v3. In addition, methods for
countering hackers and viruses are explored.

COMPUTER SECURITY (with Lawrie Brown)
A comprehensive treatment of computer security technology, including
algorithms, protocols, and applications. Covers cryptography, authentication,
access control, database security, intrusion detection and prevention, malicious
software, denial of service, firewalls, software security, physical security, human
factors, auditing, legal and ethical aspects, and trusted systems. Received the
2008 Text and Academic Authors Association (TAA) award for the best
Computer Science and Engineering Textbook of the year. ISBN 0-13-600424-5

WIRELESS COMMUNICATIONS AND NETWORKS, Second Edition
A comprehensive, state-of-the art survey. Covers fundamental wireless
communications topics, including antennas and propagation, signal encoding
techniques, spread spectrum, and error correction techniques. Examines
satellite, cellular, wireless local loop networks and wireless LANs, including
Bluetooth and 802.11. Covers Mobile IP and WAP. ISBN 0-13-191835-4

HIGH-SPEED NETWORKS AND INTERNETS, SECOND EDITION
A state-of-the art survey of high-speed networks. Topics covered include TCP
congestion control, ATM traffic management, Internet traffic management,
differentiated and integrated services, Internet routing protocols and multicast
routing protocols, resource reservation and RSVP, and lossless and lossy
compression. Examines important topic of self-similar data traffic.
ISBN 0-13-03221-0

AND DATA COMMUNICATIONS TECHNOLOGY

Preview from Notesale.co.uk

Page 3 of 900

PREFACE xvii

Purchasing this textbook now grants the reader six months of access to this online
material. See the access card bound into the front of this book for details.

INSTRUCTIONAL SUPPORT MATERIALS

To support instructors, the following materials are provided:

• Solutions Manual: Solutions to end-of-chapter Review Questions and Problems.
• Projects Manual: Suggested project assignments for all of the project categories listed

below.
• PowerPoint Slides: A set of slides covering all chapters, suitable for use in lecturing.
• PDF Files: Reproductions of all figures and tables from the book.
• Test Bank: A chapter-by-chapter set of questions.

All of these support materials are available at the Instructor Resource Center
(IRC) for this textbook, which can be reached via personhighered.com/stallings or by
clicking on the button labeled “Book Info and More Instructor Resources” at this book’s
Web Site WilliamStallings.com/Crypto/Crypto5e.html. To gain access to the IRC,
please contact your local Prentice Hall sales representative via pearsonhighered.com/
educator/replocator/requestSalesRep.page or call Prentice Hall Faculty Services at
1-800-526-0485.

INTERNET SERVICES FOR INSTRUCTORS AND STUDENTS

There is a Web site for this book that provides support for students and instructors. The site
includes links to other relevant sites, transparency masters of figures and tables in the book
in PDF (Adobe Acrobat) format, and PowerPoint slides. The Web page is at
WilliamStallings.com/Crypto/Crypto5e.html. For more information, see Chapter 0.

New to this edition is a set of homework problems with solutions available at this Web
site. Students can enhance their understanding of the material by working out the solutions
to these problems and then checking their answers.

An Internet mailing list has been set up so that instructors using this book can
exchange information, suggestions, and questions with each other and with the author. As
soon as typos or other errors are discovered, an errata list for this book will be available at
WilliamStallings.com. In addition, the Computer Science Student Resource site at
WilliamStallings.com/StudentSupport.html provides documents, information, and useful
links for computer science students and professionals.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a cryptography or security course is a pro-
ject or set of projects by which the student gets hands-on experience to reinforce concepts
from the text. This book provides an unparalleled degree of support, including a projects
component in the course.The IRC not only includes guidance on how to assign and structure

Preview from Notesale.co.uk

Page 20 of 900

PREFACE xix

• Chapter 4 — Basic Concepts In Number Theory And Finite Fields: Euclidean and
extended Euclidean algorithms, polynomial arithmetic, and GF(24).

• Chapter 5 — Advanced Encryption Standard: Exercise based on SAES.
• Chapter 6 — Pseudorandom Number Generation And Stream Ciphers: Blum Blum

Shub, linear congruential generator, and ANSI X9.17 PRNG.
• Chapter 8 — Number Theory: Euler’s Totient function, Miller Rabin, factoring, modular

exponentiation, discrete logarithm, and Chinese remainder theorem.
• Chapter 9 — Public-Key Cryptography And RSA: RSA encrypt/decrypt and signing.
• Chapter 10 — Other Public-Key Cryptosystems: Diffie-Hellman, elliptic curve
• Chapter 11 — Cryptographic Hash Functions: Number-theoretic hash function.
• Chapter 13 — Digital Signatures: DSA.

WHAT’S NEW IN THE FIFTH EDITION

The changes for this new edition of Cryptography and Network Security are more substantial
and comprehensive than those for any previous revision.

In the three years since the fourth edition of this book was published, the field has seen
continued innovations and improvements. In this new edition, I try to capture these changes
while maintaining a broad and comprehensive coverage of the entire field. To begin this
process of revision, the fourth edition was extensively reviewed by a number of professors
who teach the subject. In addition, a number of professionals working in the field reviewed
individual chapters. The result is that, in many places, the narrative has been clarified and
tightened, and illustrations have been improved. Also, a large number of new “field-tested”
problems have been added.

One obvious change to the book is a revision in the organization, which makes for a
clearer presentation of related topics. There is a new Part Three, which pulls together all of
the material on cryptographic algorithms for data integrity, including cryptographic hash
functions, message authentication codes, and digital signatures.The material on key manage-
ment and exchange, previously distributed in several places in the book, is now organized in
a single chapter, as is the material on user authentication.

Beyond these refinements to improve pedagogy and user friendliness, there have been
major substantive changes throughout the book. Highlights include:

• Euclidean and extended Euclidean algorithms (revised): These algorithms are impor-
tant for numerous cryptographic functions and algorithms. The material on the
Euclidean and extended Euclidean algorithms for integers and for polynomials has
been completely rewritten to provide a clearer and more systematic treatment.

• Advanced Encryption Standard (revised): AES has emerged as the dominant symmetric
encryption algorithm, used in a wide variety of applications.Accordingly, this edition has
dramatically expanded the resources for learning about and understanding this impor-
tant standard.The chapter on AES has been revised and expanded, with additional illus-
trations and a detailed example, to clarify the presentation. Examples and assignments
using Sage have been added.And the book now includes an AES cryptography lab,
which enables the student to gain hands-on experience with AES cipher internals and
modes of use.The lab makes use of an AES calculator applet, available at this book’s
Web site, that can encrypt or decrypt test data values using the AES block cipher.

Preview from Notesale.co.uk

Page 22 of 900

PREFACE xxi

With each new edition it is a struggle to maintain a reasonable page count while adding
new material. In part, this objective is realized by eliminating obsolete material and tighten-
ing the narrative. For this edition, chapters and appendices that are of less general interest
have been moved online as individual PDF files. This has allowed an expansion of material
without the corresponding increase in size and price.

ACKNOWLEDGEMENTS

This new edition has benefited from review by a number of people who gave generously of
their time and expertise.The following people reviewed all or a large part of the manuscript:
Marius Zimand (Towson State University), Shambhu Upadhyaya (University of Buffalo),
Nan Zhang (George Washington University), Dongwan Shin (New Mexico Tech), Michael
Kain (Drexel University), William Bard (University of Texas), David Arnold (Baylor Uni-
versity), Edward Allen (Wake Forest University), Michael Goodrich (UC-Irvine), Xunhua
Wang (James Madison University), Xianyang Li (Illinois Institute of Technology), and Paul
Jenkins (Brigham Young University).

Thanks also to the many people who provided detailed technical reviews of one or
more chapters: Martin Bealby, Martin Hlavac (Department of Algebra, Charles University
in Prague, Czech Republic), Martin Rublik (BSP Consulting and University of Economics in
Bratislava), Rafael Lara (President of Venezuela’s Association for Information Security and
Cryptography Research), Amitabh Saxena, and Michael Spratte (Hewlett-Packard Com-
pany). I would especially like to thank Nikhil Bhargava (IIT Delhi) for providing detailed
reviews of various chapters of the book.

Joan Daemen kindly reviewed the chapter on AES. Vincent Rijmen reviewed the
material on Whirlpool. Edward F. Schaefer reviewed the material on simplified AES.

Nikhil Bhargava (IIT Delhi) developed the set of online homework problems and
solutions. Dan Shumow of Microsoft and the University of Washington developed all of the
Sage examples and assignments in Appendices B and C. Professor Sreekanth Malladi of
Dakota State University developed the hacking exercises. Lawrie Brown of the Australian
Defence Force Academy provided the AES/DES block cipher projects and the security
assessment assignments.

Sanjay Rao and Ruben Torres of Purdue University developed the laboratory exercis-
es that appear in the IRC.The following people contributed project assignments that appear
in the instructor’s supplement: Henning Schulzrinne (Columbia University); Cetin Kaya Koc
(Oregon State University); and David Balenson (Trusted Information Systems and George
Washington University). Kim McLaughlin developed the test bank.

Finally, I would like to thank the many people responsible for the publication of the
book, all of whom did their usual excellent job. This includes my editor Tracy Dunkelberger,
her assistant Melinda Hagerty, and production manager Rose Kernan. Also, Jake Warde of
Warde Publishers managed the reviews.

With all this assistance, little remains for which I can take full credit. However, I am
proud to say that, with no help whatsoever, I selected all of the quotations.

Preview from Notesale.co.uk

Page 24 of 900

This page intentionally left blank

Preview from Notesale.co.uk

Page 25 of 900

READER’S GUIDE
0.1 Outline of This Book

0.2 A Roadmap for Readers and Instructors

Subject Matter
Topic Ordering

0.3 Internet and Web Resources

Web Sites for This Book
Other Web Sites
Newsgroups and Forums

0.4 Standards

CHAPTER

1

Preview from Notesale.co.uk

Page 28 of 900

0.4 / STANDARDS 5

Other Web Sites

There are numerous Web sites that provide information related to the topics of this
book. In subsequent chapters, pointers to specific Web sites can be found in the
Recommended Reading and Web Sites section. Because the addresses for Web sites
tend to change frequently, the book does not provide URLs. For all of the Web sites
listed in the book, the appropriate link can be found at this book’s Web site. Other
links not mentioned in this book will be added to the Web site over time.

Newsgroups and Forums

A number of USENET newsgroups are devoted to some aspect of cryptography or
network security.As with virtually all USENET groups, there is a high noise-to-signal
ratio, but it is worth experimenting to see if any meet your needs. The most relevant
are as follows:

• sci.crypt.research: The best group to follow. This is a moderated newsgroup
that deals with research topics; postings must have some relationship to the
technical aspects of cryptology.

• sci.crypt: A general discussion of cryptology and related topics.

• sci.crypt.random-numbers: A discussion of cryptographic-strength random
number generators.

• alt.security: A general discussion of security topics.

• comp.security.misc: A general discussion of computer security topics.

• comp.security.firewalls: A discussion of firewall products and technology.

• comp.security.announce: News and announcements from CERT.

• comp.risks: A discussion of risks to the public from computers and users.

• comp.virus: A moderated discussion of computer viruses.

In addition, there are a number of forums dealing with cryptography available
on the Internet. Among the most worthwhile are

• Security and Cryptography forum: Sponsored by DevShed. Discusses issues
related to coding, server applications, network protection, data protection,
firewalls, ciphers, and the like.

• Cryptography forum: On Topix. Fairly good focus on technical issues.

• Security forums: On WindowsSecurity.com. Broad range of forums, including
cryptographic theory, cryptographic software, firewalls, and malware.

Links to these forums are provided at this book’s Web site.

0.4 STANDARDS

Many of the security techniques and applications described in this book have
been specified as standards. Additionally, standards have been developed to
cover management practices and the overall architecture of security mechanisms

Preview from Notesale.co.uk

Page 32 of 900

1.4 / SECURITY SERVICES 19

(c) Modification of messages

Bob

Darth

Alice

Darth modifies
message from Bob
to Alice

(d) Denial of service

Bob

Darth

Server

Darth disrupts service
provided by server

Internet or
other comms facility

Internet or
other comms facility

Figure 1.3 Active attacks

1.4 SECURITY SERVICES

X.800 defines a security service as a service that is provided by a protocol layer of
communicating open systems and that ensures adequate security of the systems or
of data transfers. Perhaps a clearer definition is found in RFC 2828, which provides
the following definition: a processing or communication service that is provided by

Preview from Notesale.co.uk

Page 46 of 900

20 CHAPTER 1 / OVERVIEW

a system to give a specific kind of protection to system resources; security services
implement security policies and are implemented by security mechanisms.

X.800 divides these services into five categories and fourteen specific services
(Table 1.2). We look at each category in turn.5

5There is no universal agreement about many of the terms used in the security literature. For example,
the term integrity is sometimes used to refer to all aspects of information security.The term authentication
is sometimes used to refer both to verification of identity and to the various functions listed under
integrity in this chapter. Our usage here agrees with both X.800 and RFC 2828.

Table 1.2 Security Services (X.800)

AUTHENTICATION

The assurance that the communicating entity is the
one that it claims to be.

Peer Entity Authentication
Used in association with a logical connection to
provide confidence in the identity of the entities
connected.

Data-Origin Authentication
In a connectionless transfer, provides assurance that
the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource
(i.e., this service controls who can have access to a
resource, under what conditions access can occur,
and what those accessing the resource are allowed
to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized
disclosure.

Connection Confidentiality
The protection of all user data on a connection.

Connectionless Confidentiality
The protection of all user data in a single data block

Selective-Field Confidentiality
The confidentiality of selected fields within the user
data on a connection or in a single data block.

Traffic-Flow Confidentiality
The protection of the information that might be
derived from observation of traffic flows.

DATA INTEGRITY

The assurance that data received are exactly as
sent by an authorized entity (i.e., contain no
modification, insertion, deletion, or replay).

Connection Integrity with Recovery
Provides for the integrity of all user data on a
connection and detects any modification, insertion,
deletion, or replay of any data within an entire data
sequence, with recovery attempted.

Connection Integrity without Recovery
As above, but provides only detection without recovery.

Selective-Field Connection Integrity
Provides for the integrity of selected fields within the
user data of a data block transferred over a connec-
tion and takes the form of determination of whether
the selected fields have been modified, inserted,
deleted, or replayed.

Connectionless Integrity
Provides for the integrity of a single connectionless
data block and may take the form of detection of
data modification. Additionally, a limited form of
replay detection may be provided.

Selective-Field Connectionless Integrity
Provides for the integrity of selected fields within a single
connectionless data block; takes the form of determina-
tion of whether the selected fields have been modified.

NONREPUDIATION

Provides protection against denial by one of the
entities involved in a communication of having
participated in all or part of the communication.

Nonrepudiation, Origin
Proof that the message was sent by the specified party.

Nonrepudiation, Destination
Proof that the message was received by the specified
party.

Preview from Notesale.co.uk

Page 47 of 900

Table 1.4 Relationship Between Security Services and Mechanisms
Mechanism

Service Encipherment
Digital

Signature
Access
Control

Data
Integrity

Authentication
Exchange

Traffic
Padding

Routing
Control Notarization

Peer Entity Authentication Y Y Y

Data Origin Authentication Y Y

Access Control Y

Confidentiality Y Y

Traffic Flow Confidentiality Y Y Y

Data Integrity Y Y Y

Nonrepudiation Y Y Y

Availability Y Y

24

Preview from Notesale.co.uk

Page 51 of 900

2.1 / SYMMETRIC CIPHER MODEL 33

message without any knowledge of the enciphering details fall into the area of
cryptanalysis. Cryptanalysis is what the layperson calls “breaking the code.”The areas
of cryptography and cryptanalysis together are called cryptology.

2.1 SYMMETRIC CIPHER MODEL

A symmetric encryption scheme has five ingredients (Figure 2.1):

• Plaintext: This is the original intelligible message or data that is fed into the
algorithm as input.

• Encryption algorithm: The encryption algorithm performs various substitu-
tions and transformations on the plaintext.

• Secret key: The secret key is also input to the encryption algorithm. The key is
a value independent of the plaintext and of the algorithm. The algorithm will
produce a different output depending on the specific key being used at the
time. The exact substitutions and transformations performed by the algorithm
depend on the key.

• Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts. The ciphertext is an apparently random
stream of data and, as it stands, is unintelligible.

• Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the
algorithm to be such that an opponent who knows the algorithm and has
access to one or more ciphertexts would be unable to decipher the ciphertext
or figure out the key.This requirement is usually stated in a stronger form:The

Plaintext
input

Y = E(K, X) X = D[K, Y]

X

K K

Transmitted
ciphertext

Plaintext
output

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient

Encryption algorithm
(e.g., AES)

Decryption algorithm
(reverse of encryption

algorithm)

Figure 2.1 Simplified Model of Symmetric Encryption

Preview from Notesale.co.uk

Page 60 of 900

2.1 / SYMMETRIC CIPHER MODEL 37

The ciphertext-only attack is the easiest to defend against because the oppo-
nent has the least amount of information to work with. In many cases, however, the
analyst has more information. The analyst may be able to capture one or more
plaintext messages as well as their encryptions. Or the analyst may know that cer-
tain plaintext patterns will appear in a message. For example, a file that is encoded
in the Postscript format always begins with the same pattern, or there may be a
standardized header or banner to an electronic funds transfer message, and so on.
All these are examples of known plaintext. With this knowledge, the analyst may be
able to deduce the key on the basis of the way in which the known plaintext is
transformed.

Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some gen-
eral prose message, he or she may have little knowledge of what is in the message.
However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmitted,
the opponent may know the placement of certain key words in the header of the file.
As another example, the source code for a program developed by Corporation X
might include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the
system a message chosen by the analyst, then a chosen-plaintext attack is possible.
An example of this strategy is differential cryptanalysis, explored in Chapter 3. In
general, if the analyst is able to choose the messages to encrypt, the analyst may
deliberately pick patterns that can be expected to reveal the structure of the key.

Table 2.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack.
Generally, an encryption algorithm is designed to withstand a known-plaintext
attack.

Two more definitions are worthy of note. An encryption scheme is
unconditionally secure if the ciphertext generated by the scheme does not con-
tain enough information to determine uniquely the corresponding plaintext, no
matter how much ciphertext is available. That is, no matter how much time an
opponent has, it is impossible for him or her to decrypt the ciphertext simply
because the required information is not there. With the exception of a scheme
known as the one-time pad (described later in this chapter), there is no encryp-
tion algorithm that is unconditionally secure. Therefore, all that the users of an
encryption algorithm can strive for is an algorithm that meets one or both of the
following criteria:

• The cost of breaking the cipher exceeds the value of the encrypted information.

• The time required to break the cipher exceeds the useful lifetime of the
information.

An encryption scheme is said to be computationally secure if either of the
foregoing two criteria are met. Unfortunately, it is very difficult to estimate the
amount of effort required to cryptanalyze ciphertext successfully.

Preview from Notesale.co.uk

Page 64 of 900

2.2 / SUBSTITUTION TECHNIQUES 41

The third characteristic is also significant. If the language of the plaintext is
unknown, then plaintext output may not be recognizable. Furthermore, the
input may be abbreviated or compressed in some fashion, again making recogni-
tion difficult. For example, Figure 2.4 shows a portion of a text file compressed
using an algorithm called ZIP. If this file is then encrypted with a simple substi-
tution cipher (expanded to include more than just 26 alphabetic characters),
then the plaintext may not be recognized when it is uncovered in the brute-force
cryptanalysis.

Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure.A dramatic increase
in the key space can be achieved by allowing an arbitrary substitution. Before pro-
ceeding, we define the term permutation.A permutation of a finite set of elements
is an ordered sequence of all the elements of , with each element appearing exactly
once. For example, if , there are six permutations of :

In general, there are ! permutations of a set of elements, because the first
element can be chosen in one of n ways, the second in ways, the third in
ways, and so on.

Recall the assignment for the Caesar cipher:

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters,
then there are 26! or greater than possible keys. This is 10 orders of magni-
tude greater than the key space for DES and would seem to eliminate brute-force
techniques for cryptanalysis. Such an approach is referred to as a monoalphabetic
substitution cipher, because a single cipher alphabet (mapping from plain alphabet
to cipher alphabet) is used per message.

There is, however, another line of attack. If the cryptanalyst knows the
nature of the plaintext (e.g., noncompressed English text), then the analyst can
exploit the regularities of the language. To see how such a cryptanalysis might

4 * 1026

n - 2n - 1
nn

abc, acb, bac, bca, cab, cba

SS = {a, b, c}
S

S

Figure 2.4 Sample of Compressed Text

Preview from Notesale.co.uk

Page 68 of 900

44 CHAPTER 2 / CLASSICAL ENCRYPTION TECHNIQUES

Friedrich Gauss believed that he had devised an unbreakable cipher using homo-
phones. However, even with homophones, each element of plaintext affects only one
element of ciphertext, and multiple-letter patterns (e.g., digram frequencies) still
survive in the ciphertext, making cryptanalysis relatively straightforward.

Two principal methods are used in substitution ciphers to lessen the extent to
which the structure of the plaintext survives in the ciphertext: One approach is to
encrypt multiple letters of plaintext, and the other is to use multiple cipher alphabets.
We briefly examine each.

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams
in the plaintext as single units and translates these units into ciphertext digrams.3

The Playfair algorithm is based on the use of a 5 × 5 matrix of letters con-
structed using a keyword. Here is an example, solved by Lord Peter Wimsey in
Dorothy Sayers’s Have His Carcase:4

3This cipher was actually invented by British scientist Sir Charles Wheatstone in 1854, but it bears the name
of his friend Baron Playfair of St.Andrews, who championed the cipher at the British foreign office.
4The book provides an absorbing account of a probable-word attack.

M O N A R
C H Y B D
E F G I/J K
L P Q S T
U V W X Z

In this case, the keyword is monarchy. The matrix is constructed by filling in
the letters of the keyword (minus duplicates) from left to right and from top to bot-
tom, and then filling in the remainder of the matrix with the remaining letters in
alphabetic order. The letters I and J count as one letter. Plaintext is encrypted two
letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler
letter, such as x, so that balloon would be treated as ba lx lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced by
the letter to the right, with the first element of the row circularly following the
last. For example, ar is encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the letter
beneath, with the top element of the column circularly following the last. For
example, mu is encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its
own row and the column occupied by the other plaintext letter. Thus, hs
becomes BP and ea becomes IM (or JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers.
For one thing, whereas there are only 26 letters, there are 26 × 26 = 676 digrams, so

Preview from Notesale.co.uk

Page 71 of 900

2.2 / SUBSTITUTION TECHNIQUES 45

that identification of individual digrams is more difficult. Furthermore, the relative
frequencies of individual letters exhibit a much greater range than that of digrams,
making frequency analysis much more difficult. For these reasons, the Playfair
cipher was for a long time considered unbreakable. It was used as the standard field
system by the British Army in World War I and still enjoyed considerable use by the
U.S. Army and other Allied forces during World War II.

Despite this level of confidence in its security, the Playfair cipher is relatively
easy to break, because it still leaves much of the structure of the plaintext language
intact. A few hundred letters of ciphertext are generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers is shown
in Figure 2.6, based on [SIMM93]. The line labeled plaintext plots the frequency distri-
bution of the more than 70,000 alphabetic characters in the Encyclopaedia Britannica
article on cryptology.5 This is also the frequency distribution of any monoalphabetic
substitution cipher, because the frequency values for individual letters are the same,
just with different letters substituted for the original letters. The plot was developed in
the following way: The number of occurrences of each letter in the text was counted
and divided by the number of occurrences of the letter e (the most frequently used
letter).As a result, e has a relative frequency of 1, t of about 0.76, and so on.The points
on the horizontal axis correspond to the letters in order of decreasing frequency.

Figure 2.6 also shows the frequency distribution that results when the text is
encrypted using the Playfair cipher.To normalize the plot, the number of occurrences
of each letter in the ciphertext was again divided by the number of occurrences of e

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 22 24 2618 20

Frequency ranked letters

Plaintext

Playfair cipher

Vigenère cipher

Random polyalphabetic cipher

Figure 2.6 Relative Frequency of Occurrence of Letters

5I am indebted to Gustavus Simmons for providing the plots and explaining their method of construction.

Preview from Notesale.co.uk

Page 72 of 900

2.2 / SUBSTITUTION TECHNIQUES 47

computed as , where () is the subdeterminant
formed by deleting the th row and the th column of A, det(A) is the determinant
of A, and (det is the multiplicative inverse of (det A) mod 26.

Continuing our example,

We can show that , because (see
Chapter 4 or Appendix E). Therefore, we compute the inverse of A as

THE HILL ALGORITHM This encryption algorithm takes successive plaintext letters
and substitutes for them ciphertext letters. The substitution is determined by
linear equations in which each character is assigned a numerical value

. For , the system can be described as

This can be expressed in terms of row vectors and matrices:7

or

where C and P are row vectors of length 3 representing the plaintext and ciphertext,
and K is a matrix representing the encryption key. Operations are performed
mod 26.

For example, consider the plaintext “paymoremoney” and use the encryp-
tion key

K = £17 17 5
21 18 21
2 2 19

≥
3 * 3

C = PK mod 26

(c1 c2 c3) = (p p2 p3)£k11 k12 k13

k21 k22 k23

k31 k32 k33

≥mod 26

c3 = (k31p1 + k32p2 + k33p3)mod 26

c2 = (k21p1 + k22p2 + k23p3)mod 26

c1 = (k11p1 + k12p2 + k13p3)mod 26

m = 3(a = 0, b = 1, Á , z = 25)

mm
m

A- 1 mod 26 = 3a 3 -8
-17 5

b = 3a3 18
9 5

b = a 9 54
27 15

b = a9 2
1 15

b
A = a 5 8

17 3
b

9 * 3 = 27mod 26 = 19- 1 mod 26 = 3

 det a 5 8
17 3

b = (5 * 3) - (8 * 17) = -121 mod 26 = 9

A)- 1
ij

Dji[A-1]ij = (det A)-1(-1)i + j(Dji)

7Some cryptography books express the plaintext and ciphertext as column vectors, so that the column
vector is placed after the matrix rather than the row vector placed before the matrix. Sage uses row vectors,
so we adopt that convention.

Preview from Notesale.co.uk

Page 74 of 900

2.2 / SUBSTITUTION TECHNIQUES 49

so

This result is verified by testing the remaining plaintext–ciphertext pairs.

Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use different
monoalphabetic substitutions as one proceeds through the plaintext message. The
general name for this approach is polyalphabetic substitution cipher. All these tech-
niques have the following features in common:

1. A set of related monoalphabetic substitution rules is used.

2. A key determines which particular rule is chosen for a given transformation.

VIGENÈRE CIPHER The best known, and one of the simplest, polyalphabetic ciphers
is the Vigenère cipher. In this scheme, the set of related monoalphabetic substitution
rules consists of the 26 Caesar ciphers with shifts of 0 through 25. Each cipher
is denoted by a key letter, which is the ciphertext letter that substitutes for
the plaintext letter a. Thus, a Caesar cipher with a shift of 3 is denoted by the key
value .

We can express the Vigenère cipher in the following manner. Assume a
sequence of plaintext letters and a key consisting of the
sequence of letters , where typically < .The sequence of
ciphertext letters is calculated as follows:

Thus, the first letter of the key is added to the first letter of the plaintext, mod 26, the
second letters are added, and so on through the first letters of the plaintext. For
the next letters of the plaintext, the key letters are repeated. This process contin-
ues until all of the plaintext sequence is encrypted. A general equation of the
encryption process is

(2.3)

Compare this with Equation (2.1) for the Caesar cipher. In essence, each
plaintext character is encrypted with a different Caesar cipher, depending on the
corresponding key character. Similarly, decryption is a generalization of
Equation (2.2):

(2.4)

To encrypt a message, a key is needed that is as long as the message. Usually,
the key is a repeating keyword. For example, if the keyword is deceptive, the
message “we are discovered save yourself” is encrypted as

pi = (Ci - kimod m)mod 26

Ci = (pi + kimod m)mod 26

m
m

C = C0, C1, C2, Á , Cn - 1 = E(K, P) = E[(k0, k1, k2, Á , km - 1), (p0, p1, p2, Á , pn - 1)]
= (p0 + k0)mod 26, (p1 + k1) mod 26, Á , (pm - 1 + km - 1)mod 26,

 (pm + k0)mod 26, (pm + 1 + k1) mod 26, Á , (p2m - 1 + km - 1)mod 26, Á

C = C0, C1, C2, Á , Cn - 1

nmK = k0, k1, k2, Á , km - 1

P = p0, p1, p2, Á , pn - 1

d

K = a25 22
1 23

b a 7 2
17 25

b = a549 600
398 577

bmod 26 = a3 2
8 5

b

Preview from Notesale.co.uk

Page 76 of 900

2.4 / ROTOR MACHINES 55

which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25

15 13 04 23 19 14 11 01 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.

2.4 ROTOR MACHINES

The example just given suggests that multiple stages of encryption can produce an
algorithm that is significantly more difficult to cryptanalyze. This is as true of substi-
tution ciphers as it is of transposition ciphers. Before the introduction of DES, the
most important application of the principle of multiple stages of encryption was a
class of systems known as rotor machines.9

The basic principle of the rotor machine is illustrated in Figure 2.8. The
machine consists of a set of independently rotating cylinders through which electri-
cal pulses can flow. Each cylinder has 26 input pins and 26 output pins, with internal
wiring that connects each input pin to a unique output pin. For simplicity, only three
of the internal connections in each cylinder are shown.

If we associate each input and output pin with a letter of the alphabet, then a
single cylinder defines a monoalphabetic substitution. For example, in Figure 2.8,
if an operator depresses the key for the letter A, an electric signal is applied to the
first pin of the first cylinder and flows through the internal connection to the
twenty-fifth output pin.

Consider a machine with a single cylinder.After each input key is depressed, the
cylinder rotates one position, so that the internal connections are shifted accordingly.
Thus, a different monoalphabetic substitution cipher is defined. After 26 letters of
plaintext, the cylinder would be back to the initial position. Thus, we have a poly-
alphabetic substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable cryptana-
lytic task. The power of the rotor machine is in the use of multiple cylinders, in which
the output pins of one cylinder are connected to the input pins of the next. Figure 2.8
shows a three-cylinder system.The left half of the figure shows a position in which the
input from the operator to the first pin (plaintext letter a) is routed through the three
cylinders to appear at the output of the second pin (ciphertext letter B).

With multiple cylinders, the one closest to the operator input rotates one pin
position with each keystroke. The right half of Figure 2.8 shows the system’s config-
uration after a single keystroke. For every complete rotation of the inner cylinder,
the middle cylinder rotates one pin position. Finally, for every complete rotation
of the middle cylinder, the outer cylinder rotates one pin position. This is the
same type of operation seen with an odometer. The result is that there are

different substitution alphabets used before the system26 * 26 * 26 = 17,576

9Machines based on the rotor principle were used by both Germany (Enigma) and Japan (Purple)
in World War II. The breaking of both codes by the Allies was a significant factor in the war’s outcome.

Preview from Notesale.co.uk

Page 82 of 900

70 CHAPTER 3 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

defined by a tabulation, as shown in Table 3.1. This is the most general form of block
cipher and can be used to define any reversible mapping between plaintext and
ciphertext. Feistel refers to this as the ideal block cipher, because it allows for the max-
imum number of possible encryption mappings from the plaintext block [FEIS75].

4-bit input

4 to 16 decoder

16 to 4 encoder

4-bit output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.2 General n-bit-n-bit Block Substitution (shown with n = 4)

Table 3.1 Encryption and Decryption Tables for Substitution
Cipher of Figure 3.2

Plaintext Ciphertext

0000 1110

0001 0100

0010 1101

0011 0001

0100 0010

0101 1111

0110 1011

0111 1000

1000 0011

1001 1010

1010 0110

1011 1100

1100 0101

1101 1001

1110 0000

1111 0111

Ciphertext Plaintext

0000 1110

0001 0011

0010 0100

0011 1000

0100 0001

0101 1100

0110 1010

0111 1111

1000 0111

1001 1101

1010 1001

1011 0110

1100 1011

1101 0010

1110 0000

1111 0101

Preview from Notesale.co.uk

Page 97 of 900

3.1 / BLOCK CIPHER PRINCIPLES 71

But there is a practical problem with the ideal block cipher. If a small block
size, such as , is used, then the system is equivalent to a classical substitution
cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the
plaintext. This weakness is not inherent in the use of a substitution cipher but
rather results from the use of a small block size. If is sufficiently large and an
arbitrary reversible substitution between plaintext and ciphertext is allowed, then
the statistical characteristics of the source plaintext are masked to such an extent
that this type of cryptanalysis is infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large
block size is not practical, however, from an implementation and performance point
of view. For such a transformation, the mapping itself constitutes the key. Consider
again Table 3.1, which defines one particular reversible mapping from plaintext to
ciphertext for . The mapping can be defined by the entries in the second
column, which show the value of the ciphertext for each plaintext block. This, in
essence, is the key that determines the specific mapping from among all possible
mappings. In this case, using this straightforward method of defining the key, the
required key length is . In general, for an -bit ideal
block cipher, the length of the key defined in this fashion is bits. For a 64-bit
block, which is a desirable length to thwart statistical attacks, the required key
length is bits.

In considering these difficulties, Feistel points out that what is needed is an
approximation to the ideal block cipher system for large n, built up out of compo-
nents that are easily realizable [FEIS75]. But before turning to Feistel’s approach,
let us make one other observation. We could use the general block substitution
cipher but, to make its implementation tractable, confine ourselves to a subset of the

! possible reversible mappings. For example, suppose we define the mapping in
terms of a set of linear equations. In the case of , we have

where the are the four binary digits of the plaintext block, the are the four
binary digits of the ciphertext block, the are the binary coefficients, and arith-
metic is mod 2. The key size is just , in this case 16 bits. The danger with this
kind of formulation is that it may be vulnerable to cryptanalysis by an attacker
that is aware of the structure of the algorithm. In this example, what we have is
essentially the Hill cipher discussed in Chapter 2, applied to binary data rather
than characters. As we saw in Chapter 2, a simple linear system such as this is
quite vulnerable.

The Feistel Cipher

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utilizing
the concept of a product cipher, which is the execution of two or more simple ciphers
in sequence in such a way that the final result or product is cryptographically stronger
than any of the component ciphers.The essence of the approach is to develop a block

n2
kij

yixi

y1 = k11x1 + k12x2 + k13x3 + k14x4

y2 = k21x1 + k22x2 + k23x3 + k24x4

y3 = k31x1 + k32x2 + k33x3 + k34x4

y4 = k41x1 + k42x2 + k43x3 + k44x4

n = 4
2n

64 * 264 = 270 L 1021

n * 2n
n(4 bits) * (16 rows) = 64 bits

n = 4

n

n = 4

Preview from Notesale.co.uk

Page 98 of 900

3.2 / THE DATA ENCRYPTION STANDARD 83

The outer two bits of each group select one of four possible substitutions (one row
of an S-box). Then a 4-bit output value is substituted for the particular 4-bit input
(the middle four input bits). The 32-bit output from the eight S-boxes is then
permuted, so that on the next round, the output from each S-box immediately
affects as many others as possible.

KEY GENERATION Returning to Figures 3.5 and 3.6, we see that a 64-bit key is used
as input to the algorithm.The bits of the key are numbered from 1 through 64; every
eighth bit is ignored, as indicated by the lack of shading in Table 3.4a.The key is first
subjected to a permutation governed by a table labeled Permuted Choice One
(Table 3.4b).The resulting 56-bit key is then treated as two 28-bit quantities, labeled

and . At each round, and are separately subjected to a circular left
shift or (rotation) of 1 or 2 bits, as governed by Table 3.4d.These shifted values serve
as input to the next round. They also serve as input to the part labeled Permuted
Choice Two (Table 3.4c), which produces a 48-bit output that serves as input to the
function .

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except
that the application of the subkeys is reversed.

F(Ri - 1, Ki)

Di - 1Ci - 1D0C0

S1 S2 S3 S4 S5 S6 S7 S8

R (32 bits)

48 bits

E

�
K (48 bits)

P

32 bits

Figure 3.7 Calculation of F(R, K)Preview from Notesale.co.uk

Page 110 of 900

86 CHAPTER 3 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Results

Table 3.5 shows the progression of the algorithm. The first row shows the 32-bit
values of the left and right halves of data after the initial permutation. The next
16 rows show the results after each round. Also shown is the value of the 48-bit
subkey generated for each round. Note that .The final row shows the left-
and right-hand values after the inverse initial permutation. These two values com-
bined form the ciphertext.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the
plaintext or the key should produce a significant change in the ciphertext. In partic-
ular, a change in one bit of the plaintext or one bit of the key should produce a
change in many bits of the ciphertext. This is referred to as the avalanche effect. If
the change were small, this might provide a way to reduce the size of the plaintext or
key space to be searched.

Using the example from Table 3.5, Table 3.6 shows the result when the fourth
bit of the plaintext is changed, so that the plaintext is 12468aceeca86420. The
second column of the table shows the intermediate 64-bit values at the end of each
round for the two plaintexts. The third column shows the number of bits that differ
between the two intermediate values. The table shows that, after just three rounds,
18 bits differ between the two blocks. On completion, the two ciphertexts differ in
32 bit positions.

Li = Ri - 1

Table 3.5 DES Example

Round Ki Li Ri

IP 5a005a00 3cf03c0f

1 1e030f03080d2930 3cf03c0f bad22845

2 0a31293432242318 bad22845 99e9b723

3 23072318201d0c1d 99e9b723 0bae3b9e

4 05261d3824311a20 0bae3b9e 42415649

5 3325340136002c25 42415649 18b3fa41

6 123a2d0d04262a1c 18b3fa41 9616fe23

7 021f120b1c130611 9616fe23 67117cf2

8 1c10372a2832002b 67117cf2 c11bfc09

9 04292a380c341f03 c11bfc09 887fbc6c

10 2703212607280403 887fbc6c 600f7e8b

11 2826390c31261504 600f7e8b f596506e

12 12071c241a0a0f08 f596506e 738538b8

13 300935393c0d100b 738538b8 c6a62c4e

14 311e09231321182a c6a62c4e 56b0bd75

15 283d3e0227072528 56b0bd75 75e8fd8f

16 2921080b13143025 75e8fd8f 25896490

IP–1 da02ce3a 89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

Preview from Notesale.co.uk

Page 113 of 900

3.3 / A DES EXAMPLE 87

Table 3.6 Avalanche Effect in DES: Change in Plaintext

Round �

02468aceeca86420
12468aceeca86420

1

1 3cf03c0fbad22845
3cf03c0fbad32845

1

2 bad2284599e9b723
bad3284539a9b7a3

5

3 99e9b7230bae3b9e
39a9b7a3171cb8b3

18

4 0bae3b9e42415649
171cb8b3ccaca55e

34

5 4241564918b3fa41
ccaca55ed16c3653

37

6 18b3fa419616fe23
d16c3653cf402c68

33

7 9616fe2367117cf2
cf402c682b2cefbc

32

8 67117cf2c11bfc09
2b2cefbc99f91153

33

Table 3.7 shows a similar test using the original plaintext of with two keys that
differ in only the fourth bit position: the original key, 0f1571c947d9e859, and the
altered key,1f1571c947d9e859.Again, the results show that about half of the bits in
the ciphertext differ and that the avalanche effect is pronounced after just a few rounds.

Round �

9 c11bfc09887fbc6c
99f911532eed7d94

32

10 887fbc6c600f7e8b
2eed7d94d0f23094

34

11 600f7e8bf596506e
d0f23094455da9c4

37

12 f596506e738538b8
455da9c47f6e3cf3

31

13 738538b8c6a62c4e
7f6e3cf34bc1a8d9

29

14 c6a62c4e56b0bd75
4bc1a8d91e07d409

33

15 56b0bd7575e8fd8f
1e07d4091ce2e6dc

31

16 75e8fd8f25896490
1ce2e6dc365e5f59

32

IP–1 da02ce3a89ecac3b
057cde97d7683f2a

32

Table 3.7 Avalanche Effect in DES: Change in Key

Round �

02468aceeca86420
02468aceeca86420

0

1 3cf03c0fbad22845
3cf03c0f9ad628c5

3

2 bad2284599e9b723
9ad628c59939136b

11

3 99e9b7230bae3b9e
9939136b768067b7

25

4 0bae3b9e42415649
768067b75a8807c5

29

5 4241564918b3fa41
5a8807c5488dbe94

26

6 18b3fa419616fe23
488dbe94aba7fe53

26

7 9616fe2367117cf2
aba7fe53177d21e4

27

8 67117cf2c11bfc09
177d21e4548f1de4

32

Round �

9 c11bfc09887fbc6c
548f1de471f64dfd

34

10 887fbc6c600f7e8b
71f64dfd4279876c

36

11 600f7e8bf596506e
4279876c399fdc0d

32

12 f596506e738538b8
399fdc0d6d208dbb

28

13 738538b8c6a62c4e
6d208dbbb9bdeeaa

33

14 c6a62c4e56b0bd75
b9bdeeaad2c3a56f

30

15 56b0bd7575e8fd8f
d2c3a56f2765c1fb

33

16 75e8fd8f25896490
2765c1fb01263dc4

30

IP–1 da02ce3a89ecac3b
ee92b50606b62b0b

30

Preview from Notesale.co.uk

Page 114 of 900

92 CHAPTER 3 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

of the input differences. Overall, after three rounds, the probability that the output
difference is as shown is equal to .

Linear Cryptanalysis

A more recent development is linear cryptanalysis, described in [MATS93].This attack
is based on finding linear approximations to describe the transformations performed in
DES. This method can find a DES key given known plaintexts, as compared to
chosen plaintexts for differential cryptanalysis. Although this is a minor improvement,
because it may be easier to acquire known plaintext rather than chosen plaintext, it still
leaves linear cryptanalysis infeasible as an attack on DES. So far, little work has been
done by other groups to validate the linear cryptanalytic approach.

We now give a brief summary of the principle on which linear cryptanalysis is
based. For a cipher with -bit plaintext and ciphertext blocks and an -bit key, let
the plaintext block be labeled , the cipher text block ,
and the key . Then define

The objective of linear cryptanalysis is to find an effective linear equation of
the form:

(where ; and where the terms represent
fixed, unique bit locations) that holds with probability . The further is from
0.5, the more effective the equation. Once a proposed relation is determined, the pro-
cedure is to compute the results of the left-hand side of the preceding equation for a
large number of plaintext–ciphertext pairs. If the result is 0 more than half the time,
assume . If it is 1 most of the time, assume .
This gives us a linear equation on the key bits.Try to get more such relations so that we
can solve for the key bits. Because we are dealing with linear equations, the problem
can be approached one round of the cipher at a time, with the results combined.

3.6 BLOCK CIPHER DESIGN PRINCIPLES

Although much progress has been made in designing block ciphers that are crypto-
graphically strong, the basic principles have not changed all that much since the
work of Feistel and the DES design team in the early 1970s. It is useful to begin this
discussion by looking at the published design criteria used in the DES effort. Then
we look at three critical aspects of block cipher design: the number of rounds, design
of the function F, and key scheduling.

DES Design Criteria

The criteria used in the design of DES, as reported in [COPP94], focused on the
design of the S-boxes and on the P function that takes the output of the S-boxes
(Figure 3.7).The criteria for the S-boxes are as follows.

K[g1, g2, Á , gc] = 1K[g1, g2, Á , gc] = 0

pp Z 0.5
a, b, and gx = 0 or 1; 1 … a; b … n; c … m

P[a1, a2, Á , a a] { C[b1, b2, Á , bb] = K[g1, g2, Á , gc]

A[i, j, Á , k] = A[i] { A[j] { Á { A[k]

K[1], Á , K[m]
C[1], Á C[n]P[1], Á P[n]
mn

247243

0.25 * 1 * 0.25 = 0.0625

Preview from Notesale.co.uk

Page 119 of 900

3.6 / BLOCK CIPHER DESIGN PRINCIPLES 93

1. No output bit of any S-box should be too close a linear function of the
input bits. Specifically, if we select any output bit and any subset of the
six input bits, the fraction of inputs for which this output bit equals
the XOR of these input bits should not be close to 0 or 1, but rather should
be near 1/2.

2. Each row of an S-box (determined by a fixed value of the leftmost and right-
most input bits) should include all 16 possible output bit combinations.

3. If two inputs to an S-box differ in exactly one bit, the outputs must differ in at
least two bits.

4. If two inputs to an S-box differ in the two middle bits exactly, the outputs must
differ in at least two bits.

5. If two inputs to an S-box differ in their first two bits and are identical in their last
two bits, the two outputs must not be the same.

6. For any nonzero 6-bit difference between inputs, no more than eight of the
32 pairs of inputs exhibiting that difference may result in the same output
difference.

7. This is a criterion similar to the previous one, but for the case of three
S-boxes.

Coppersmith pointed out that the first criterion in the preceding list was
needed because the S-boxes are the only nonlinear part of DES. If the S-boxes
were linear (i.e., each output bit is a linear combination of the input bits), the
entire algorithm would be linear and easily broken. We have seen this phenome-
non with the Hill cipher, which is linear. The remaining criteria were primarily
aimed at thwarting differential cryptanalysis and at providing good confusion
properties.

The criteria for the permutation P are as follows.

1. The four output bits from each S-box at round are distributed so that two of
them affect (provide input for) “middle bits” of round and the other
two affect end bits. The two middle bits of input to an S-box are not shared
with adjacent S-boxes. The end bits are the two left-hand bits and the two
right-hand bits, which are shared with adjacent S-boxes.

2. The four output bits from each S-box affect six different S-boxes on the next
round, and no two affect the same S-box.

3. For two S-boxes , , if an output bit from affects a middle bit of on the
next round, then an output bit from cannot affect a middle bit of . This
implies that, for , an output bit from must not affect a middle bit of .

These criteria are intended to increase the diffusion of the algorithm.

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the
design: the number of rounds, the function F, and the key schedule algorithm. Let us
look first at the choice of the number of rounds.

SjSjj = k
SjSk

SkSjkj

(i + 1)
i

Preview from Notesale.co.uk

Page 120 of 900

108 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

4.3 MODULAR ARITHMETIC

The Modulus

If is an integer and is a positive integer, we define mod to be the remainder
when is divided by . The integer is called the modulus. Thus, for any integer ,
we can rewrite Equation (4.1) as follows:

 a = :a/n; * n + (a mod n)

 a = qn + r 0 … r 6 n; q = :a/n;
anna

nana

11 mod 7 = 4; - 11 mod 7 = 3

Two integers and are said to be congruent modulo n, if
. This is written as .2a K b (mod n)(b mod n)

(a mod n) =ba

73 ‚ 4 (mod 23); 21 ‚ -9 (mod 10)

Note that if , then .

Properties of Congruences

Congruences have the following properties:

1. if .

2. implies .

3. and imply .

To demonstrate the first point, if , then for some .
So we can write Therefore,

.divided by n) = (remainder when b is divided by n) = (b mod n)
(a mod n) = (remainder when b + kn isa = b + kn.

k(a - b) = knn ƒ (a - b)

a K c (mod n)b K c (mod n)a K b (mod n)

b K a (mod n)a K b (mod n)

n ƒ (a - b)a K b (mod n)

n ƒ aa K 0 (mod n)

2We have just used the operator in two different ways: first as a binary operator that produces a
remainder, as in the expression mod ; second as a congruence relation that shows the equivalence of
two integers, as in the expression . See Appendix 4A for a discussion.K b(mod n)a

ba
mod

23 K 8 (mod 5) because 23 - 8 = 15 = 5 * 3
-11 K 5 (mod 8) because -11 - 5 = -16 = 8 * (-2)
81 K 0 (mod 27) because 81 - 0 = 81 = 27 * 3

The remaining points are as easily proved.

Modular Arithmetic Operations

Note that, by definition (Figure 4.1), the (mod) operator maps all integers into the set
of integers { }. This suggests the question: Can we perform arithmetic0, 1, Á , (n - 1)

n

Preview from Notesale.co.uk

Page 135 of 900

4.3 / MODULAR ARITHMETIC 115

But we have already assumed that . Therefore,

We now summarize the calculations:

xi = xi - 2 - qixi - 1 and yi = yi - 2 - qiyi - 1

ri = axi + byi

Extended Euclidean Algorithm

Calculate Which satisfies Calculate Which satisfies

r- 1 = a x- 1 = 1; y- 1 = 0 a = ax- 1 + by- 1

r0 = b x0 = 0; y0 = 1 b = ax0 + by0

q1 = :a/b;
r1 = a mod b a = q1b + r1

y1 = y- 1 - q1y0 = -q1

x1 = x- 1 - q1x0 = 1 r1 = ax1 + by1

q2 = :b/r1;
r2 = b mod r1 b = q2r1 + r2

y2 = y0 - q2y1

x2 = x0 - q2x1 r2 = ax2 + by2

r3 = r1 mod r2 r1 = q3r2 + r3 x3 = x1 - q3x2 r3 = ax3 + by3

q3 = :r1/r2; y3 = y1 - q3y2

• • • •
• • • •
• • • •

qn = :rn - 2/rn - 3;
rn = rn - 2 mod rn - 1 rn - 2 = qnrn - 1 + rn

yn = yn - 2 - qnyn - 1

xn = xn - 2 - qnxn - 1 rn = axn + byn

rn + 1 = rn - 1 mod rn = 0 rn - 1 = qn + 1rn + 0 d = gcd(a, b) = rn

qn + 1 = :rn - 1/rn - 2; x = xn; y = yn

We need to make several additional comments here. In each row, we calculate
a new remainder based on the remainders of the previous two rows, namely
and . To start the algorithm, we need values for and , which are just and .
It is then straightforward to determine the required values for , , , and .

We know from the original Euclidean algorithm that the process ends with a
remainder of zero and that the greatest common divisor of and is

. But we also have determined that .
Therefore, in Equation (4.7), and .

As an example, let us use and and solve for
. The results are shown in Table 4.4. Thus, we have

1759 × (–111) + 550 × 355 = –195249 + 195250 = 1.
1759x + 550y = gcd(1759, 550)

b = 550a = 1759
y = ynx = xn

d = rn = axn + bynd = gcd(a, b) = rn

ba

y0x0y- 1x- 1

bar- 1r0ri - 2

ri - 1ri

Table 4.4 Extended Euclidean Algorithm Example

i ri qi xi yi

–1 1759 1 0

0 550 0 1

1 109 3 1 –3

2 5 5 –5 16

3 4 21 106 –339

4 1 1 –111 355

5 0 4

Result: ; ; y = 355x = - 111d = 1

Preview from Notesale.co.uk

Page 142 of 900

4.6 / POLYNOMIAL ARITHMETIC 123

• Polynomial arithmetic in which the coefficients are in , and the polynomials
are defined modulo a polynomial whose highest power is some integer .

This section examines the first two classes, and the next section covers the
last class.

Ordinary Polynomial Arithmetic

A polynomial of degree (integer) is an expression of the form

where the are elements of some designated set of numbers , called the
coefficient set, and . We say that such polynomials are defined over the
coefficient set .

A zero-degree polynomial is called a constant polynomial and is simply an
element of the set of coefficients. An nth-degree polynomial is said to be a monic
polynomial if .

In the context of abstract algebra, we are usually not interested in evaluating a
polynomial for a particular value of [e.g.,].To emphasize this point, the variable

is sometimes referred to as the indeterminate.
Polynomial arithmetic includes the operations of addition, subtraction, and

multiplication.These operations are defined in a natural way as though the variable
was an element of . Division is similarly defined, but requires that be a field.
Examples of fields include the real numbers, rational numbers, and for prime.
Note that the set of all integers is not a field and does not support polynomial division.

Addition and subtraction are performed by adding or subtracting corresponding
coefficients.Thus, if

then addition is defined as

and multiplication is defined as

where

In the last formula, we treat as zero for and as zero for . Note that
the degree of the product is equal to the sum of the degrees of the two polynomials.

i 7 mbii 7 nai

ck = a0bk + a1bk - 1 + Á + ak - 1b1 + akb0

f(x) * g(x) = a
n + m

i = 0
cix

i

f(x) + g(x) = a
m

i = 0
(ai + bi)xi + a

n

i = m + 1
aix

i

f(x) = a
n

i = 0
aix

i; g(x) = a
m

i = 0
bix

i; n Ú m

pZp

SS
x

x
f(7)x

an = 1

S
an Z 0

Sai

f(x) = anxn + an - 1x
n - 1 + Á + a1x + a0 = a

n

i = 0
aix

i

n Ú 0n

nm(x)
GF(p)

Preview from Notesale.co.uk

Page 150 of 900

126 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

9In the remainder of this chapter, unless otherwise noted, all examples are of polynomials over .GF(2)

Consider the polynomial . It is clear by inspection that is not
a factor of . We easily show that is not a factor of :

Thus, has no factors of degree 1. But it is clear by inspection that if is
reducible, it must have one factor of degree 2 and one factor of degree 1.
Therefore, is irreducible.f(x)

f(x)f(x)

x2 + x
x + 1>>x3 + x + 1

x3 + x2

x2 + x
x2 + x

1

f(x)x + 1f(x)
xf(x) = x3 + x + 1

For the preceding example
produces a quotient of and a remainder , as shown in
Figure 4.3d.This is easily verified by noting that

= x3 + x2 + 2 = f(x)

q(x)g(x) + r(x) = (x + 2)(x2 - x + 1) + x = (x3 + x2 - x + 2) + x

r(x) = xq(x) = x + 2

[f(x) = x3 + x2 + 2 and g(x) = x2 - x + 1], f(x)/g(x)

For our purposes, polynomials over are of most interest. Recall
from Section 4.5 that in , addition is equivalent to the XOR operation, and multi-
plication is equivalent to the logical AND operation. Further, addition and subtraction
are equivalent .0 + 1 = 0 - 1 = 1mod 2: 1 + 1 = 1 - 1 = 0; 1 + 0 = 1 - 0 = 1;

GF(2)
GF(2)

Figure 4.4 shows an example of polynomial arithmetic over . For
and , the figure shows
and . Note that .g(x) | f(x)f(x)/g(x)f(x) + g(x); f(x) - g(x); f(x) * g(x);

g(x) = (x3 + x + 1)f(x) = (x7 + x5 + x4 + x3 + x + 1)
 GF(2)

The polynomial9 over is reducible, because

.(x + 1)(x3 + x2 + x + 1)x4 + 1 =
 GF(2)f(x) = x4 + 1

A polynomial over a field is called irreducible if and only if cannot
be expressed as a product of two polynomials, both over , and both of degree lower
than that of . By analogy to integers, an irreducible polynomial is also called a
prime polynomial.

f(x)
F

f(x)Ff(x)

Preview from Notesale.co.uk

Page 153 of 900

4.7 / FINITE FIELDS OF THE FORM GF(2n) 129

Suppose we wish to define a conventional encryption algorithm that operates on
data 8 bits at a time, and we wish to perform division.With 8 bits, we can represent
integers in the range 0 through 255. However, 256 is not a prime number, so that if
arithmetic is performed in (arithmetic modulo 256), this set of integers will
not be a field. The closest prime number less than 256 is 251. Thus, the set ,
using arithmetic modulo 251, is a field. However, in this case the 8-bit patterns
representing the integers 251 through 255 would not be used, resulting in
inefficient use of storage.

Z251

Z256

Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In
ordinary polynomial arithmetic, the variable is not evaluated; that is, we do not plug
a value in for the variable of the polynomials. Instead, arithmetic operations are per-
formed on polynomials (addition, subtraction, multiplication, division) using the
ordinary rules of algebra. Polynomial division is not allowed unless the coefficients
are elements of a field.

Next, we discussed polynomial arithmetic in which the coefficients are elements
of . In this case, polynomial addition, subtraction, multiplication, and division
are allowed. However, division is not exact; that is, in general division results in a
quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the
greatest common divisor of two polynomials whose coefficients are elements of a field.

All of the material in this section provides a foundation for the following section,
in which polynomials are used to define finite fields of order .

4.7 FINITE FIELDS OF THE FORM GF(2n)

Earlier in this chapter, we mentioned that the order of a finite field must be of the
form , where is a prime and is a positive integer. In Section 4.5, we looked at
the special case of finite fields with order . We found that, using modular arith-
metic in , all of the axioms for a field (Figure 4.2) are satisfied. For polynomials
over , with , operations modulo do not produce a field. In this section,
we show what structure satisfies the axioms for a field in a set with elements and
concentrate on .

Motivation

Virtually all encryption algorithms, both symmetric and public key, involve arith-
metic operations on integers. If one of the operations that is used in the algorithm
is division, then we need to work in arithmetic defined over a field. For conve-
nience and for implementation efficiency, we would also like to work with inte-
gers that fit exactly into a given number of bits with no wasted bit patterns. That
is, we wish to work with integers in the range 0 through , which fit into an
n-bit word.

2n - 1

GF(2n)
pn

pnn 7 1pn
Zp

p
nppn

pn

GF(p)

Preview from Notesale.co.uk

Page 156 of 900

144 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

c. Show that if , then Stein’s algorithm takes at most steps to find
. Thus, Stein’s algorithm works in roughly the same number of steps as

the Euclidean algorithm.
d. Demonstrate that Stein’s algorithm does indeed return .

4.19 Using the extended Euclidean algorithm, find the multiplicative inverse of
a.
b.
c.

4.20 Develop a set of tables similar to Table 4.5 for .
4.21 Demonstrate that the set of polynomials whose coefficients form a field is a ring.
4.22 Demonstrate whether each of these statements is true or false for polynomials

over a field.
a. The product of monic polynomials is monic.
b. The product of polynomials of degrees and has degree .
c. The sum of polynomials of degrees and has degree .

4.23 For polynomial arithmetic with coefficients in , perform the following
calculations.
a.
b.

4.24 Determine which of the following are reducible over .
a.
b.
c. (be careful)

4.25 Determine the gcd of the following pairs of polynomials.
a. and over
b. and over
c. and over
d. and over GF(101)

4.26 Develop a set of tables similar to Table 4.7 for with .
4.27 Determine the multiplicative inverse of in with

.
4.28 Develop a table similar to Table 4.9 for with .

Programming Problems

4.29 Write a simple four-function calculator in . You may use table lookups for the
multiplicative inverses.

4.30 Write a simple four-function calculator in . You should compute the multi-
plicative inverses on the fly.

APPENDIX 4A THE MEANING OF MOD

The operator mod is used in this book and in the literature in two different ways: as
a binary operator and as a congruence relation. This appendix explains the distinc-
tion and precisely defines the notation used in this book regarding parentheses.This
notation is common but, unfortunately, not universal.

GF(28)

GF(24)

m(x) = x4 + x + 1GF(24)
m(x) = x4 + x + 1

GF(24)x3 + x + 1
m(x) = x2 + x + 1 GF(4)

x3 + 97x2 + 40x + 38x5 + 88x4 + 73x3 + 83x2 + 51x + 67
GF(3)x3 + x2 + x + 1x5 + x4 + x3 - x2 - x + 1

GF(3)x2 + 1x3 - x + 1
GF(2)x2 + x + 1x3 + x + 1

x4 + 1
x3 + x2 + 1
x3 + 1

 GF(2)
(6x2 + x + 3) * (5x2 + 2)
(7x + 2) - (x2 + 5)

Z10

max [m, n]nm
m + nnm

 GF(5)
550 mod 1769
24140 mod 40902
1234 mod 4321

gcd(A, B)

gcd(m, n)
4N1 … A, B … 2N

Preview from Notesale.co.uk

Page 171 of 900

146 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

where all of the variables are integers. Two conventions are used. The congruence
sign is The modulus for the relation is defined by placing the mod operator fol-
lowed by the modulus in parentheses.

The congruence relation is used to define residue classes. Those numbers that
have the same remainder when divided by form a residue class (). There
are residue classes (). For a given remainder , the residue class to which it
belongs consists of the numbers

According to our definition, the congruence

signifies that the numbers and differ by a multiple of . Consequently, the
congruence can also be expressed in the terms that and belong to the same
residue class ().mod m

ba
mba

a K b (mod m)

r, r ; m, r ; 2m, Á

rmod mm
mod mmr

K .

Preview from Notesale.co.uk

Page 173 of 900

5.2 / AES STRUCTURE 151

Initial transformation

K
ey

 e
xp

an
si

on

Plaintext—16 bytes (128 bits) Key—M bytes

Key
(M bytes)Round 0 key

(16 bytes)

Round 1 key
(16 bytes)

Round N – 1 key
(16 bytes)

Round N key
(16 bytes)

Cipehertext—16 bytes (128 bits)

No. of
rounds

10 16

Key
Length
(bytes)

Input state
(16 bytes)

State after
initial

transformation
(16 bytes)

Final state
(16 bytes)

Round N – 1
output state
(16 bytes)

Round 1
output state
(16 bytes)

Round 1
(4 transformations)

Round N – 1
(4 transformations)

Round N
(3 transformations)

12 24

14 32
Figure 5.1 AES Encryption Process

which can be considered Round 0. Each transformation takes one or more
matrices as input and produces a matrix as output. Figure 5.1 shows that the
output of each round is a matrix, with the output of the final round being the
ciphertext. Also, the key expansion function generates round keys, each of
which is a distinct matrix. Each round key serve as one of the inputs to the
AddRoundKey transformation in each round.

4 * 4
N + 1

4 * 4
4 * 4

4 * 4

Preview from Notesale.co.uk

Page 178 of 900

158 CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

of the S-box, which contains the value . Accordingly, the value is mapped
into the value .

Here is an example of the SubBytes transformation:

EA 04 65 85 87 F2 4D 97
83 45 5D 96 EC 6E 4C 90
5C 33 98 B0 4A C3 46 E7
F0 2D AD C5 8C D8 95 A6

The S-box is constructed in the following fashion (Figure 5.6a).

:

{2A}
{95}{2A}

b0

b1

b2

b3

b4

b5

b6

b7

=

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

b0

b1

b2

b3

b4

b5

b6

b7

+

1

1

0

0

0

1

1

0

Inverse
in GF(28)

Byte to bit
column vector

Bit column
vector to byte

Byte at row y,
column x

initialized to yx
yx

S(yx)

(a) Calculation of byte at
row y, column x of S-box

(a) Calculation of byte at
row y, column x of IS-box

Inverse
in GF(28)

Byte to bit
column vector

Bit column
vector to byte

Byte at row y,
column x

initialized to yx
yx

b0
′

b′

b′
b′

1

2

3

b4

b5

b6

b7

=

0 0 1 0 0 1 0 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 1

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

b0

b1

b2

b3

b4

b5

b6

b7

+

1

0

1

0

0

0

0

0

IS(yx)

′

′

′

′

′

′

′

′

′

′

′

′

Figure 5.6 Constuction of S-Box and IS-Box

Preview from Notesale.co.uk

Page 185 of 900

5.3 / AES TRANSFORMATION FUNCTIONS 159

1. Initialize the S-box with the byte values in ascending sequence row by row.
The first row contains ; the second row contains

, etc.; and so on. Thus, the value of the byte at row , column is .

2. Map each byte in the S-box to its multiplicative inverse in the finite field ;
the value is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled
. Apply the following transformation to each bit of each byte in the

S-box:

(5.1)

where is the ith bit of byte with the value ; that is,
. The prime indicates that the variable is to be updated by the

value on the right. The AES standard depicts this transformation in matrix form
as follows.

(5.2)

Equation (5.2) has to be interpreted carefully. In ordinary matrix multiplica-
tion,4 each element in the product matrix is the sum of products of the elements of
one row and one column. In this case, each element in the product matrix is the
bitwise XOR of products of elements of one row and one column. Furthermore, the
final addition shown in Equation (5.2) is a bitwise XOR. Recall from Section 4.7
that the bitwise XOR is addition in .

As an example, consider the input value . The multiplicative inverse in
is , which is 10001010 in binary. Using Equation (5.2),

H
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X H
0
1
0
1
0
0
0
1

X � H
1
1
0
0
0
1
1
0

X = H
1
0
0
1
0
0
1
0

X � H
1
1
0
0
0
1
1
0

X = H
0
1
0
1
0
1
0
0

X
{95}- 1 = {8A}GF(28)

{95}
GF(28)

H
b¿0
b1¿
b2¿
b3¿
b4¿
b5¿
b6¿
b7¿

X = H
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

X H
b0

b1

b2

b3

b4

b5

b6

b7

X + H
1
1
0
0
0
1
1
0

X

(¿)(01100011)
(c7c6c5c4c3c2c1c0) ={63}cci

b¿i = bi � b(i + 4) mod 8 � b(i + 5) mod 8 � b(i + 6) mod 8 � b(i + 7) mod 8 � ci

b2, b1, b0)
(b7, b6, b5, b4, b3,

{00}
GF(28)

{yx}xy{10}, {11}
{00}, {01}, {02}, Á , {0F}

4For a brief review of the rules of matrix and vector multiplication, refer to Appendix E.

Preview from Notesale.co.uk

Page 186 of 900

166 CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

5.4 AES KEY EXPANSION

Key Expansion Algorithm

The AES key expansion algorithm takes as input a four-word (16-byte) key and pro-
duces a linear array of 44 words (176 bytes).This is sufficient to provide a four-word
round key for the initial AddRoundKey stage and each of the 10 rounds of the
cipher. The pseudocode on the next page describes the expansion.

The key is copied into the first four words of the expanded key. The remain-
der of the expanded key is filled in four words at a time. Each added word
depends on the immediately preceding word, , and the word four posi-
tions back, . In three out of four cases, a simple XOR is used. For a word
whose position in the w array is a multiple of 4, a more complex function is used.
Figure 5.9 illustrates the generation of the expanded key, using the symbol g to
represent that complex function. The function g consists of the following
subfunctions.

w[i - 4]
w[i - 1]

w[i]

SubBytes

State matrix
at beginning

of round

State matrix
at end

of round

MixColumns matrix
Round

key

Variable inputConstant inputs

ShiftRows

MixColumns

AddRoundKey

S-box

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

Figure 5.8 Inputs for Single AES Round

Preview from Notesale.co.uk

Page 193 of 900

i (decimal) temp
After

RotWord
After

SubWord
Rcon (9)

After XOR
with Rcon w[i- 4]

� w[i- 4]
w[i] = temp

36 7F8D292F 8D292F7F 5DA515D2 1B000000 46A515D2 EAD27321 AC7766F3

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

168 CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

1. RotWord performs a one-byte circular left shift on a word. This means that an
input word is transformed into .

2. SubWord performs a byte substitution on each byte of its input word, using the
S-box (Table 5.2a).

3. The result of steps 1 and 2 is XORed with a round constant, .

The round constant is a word in which the three rightmost bytes are always 0.
Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the left-
most byte of the word.The round constant is different for each round and is defined as

, with , and with multiplica-
tion defined over the field .The values of in hexadecimal areRC[j]GF(28)

RC[j] = 2 # RC[j-1]RC[1] = 1Rcon[j] = (RC[j], 0, 0, 0)

Rcon[j]

[B1, B2, B3, B0][B0, B1, B2, B3]

For example, suppose that the round key for round 8 is

Then the first 4 bytes (first column) of the round key for round 9 are calculated as
follows:

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Rationale

The Rijndael developers designed the expansion key algorithm to be resistant to
known cryptanalytic attacks. The inclusion of a round-dependent round constant
eliminates the symmetry, or similarity, between the ways in which round keys
are generated in different rounds.The specific criteria that were used are [DAEM99]

• Knowledge of a part of the cipher key or round key does not enable calcula-
tion of many other round-key bits.

• An invertible transformation [i.e., knowledge of any consecutive words of
the expanded key enables regeneration the entire expanded key

].

• Speed on a wide range of processors.

• Usage of round constants to eliminate symmetries.

• Diffusion of cipher key differences into the round keys; that is, each key bit
affects many round key bits.

• Enough nonlinearity to prohibit the full determination of round key differ-
ences from cipher key differences only.

• Simplicity of description.

size in words)
(Nk = key

Nk

Preview from Notesale.co.uk

Page 195 of 900

SubBytes bi, j = S[ai, j]

ShiftRows Dc0, j

c1, j

c2, j

c3, j

T = D b0, j

b1, j - 1

b2, j - 2

b3, j - 3

T
MixColumns Dd0, j

d1, j

d2, j

d3, j

T = D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T Dc0, j

c1, j

c2, j

c3, j

T
AddRoundKey De0, j

e1, j

e2, j

e3, j

T = Dd0, j

d1, j

d2, j

d3, j

T � Dk0, j

k1, j

k2, j

k3, j

T

5.6 / AES IMPLEMENTATION 177

32-BIT PROCESSOR The implementation described in the preceding subsection uses
only 8-bit operations. For a 32-bit processor, a more efficient implementation can be
achieved if operations are defined on 32-bit words. To show this, we first define the
four transformations of a round in algebraic form. Suppose we begin with a State
matrix consisting of elements and a round-key matrix consisting of elements .
Then the transformations can be expressed as follows.

ki, jai, j

In the ShiftRows equation, the column indices are taken mod 4. We can com-
bine all of these expressions into a single equation:

In the second equation, we are expressing the matrix multiplication as a linear com-
bination of vectors. We define four 256-word (1024-byte) tables as follows.

� § D01
01
03
02

T # S[a3, j-3]¥ � Dk0, j

k1, j

k2, j

k3, j

T
= § D02

01
01
03

T # S[a0, j]¥ � § D03
02
01
01

T # S[a1, j-1]¥ � § D01
03
02
01

T # S[a2, j-2]¥
De0, j

e1, j

e2, j

e3, j

T = D02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

T D S[a0, j]
S[a1, j - 1]
S[a2, j - 2]
S[a3, j - 3]

T � Dk0, j

k1, j

k2, j

k3, j

T

Preview from Notesale.co.uk

Page 204 of 900

188 CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

nibbles in that column. The transformation can be defined by the following matrix
multiplication on State (Figure 5.14):

Performing the matrix multiplication, we get

Where arithmetic is performed in , and the symbol • refers to multiplica-
tion in . Appendix I provides the addition and multiplication tables. The
following is an example.

The inverse mix column function is defined as

We demonstrate that we have indeed defined the inverse in the following fashion.

The preceding matrix multiplication makes use of the following results in
and . These operations

can be verified using the arithmetic tables in Appendix I or by polynomial arithmetic.
The mix column function is the most difficult to visualize. Accordingly, we

provide an additional perspective on it in Appendix I.

KEY EXPANSION For key expansion, the 16 bits of the initial key are grouped into a
row of two 8-bit words. Figure 5.15 shows the expansion into six words, by the calcu-
lation of four new words from the initial two words. The algorithm is

Rcon is a round constant, defined as follows: , so that
and . forms the left-

most nibble of a byte, with the rightmost nibble being all zeros. Thus,
and .

For example, suppose the key is .
Then

2D55 = 0010 1101 0101 0101 = w0w1

Rcon(2) = 00110000Rcon(1) = 10000000

RC[i]RC[2] = x4mod(x4 + x + 1) = x + 1 = 0011x3 = 1000
RC[1] =RC[i] = xi + 2

w5 = w4 � w3

w4 = w2 � g1w32 = w2 � Rcon122� SubNib1RotNib1w322
w3 = w2 � w1

w2 = w0 � g1w12 = w0 � Rcon112� SubNib1RotNib1w122

(9 # 4) + 2 = 2 + 2 = 0GF(24): 9 + (2 # 4) = 9 + 8 = 1

c9 2
2 9

d c1 4
4 1

d cs0,0 s0,1

s1,0 s1,1
d = c1 0

0 1
d cs0,0 s0,1

s1,0 s1,1
d = cs0,0 s0,1

s1,0 s1,1
d

c9 2
2 9

d cs0, 0 s0,1

s1,0 s1,1
d = cs¿0, 0 s¿0,1

s¿1, 0 s¿1, 1
d

c1 4
4 1

d c 6 4
C 0

d = c3 4
7 3

d

GF(24)
GF(24)

S1,1
œ = 14 # S0,12� S1,1

S0,1
œ = S0,1 � 14 # S1,12

S1,0
œ = 14 # S0,02� S1,0

S0,0
œ = S0,0 � 14 # S1,02

c1 4
4 1

d cs0,0 s0,1

s1,0 s1,1
d = cs¿0, 0 s¿0, 1

s¿1,0 s¿1,1
d

Preview from Notesale.co.uk

Page 215 of 900

6.1 / MULTIPLE ENCRYPTION AND TRIPLE DES 195

REDUCTION TO A SINGLE STAGE Suppose it were true for DES, for all 56-bit key values,
that given any two keys and , it would be possible to find a key such that

(6.1)

If this were the case, then double encryption, and indeed any number of stages of
multiple encryption with DES, would be useless because the result would be equiv-
alent to a single encryption with a single 56-bit key.

On the face of it, it does not appear that Equation (6.1) is likely to hold.
Consider that encryption with DES is a mapping of 64-bit blocks to 64-bit blocks. In
fact, the mapping can be viewed as a permutation. That is, if we consider all pos-
sible input blocks, DES encryption with a specific key will map each block into a
unique 64-bit block. Otherwise, if, say, two given input blocks mapped to the same
output block, then decryption to recover the original plaintext would be impossible.
With possible inputs, how many different mappings are there that generate a
permutation of the input blocks? The value is easily seen to be

On the other hand, DES defines one mapping for each different key, for a total
number of mappings:

Therefore, it is reasonable to assume that if DES is used twice with different keys, it
will produce one of the many mappings that are not defined by a single application
of DES. Although there was much supporting evidence for this assumption, it was
not until 1992 that the assumption was proven [CAMP92].

MEET-IN-THE-MIDDLE ATTACK Thus, the use of double DES results in a mapping
that is not equivalent to a single DES encryption. But there is a way to attack this
scheme, one that does not depend on any particular property of DES but that will
work against any block encryption cipher.

The algorithm, known as a meet-in-the-middle attack, was first described in
[DIFF77]. It is based on the observation that, if we have

then (see Figure 6.1a)

Given a known pair, , the attack proceeds as follows. First, encrypt for all
possible values of . Store these results in a table and then sort the table by the
values of . Next, decrypt using all possible values of .As each decryption is
produced, check the result against the table for a match. If a match occurs, then test
the two resulting keys against a new known plaintext–ciphertext pair. If the two
keys produce the correct ciphertext, accept them as the correct keys.

For any given plaintext , there are possible ciphertext values that could
be produced by double DES. Double DES uses, in effect, a 112-bit key, so that

264P

K2256CX
K1

256P(P, C)

X = E(K1, P) = D(K2, C)

C = E(K2, E(K1, P))

256 6 1017

(264)! = 10347380000000000000000 7 (101020
)

264

264

E(K2, E(K1, P)) = E(K3, P)

K3K2K1

Preview from Notesale.co.uk

Page 222 of 900

CFB

Cj = Pj � MSBs(Oj) j = 1, Á , N

Oj = E(K, Ij) j = 1, Á , N

Ij = LSBb - s(Ij - 1) 7 Cj - 1 j = 2, Á , N

I1 = IV

Pj = Cj � MSBs(Oj) j = 1, Á , N

Oj = E(K, Ij) j = 1, Á , N

Ij = LSBb - s(Ij - 1) 7 Cj - 1 j = 2, Á , N

I1 = IV

204 CHAPTER 6 / BLOCK CIPHER OPERATION

C1

IV

P1

Encrypt

Select
 s bits

Discard
b – s bits

K

(a) Encryption

CN–1

(b) Decryption

s bits

s bits s bits

C2

P2

Encrypt

Select
s bits

Discard
b – s bits

K

s bits

s bitsb – s bits
Shift register

s bits

CN

PN

Encrypt

Select
s bits

Discard
b – s bits

K

s bits

s bitsb – s bits
Shift register

P1

IV

C1

Encrypt

Select
 s bits

Discard
b – s bits

K

CN–1

s bits

C2

s bits

CN

s bits

s bits s bits

P2

Encrypt

Select
s bits

Discard
b – s bits

K

s bitsb – s bits
Shift register

s bitsb – s bits
Shift register

s bits

PN

Encrypt

Select
s bits

Discard
b – s bits

K

Figure 6.5 s-bit Cipher Feedback (CFB) Mode

Although CFB can be viewed as a stream cipher, it does not conform to the
typical construction of a stream cipher. In a typical stream cipher, the cipher takes as
input some initial value and a key and generates a stream of bits, which is then
XORed with the plaintext bits (see Figure 3.1). In the case of CFB, the stream of bits
that is XORed with the plaintext also depends on the plaintext.

Preview from Notesale.co.uk

Page 231 of 900

CHAPTER

PSEUDORANDOM NUMBER
GENERATION AND STREAM CIPHERS

7.1 Principles of Pseudorandom Number Generation

The Use of Random Numbers
TRNGs, PRNGs, and PRFs
PRNG Requirements
Algorithm Design

7.2 Pseudorandom Number Generators

Linear Congruential Generators
Blum Blum Shub Generator

7.3 Pseudorandom Number Generation Using a Block Cipher

PRNG Using Block Cipher Modes of Operation
ANSI X9.17 PRNG

7.4 Stream Ciphers

7.5 RC4

Initialization of S
Stream Generation
Strength of RC4

7.6 True Random Number Generators

Entropy Sources
Skew

7.7 Recommended Reading and Web Sites

7.8 Key Terms, Review Questions, and Problems

218

Preview from Notesale.co.uk

Page 245 of 900

7.1 / PRINCIPLES OF PSEUDORANDOM NUMBER GENERATION 219

The comparatively late rise of the theory of probability shows how hard it is to
grasp, and the many paradoxes show clearly that we, as humans, lack a well
grounded intuition in this matter.

In probability theory there is a great deal of art in setting up the model, in solving
the problem, and in applying the results back to the real world actions that will follow.

—The Art of Probability, Richard Hamming

KEY POINTS

◆ A capability with application to a number of cryptographic functions is
random or pseudorandom number generation. The principle requirement
for this capability is that the generated number stream be unpredictable.

◆ A stream cipher is a symmetric encryption algorithm in which ciphertext
output is produced bit-by-bit or byte-by-byte from a stream of plaintext
input.The most widely used such cipher is RC4.

An important cryptographic function is cryptographically strong pseudorandom num-
ber generation. Pseudorandom number generators (PRNGs) are used in a variety of
cryptographic and security applications. We begin the chapter with a look at the basic
principles of PRNGs and contrast these with true random number generators
(TRNGs).1 Next, we look at some common PRNGs, including PRNGs based on the
use of a symmetric block cipher.

The chapter then moves on to the topic of symmetric stream ciphers, which are
based on the use of a PRNG. The chapter next examines the most important stream
cipher, RC4. Finally, we examine TRNGs.

7.1 PRINCIPLES OF PSEUDORANDOM NUMBER GENERATION

Random numbers play an important role in the use of encryption for various net-
work security applications. In this section, we provide a brief overview of the use of
random numbers in cryptography and network security and then focus on the prin-
ciples of pseudorandom number generation.

The Use of Random Numbers

A number of network security algorithms and protocols based on cryptography
make use of random binary numbers. For example,

1A note on terminology. Some standards documents, notably NIST and ANSI, refer to a TRNG as a
nondeterministic random number generator (NRNG) and a PRNG as a deterministic random number
generator (DRNG).

Preview from Notesale.co.uk

Page 246 of 900

230 CHAPTER 7 / PSEUDORANDOM NUMBER GENERATION AND STREAM CIPHERS

Table 7.2 Example Results for PRNG Using OFB

Output Block
Fraction of One

Bits

Fraction of Bits that
Match with

Preceding Block

1786f4c7ff6e291dbdfdd90ec3453176 0.57 —

5e17b22b14677a4d66890f87565eae64 0.51 0.52

fd18284ac82251dfb3aa62c326cd46cc 0.47 0.54

c8e545198a758ef5dd86b41946389bd5 0.50 0.44

fe7bae0e23019542962e2c52d215a2e3 0.47 0.48

14fdf5ec99469598ae0379472803accd 0.49 0.52

6aeca972e5a3ef17bd1a1b775fc8b929 0.57 0.48

f7e97badf359d128f00d9b4ae323db64 0.55 0.45

Key: cfb0ef3108d49cc4562d5810b0a9af60

V: 4c89af496176b728ed1e2ea8ba27f5a4

The CTR algorithm for PRNG can be summarized as follows.

while (len (temp) < requested_number_of_bits) do

V = (V + 1) mod 2128.

output_block = E(Key, V)

temp = temp || ouput_block

The OFB algorithm can be summarized as follows.

while (len (temp) < requested_number_of_bits) do

V = E(Key, V)

temp = temp || V

To get some idea of the performance of these two PRNGs, consider the fol-
lowing short experiment. A random bit sequence of 256 bits was obtained from
random.org, which uses three radios tuned between stations to pick up atmospheric
noise. These 256 bits form the seed, allocated as

The total number of one bits in the 256-bit seed is 124, or a fraction of 0.48,
which is reassuringly close to the ideal of 0.5.

For the OFB PRNG, Table 7.2 shows the first eight output blocks (1024 bits)
with two rough measures of security. The second column shows the fraction of one
bits in each 128-bit block.This corresponds to one of the NIST tests.The results indi-
cate that the output is split roughly equally between zero and one bits. The third
column shows the fraction of bits that match between adjacent blocks. If this num-
ber differs substantially from 0.5, that suggests a correlation between blocks, which
could be a security weakness. The results suggest no correlation.

Preview from Notesale.co.uk

Page 257 of 900

232 CHAPTER 7 / PSEUDORANDOM NUMBER GENERATION AND STREAM CIPHERS

• Keys: The generator makes use of three triple DES encryption modules. All
three make use of the same pair of 56-bit keys, which must be kept secret and
are used only for pseudorandom number generation.

• Output: The output consists of a 64-bit pseudorandom number and a 64-bit
seed value.

Let us define the following quantities.

DTi Date/time value at the beginning of th generation stagei
Vi Seed value at the beginning of th generation stagei
Ri Pseudorandom number produced by the th generation stagei
K1, K2 DES keys used for each stage

Then

where refers to the sequence encrypt-decrypt-encrypt using two-
key triple DES to encrypt .

Several factors contribute to the cryptographic strength of this method. The
technique involves a 112-bit key and three EDE encryptions for a total of nine DES
encryptions. The scheme is driven by two pseudorandom inputs, the date and time
value, and a seed produced by the generator that is distinct from the pseudorandom
number produced by the generator. Thus, the amount of material that must be com-
promised by an opponent is overwhelming. Even if a pseudorandom number
were compromised, it would be impossible to deduce the from the , because
an additional EDE operation is used to produce the .

7.4 STREAM CIPHERS

A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a byte
at a time. Figure 7.5 is a representative diagram of stream cipher structure. In this
structure, a key is input to a pseudorandom bit generator that produces a stream of
8-bit numbers that are apparently random. The output of the generator, called a
keystream, is combined one byte at a time with the plaintext stream using the bit-
wise exclusive-OR (XOR) operation. For example, if the next byte generated by the
generator is 01101100 and the next plaintext byte is 11001100, then the resulting
ciphertext byte is

11001100 plaintext

01101100 key stream

10100000 ciphertext
�

Vi + 1

RiVi + 1

Ri

X
EDE([K1,K2],X)

Ri = EDE([K1,K2], [Vi � EDE([K1,K2],DTi)])
Vi + 1 = EDE([K1,K2], [Ri � EDE([K1,K2],DTi)])

Preview from Notesale.co.uk

Page 259 of 900

7.8 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 239

RUKH08 Rukhin, A., et al. A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications. NIST SP 800-22, August 2008.

SIMM92 Simmons, G., ed. Contemporary Cryptology: The Science of Information
Integrity. Piscataway, NJ: IEEE Press, 1992.

ZENG91 Zeng, K.; Yang, C.; Wei, D.; and Rao, T. “Pseudorandom Bit Generators in
Stream-Cipher Cryptography.” Computer, February 1991.

Review Questions

7.1 What is the difference between statistical randomness and unpredictability?
7.2 List important design considerations for a stream cipher.
7.3 Why is it not desirable to reuse a stream cipher key?
7.4 What primitive operations are used in RC4?

Recommended Web Sites:

• NIST Random Number Generation Technical Working Group: Contains documents
and tests developed by NIST that related to PRNGs for cryptographic applications.
Also has useful set of links.

• NIST Random Number Generation Cryptographic Toolkit: Another useful NIST site
with documents and links.

• LavaRnd: LavaRnd is an open source project that uses a chaotic source to generate
truly random numbers. The site also has background information on random numbers
in general.

• Quantum Random Numbers: You can access quantum random numbers on the
fly here.

• RandomNumber.org: Another source of random numbers.

• A Million Random Digits: Compiled by the RAND Corporation.

7.8 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

backward unpredictability
Blum, Blum, Shub generator
deskewing
entropy source
forward unpredictability
keystream
linear congruential generator

pseudorandom function
(PRF)

pseudorandom number
generator (PRNG)

randomness
RC4
seed

stream cipher
skew
true random number

generator (TRNG)
unpredictability

Preview from Notesale.co.uk

Page 266 of 900

8.5 / DISCRETE LOGARITHMS 259

More generally, we can say that the highest possible exponent to which a num-
ber can belong is . If a number is of this order, it is referred to as a
primitive root of . The importance of this notion is that if is a primitive root of ,
then its powers

are distinct and are all relatively prime to . In particular, for a prime num-
ber , if is a primitive root of , then

are distinct . For the prime number 19, its primitive roots are 2, 3, 10, 13, 14,
and 15.

Not all integers have primitive roots. In fact, the only integers with primitive
roots are those of the form , where is any odd prime and is a
positive integer. The proof is not simple but can be found in many number theory
books, including [ORE76].

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of expo-
nentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a
number is defined to be the power to which some positive base (except 1) must be
raised in order to equal the number. That is, for base and for a value ,

The properties of logarithms include

(8.11)

(8.12)

Consider a primitive root for some prime number (the argument can be
developed for nonprimes as well). Then we know that the powers of from 1
through produce each integer from 1 through exactly once.We also
know that any integer satisfies

by the definition of modular arithmetic. It follows that for any integer and a prim-
itive root of prime number , we can find a unique exponent such that

b K ai(mod p) where 0 … i … (p - 1)

ipa
b

b K r (mod p) for some r, where 0 … r … (p - 1)

b
(p - 1)(p - 1)

a
pa

logx(y
r) = r * logx(y)

logx(yz) = logx(y) + logx(z)

logx(1) = 0

logx(x) = 1

y = xlogx(y)

yx

ap2, 4, pa, and 2pa

(mod p)

a, a2, Á , ap - 1

pap
n(mod n)

a, a2, Á , af(n)

nan
f(n)(mod n)

Preview from Notesale.co.uk

Page 286 of 900

9.1 / PRINCIPLES OF PUBLIC-KEY CRYPTOSYSTEMS 267

Every Egyptian received two names, which were known respectively as the true
name and the good name, or the great name and the little name; and while the
good or little name was made public, the true or great name appears to have been
carefully concealed.

—The Golden Bough, Sir James George Frazer

KEY POINTS

◆ Asymmetric encryption is a form of cryptosystem in which encryption
and decryption are performed using the different keys—one a public key
and one a private key. It is also known as public-key encryption.

◆ Asymmetric encryption transforms plaintext into ciphertext using a one of
two keys and an encryption algorithm. Using the paired key and a decryp-
tion algorithm, the plaintext is recovered from the ciphertext.

◆ Asymmetric encryption can be used for confidentiality, authentication,
or both.

◆ The most widely used public-key cryptosystem is RSA. The difficulty of
attacking RSA is based on the difficulty of finding the prime factors of a com-
posite number.

The development of public-key cryptography is the greatest and perhaps the only
true revolution in the entire history of cryptography. From its earliest beginnings
to modern times, virtually all cryptographic systems have been based on the ele-
mentary tools of substitution and permutation. After millennia of working with
algorithms that could be calculated by hand, a major advance in symmetric crypto-
graphy occurred with the development of the rotor encryption/decryption machine.
The electromechanical rotor enabled the development of fiendishly complex cipher
systems. With the availability of computers, even more complex systems were
devised, the most prominent of which was the Lucifer effort at IBM that culminated
in the Data Encryption Standard (DES). But both rotor machines and DES,
although representing significant advances, still relied on the bread-and-butter tools
of substitution and permutation.

Public-key cryptography provides a radical departure from all that has gone
before. For one thing, public-key algorithms are based on mathematical functions
rather than on substitution and permutation. More important, public-key cryptography
is asymmetric, involving the use of two separate keys, in contrast to symmetric encryp-
tion, which uses only one key. The use of two keys has profound consequences in the
areas of confidentiality, key distribution, and authentication, as we shall see.

Before proceeding, we should mention several common misconceptions con-
cerning public-key encryption. One such misconception is that public-key encryption is
more secure from cryptanalysis than is symmetric encryption. In fact, the security of
any encryption scheme depends on the length of the key and the computational work

Preview from Notesale.co.uk

Page 294 of 900

9.1 / PRINCIPLES OF PUBLIC-KEY CRYPTOSYSTEMS 271

• Plaintext: This is the readable message or data that is fed into the algorithm as
input.

• Encryption algorithm: The encryption algorithm performs various transfor-
mations on the plaintext.

• Public and private keys: This is a pair of keys that have been selected so that if
one is used for encryption, the other is used for decryption.The exact transfor-
mations performed by the algorithm depend on the public or private key that
is provided as input.

• Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

• Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

The essential steps are the following.

1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

2. Each user places one of the two keys in a public register or other accessible file.
This is the public key.The companion key is kept private.As Figure 9.1a suggests,
each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message
using Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s
private key.

With this approach, all participants have access to public keys, and private
keys are generated locally by each participant and therefore need never be distrib-
uted. As long as a user’s private key remains protected and secret, incoming com-
munication is secure. At any time, a system can change its private key and publish
the companion public key to replace its old public key.

Table 9.2 summarizes some of the important aspects of symmetric and public-
key encryption. To discriminate between the two, we refer to the key used in sym-
metric encryption as a secret key. The two keys used for asymmetric encryption
are referred to as the public key and the private key.2 Invariably, the private key is
kept secret, but it is referred to as a private key rather than a secret key to avoid
confusion with symmetric encryption.

Let us take a closer look at the essential elements of a public-key encryption
scheme, using Figure 9.2 (compare with Figure 2.2). There is some source A that

2The following notation is used consistently throughout. A secret key is represented by Km, where m is
some modifier; for example, Ka is a secret key owned by user A. A public key is represented by PUa, for
user A, and the corresponding private key is PRa. Encryption of plaintext X can be performed with a
secret key, a public key, or a private key, denoted by E(Ka, X), E(PUa, X), and E(PRa, X), respectively.
Similarly, decryption of ciphertext C can be performed with a secret key, a public key, or a private key,
denoted by D(Ka, X), D(PUa, X), and D(PRa, X), respectively.

Preview from Notesale.co.uk

Page 298 of 900

9.2 / THE RSA ALGORITHM 285

such tests with many different randomly chosen values for a, then we can have
high confidence that n is, in fact, prime.

In summary, the procedure for picking a prime number is as follows.

1. Pick an odd integer n at random (e.g., using a pseudorandom number generator).

2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a parameter.
If n fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is
performed relatively infrequently: only when a new pair (PU, PR) is needed.

It is worth noting how many numbers are likely to be rejected before a prime
number is found.A result from number theory, known as the prime number theorem,
states that the primes near N are spaced on the average one every (ln N) integers.
Thus, on average, one would have to test on the order of ln(N) integers before a
prime is found. Actually, because all even integers can be immediately rejected, the
correct figure is ln(N)/2. For example, if a prime on the order of magnitude of 2200

were sought, then about ln(2200)/2 = 70 trials would be needed to find a prime.
Having determined prime numbers p and q, the process of key generation is

completed by selecting a value of e and calculating d or, alternatively, selecting a
value of d and calculating e. Assuming the former, then we need to select an e such
that gcd(f(n), e) = 1 and then calculate d K e-1 (mod f(n)). Fortunately, there is a
single algorithm that will, at the same time, calculate the greatest common divisor of
two integers and, if the gcd is 1, determine the inverse of one of the integers modulo
the other. The algorithm, referred to as the extended Euclid’s algorithm, is
explained in Chapter 4. Thus, the procedure is to generate a series of random num-
bers, testing each against f(n) until a number relatively prime to f(n) is found.
Again, we can ask the question: How many random numbers must we test to find a
usable number, that is, a number relatively prime to f(n)? It can be shown easily
that the probability that two random numbers are relatively prime is about 0.6; thus,
very few tests would be needed to find a suitable integer (see Problem 8.2).

The Security of RSA

Four possible approaches to attacking the RSA algorithm are

• Brute force: This involves trying all possible private keys.

• Mathematical attacks: There are several approaches, all equivalent in effort to
factoring the product of two primes.

• Timing attacks: These depend on the running time of the decryption algorithm.

• Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm.

The defense against the brute-force approach is the same for RSA as for other
cryptosystems, namely, to use a large key space. Thus, the larger the number of bits
in d, the better. However, because the calculations involved, both in key generation

Preview from Notesale.co.uk

Page 312 of 900

9.4 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 291

Recommended Web Site:

RSA Laboratories: Extensive collection of technical material on RSA and other topics
in cryptography.

9.4 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

BONE99 Boneh, D. “Twenty Years of Attacks on the RSA Cryptosystem.” Notices of
the American Mathematical Society, February 1999.

CORM04 Cormen,T.; Leiserson, C.; Rivest, R.; and Stein, C. Introduction to Algorithms.
Cambridge, MA: MIT Press, 2004.

DIFF88 Diffie,W.“The First Ten Years of Public-Key Cryptography.” Proceedings of the
IEEE, May 1988.

SHAM03 Shamir, A., and Tromer, E. “On the Cost of Factoring RSA-1024.”
CryptoBytes, Summer 2003. http://www.rsasecurity.com/rsalabs

block (DB). Next, a random seed is generated and passed through another hash func-
tion, called the mask generating function (MGF).The resulting hash value is bit-by-bit
XORed with DB to produce a maskedDB. The maskedDB is in turn passed through
the MGF to form a hash that is XORed with the seed to produce the masked seed.The
concatenation of the maskedseed and the maskedDB forms the encoded message EM.
Note that the EM includes the padded message, masked by the seed, and the seed,
masked by the maskedDB.The EM is then encrypted using RSA.

9.3 RECOMMENDED READING AND WEB SITE

The recommended treatments of encryption listed in Chapter 3 cover public-key as well as
symmetric encryption.

[DIFF88] describes in detail the several attempts to devise secure two-key cryptoalgo-
rithms and the gradual evolution of a variety of protocols based on them. [CORM04] provides a
concise but complete and readable summary of all of the algorithms relevant to the verification,
computation, and cryptanalysis of RSA. [BONE99] discusses various cryptanalytic attacks on
RSA.A more recent discussion is [SHAM03].

chosen ciphertext attack (CCA)
digital signature
key exchange
one-way function
optimal asymmetric encryption

padding (OAEP)

private key
public key
public-key cryptography
public-key cryptosystems
public-key encryption

RSA
time complexity
timing attack
trap-door one-way function

Preview from Notesale.co.uk

Page 318 of 900

“I am afraid,Watson, that your proposal isn’t without flaws and at least it needs
some additional conditions to be satisfied by F. Let’s consider, for instance, the RSA
encryption function, that is F(M) = MK mod N, K is secret.This function is believed to
be one-way, but I wouldn’t recommend its use, for example, on the sequence M = 2, 3,
4, 5, 6, . . .”

“But why, Holmes?” Dr. Watson apparently didn’t understand. “Why do you
think that the resulting sequence 2K mod N, 3K mod N, 4K mod N, . . . is not appro-
priate for one-time pad encryption if K is kept secret?”

“Because it is—at least partially—predictable, dear Watson, even if K is kept
secret.You have said that the cryptanalyst is assumed to know F and the general nature
of the sequence. Now let’s assume that he will obtain somehow a short segment of the
output sequence. In crypto circles this assumption is generally considered to be a viable
one. And for this output sequence, knowledge of just the first two elements will allow
him to predict quite a lot of the next elements of the sequence, even if not all of them,
thus this sequence can’t be considered to be cryptographically strong. And with the
knowledge of a longer segment he could predict even more of the next elements of the
sequence. Look, knowing the general nature of the sequence and its first two elements
2K mod N and 3K mod N, you can easily compute its following elements.”

Show how this can be done.
9.12 Show how RSA can be represented by matrices M1, M2, and M3 of Problem 9.1.
9.13 Consider the following scheme:

1. Pick an odd number, E.
2. Pick two prime numbers, P and Q, where (P - 1)(Q - 1) -1 is evenly divisible by E.
3. Multiply P and Q to get N.

4. Calculate

Is this scheme equivalent to RSA? Show why or why not.
9.14 Consider the following scheme by which B encrypts a message for A.

1. A chooses two large primes P and Q that are also relatively prime to (P - 1)
and (Q - 1).

2. A publishes N = PQ as its public key.
3. A calculates P and Q such that PP K 1 (mod Q - 1) and QQ K 1 (mod P - 1).
4. B encrypts message M as C = MN mod N.
5. A finds M by solving M K C (mod Q) and M K C (mod P).

a. Explain how this scheme works.
b. How does it differ from RSA?
c. Is there any particular advantage to RSA compared to this scheme?
d. Show how this scheme can be represented by matrices M1, M2, and M3 of

Problem 9.1.

9.15 “This is a very interesting case, Watson,” Holmes said. “The young man loves a girl,
and she loves him too. However, her father is a strange fellow who insists that his
would-be son-in-law must design a simple and secure protocol for an appropriate
public-key cryptosystem he could use in his company’s computer network.The young
man came up with the following protocol for communication between two parties.
For example, user A wishing to send message M to user B: (messages exchanged are
in the format sender’s name, text, receiver’s name)”
1. A sends B the following block: (A, E(PUb, [M, A]), B).
2. B acknowledges receipt by sending to A the following block: (B, E(PUa, [M, B]), A).
“You can see that the protocol is really simple. But the girl’s father claims that the
young man has not satisfied his call for a simple protocol, because the proposal con-
tains a certain redundancy and can be further simplified to the following:”
1. A sends B the block: (A, E(PUb, M), B).
2. B acknowledges receipt by sending to A the block: (B, E(PUa, M), A).

Q¿P¿

¿¿¿¿

D =
(P - 1)(Q - 1)(E - 1) + 1

E

294 CHAPTER 9 / PUBLIC-KEY CRYPTOGRAPHY AND RSA

Preview from Notesale.co.uk

Page 321 of 900

302 CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

The purpose of the algorithm is to enable two users to securely exchange a key
that can then be used for subsequent encryption of messages. The algorithm itself is
limited to the exchange of secret values.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. Recall from Chapter 8 that a primitive root of a prime number as
one whose powers modulo generate all the integers from 1 to . That is, if is
a primitive root of the prime number , then the numbers

are distinct and consist of the integers from 1 through in some permutation.
For any integer and a primitive root of prime number , we can find a

unique exponent such that

The exponent is referred to as the discrete logarithm of for the base , mod .We
express this value as . See Chapter 8 for an extended discussion of discrete
logarithms.

The Algorithm

Figure 10.1 summarizes the Diffie-Hellman key exchange algorithm. For this
scheme, there are two publicly known numbers: a prime number and an integer α
that is a primitive root of . Suppose the users A and B wish to exchange a key. User
A selects a random integer and computes Similarly, user
B independently selects a random integer and computes .
Each side keeps the value private and makes the value available publicly to the
other side. User A computes the key as and user B computes the
key as . These two calculations produce identical results:

The result is that the two sides have exchanged a secret value. Furthermore,
because and are private, an adversary only has the following ingredients to
work with: , , , and .Thus, the adversary is forced to take a discrete logarithm
to determine the key. For example, to determine the private key of user B, an adver-
sary must compute

The adversary can then calculate the key in the same manner as user B calculates it.K

XB = dloga,q(YB)

YBYAaq
XBXA

= (YA)XB modq
= (aXA modq)XB modq
= (aXA)XB modq
= aXBXA mod q
= (aXB)XA mod q by the rules of modular arithmetic
= (aXB modq)XA mod q

K = (YB)XA modq

K = (YA)XB mod q
K = (YB)XA mod q

YX
YB = aXB modqXB 6 q

YA = aXA modq.XA 6 q
q

q

dloga,p(b)
pabi

b K ai (mod p) where 0 … i … (p - 1)

i
pab

p - 1

a mod p, a2 mod p, Á , ap - 1 mod p

p
ap - 1p

p

Preview from Notesale.co.uk

Page 329 of 900

10.2 / ELGAMAL CRYPTOGRAPHIC SYSTEM 305

Man-in-the-Middle Attack

The protocol depicted in Figure 10.2 is insecure against a man-in-the-middle attack.
Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The
attack proceeds as follows.

1. Darth prepares for the attack by generating two random private keys and
and then computing the corresponding public keys and .

2. Alice transmits to Bob.

3. Darth intercepts and transmits to Bob. Darth also calculates
.

4. Bob receives and calculates .

5. Bob transmits to Alice.

6. Darth intercepts and transmits to Alice. Darth calculates
.

7. Alice receives and calculates .

At this point, Bob and Alice think that they share a secret key, but instead Bob
and Darth share secret key and Alice and Darth share secret key . All future
communication between Bob and Alice is compromised in the following way.

1. Alice sends an encrypted message .

2. Darth intercepts the encrypted message and decrypts it to recover .

3. Darth sends Bob , where is any message. In the
first case, Darth simply wants to eavesdrop on the communication without
altering it. In the second case, Darth wants to modify the message going
to Bob.

The key exchange protocol is vulnerable to such an attack because it does
not authenticate the participants. This vulnerability can be overcome with the use
of digital signatures and public-key certificates; these topics are explored in
Chapters 13 and 14.

10.2 ELGAMAL CRYPTOGRAPHIC SYSTEM

In 1984, T. Elgamal announced a public-key scheme based on discrete logarithms,
closely related to the Diffie-Hellman technique [ELGA84, ELGA85]. The
ElGamal2 cryptosystem is used in some form in a number of standards including the
digital signature standard (DSS), which is covered in Chapter 13, and the S/MIME
e-mail standard (Chapter 18).

M¿E(K1, M) or E(K1, M¿)
M

M: E(K2, M)

K2K1

K2 = (YD2)
XA mod qYD2

K1 = (YB)XD1 mod q
YD2YB

YB

K1 = (YD1)
XB mod qYD1

K2 = (YA)XD2 mod q
YD1YA

YA

YD2YD1XD2

XD1

2For no apparent reason, everyone calls this the ElGamal system although Mr. Elgamal’s last name does
not have a capital letter G.

Preview from Notesale.co.uk

Page 332 of 900

10.3 / ELLIPTIC CURVE ARITHMETIC 309

system challenges RSA: elliptic curve cryptography (ECC). ECC is showing up in
standardization efforts, including the IEEE P1363 Standard for Public-Key
Cryptography.

The principal attraction of ECC, compared to RSA, is that it appears to offer
equal security for a far smaller key size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Accordingly, the confidence level
in ECC is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie-
Hellman, and a full mathematical description is beyond the scope of this book.
This section and the next give some background on elliptic curves and ECC. We
begin with a brief review of the concept of abelian group. Next, we examine the
concept of elliptic curves defined over the real numbers. This is followed by a look
at elliptic curves defined over finite fields. Finally, we are able to examine elliptic
curve ciphers.

The reader may wish to review the material on finite fields in Chapter 4 before
proceeding.

Abelian Groups

Recall from Chapter 4 that an abelian group , sometimes denoted by , is a
set of elements with a binary operation, denoted by , that associates to each
ordered pair of elements in an element in , such that the following
axioms are obeyed:3

G(a # b)G(a, b)
{G, # }G

(A1) Closure: If and belong to , then is also in .Ga # bGba

(A2) Associative: for all , , in .Gcbaa # (b # c) = (a # b) # c

(A3) Identity element: There is an element e in such that for
all in .Ga

a # e = e # a = aG

(A4) Inverse element: For each in there is an element in such that
.a # a¿ = a¿ # a = e

Ga¿Ga

(A5) Commutative: for all , in .Gbaa # b = b # a

A number of public-key ciphers are based on the use of an abelian group. For
example, Diffie-Hellman key exchange involves multiplying pairs of nonzero inte-
gers modulo a prime number . Keys are generated by exponentiation over the
group, with exponentiation defined as repeated multiplication. For example,

To attack Diffie-Hellman, the attacker must ak mod q = 1a * a * Á * a2mod q.

q

i

k times
determine given and ; this is the discrete logarithm problem.akak

3The operator • is generic and can refer to addition, multiplication, or some other mathematical
operation.

Preview from Notesale.co.uk

Page 336 of 900

10.3 / ELLIPTIC CURVE ARITHMETIC 313

over , the variables and coefficients all take on values in and in cal-
culations are performed over . [FERN99] points out that prime curves are
best for software applications, because the extended bit-fiddling operations needed
by binary curves are not required; and that binary curves are best for hardware
applications, where it takes remarkably few logic gates to create a powerful, fast
cryptosystem. We examine these two families in this section and the next.

There is no obvious geometric interpretation of elliptic curve arithmetic over
finite fields. The algebraic interpretation used for elliptic curve arithmetic over real
numbers does readily carry over, and this is the approach we take.

For elliptic curves over , as with real numbers, we limit ourselves to equa-
tions of the form of Equation (10.1), but in this case with coefficients and variables
limited to :

(10.5)

For example, Equation (10.5) is satisfied for , , , ,

 3 = 3

 49 mod 23 = 739 mod 23

 72 mod 23 = 193 + 9 + 12 mod 23

p = 23:
a = 1y = 7x = 9b = 1a = 1

y2 modp = (x3 + ax + b) modp

Zp

Zp

GF(2m)
GF(2m)GF(2m)

Now consider the set consisting of all pairs of integers that sat-
isfy Equation (10.5), together with a point at infinity .The coefficients and and
the variables and are all elements of .Zpyx

baO
(x, y)Ep(a, b)

For example, let and consider the elliptic curve . In
this case, . Note that this equation is the same as that of Figure 10.4b.
The figure shows a continuous curve with all of the real points that satisfy the
equation. For the set , we are only interested in the nonnegative integers
in the quadrant from (0, 0) through that satisfy the equation mod

. Table 10.1 lists the points (other than) that are part of . Figure 10.5
plots the points of ; note that the points, with one exception, are symmetric
about .y = 11.5

E23(1, 1)
E23(1, 1)Op

(p - 1, p - 1)
E23(1, 1)

a = b = 1
y2 = x3 + x + 1p = 23

Table 10.1 Points on the Elliptic Curve E23 (1,1)

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Preview from Notesale.co.uk

Page 340 of 900

326 CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

10.16 The following is a first attempt at an elliptic curve signature scheme.We have a global
elliptic curve, prime , and “generator” . Alice picks a private signing key and
forms the public verifying key . To sign a message :
• Alice picks a value .
• Alice sends Bob and the signature .
• Bob verifies that .
a. Show that this scheme works. That is, show that the verification process produces

an equality if the signature is valid.
b. Show that the scheme is unacceptable by describing a simple technique for forg-

ing a user’s signature on an arbitrary message.
10.17 Here is an improved version of the scheme given in the previous problem. As before,

we have a global elliptic curve, prime , and “generator” .Alice picks a private sign-
ing key and forms the public verifying key . To sign a message :
• Bob picks a value .
• Bob sends Alice .
• Alice sends Bob and the signature .
• Bob verifies that .
a. Show that this scheme works. That is, show that the verification process produces

an equality if the signature is valid.
b. Show that forging a message in this scheme is as hard as breaking (ElGamal)

elliptic curve cryptography. (Or find an easier way to forge a message?)
c. This scheme has an extra “pass” compared to other cryptosystems and signature

schemes we have looked at. What are some drawbacks to this?

M = S + kYA

S = M - XAC1M
C1 = kG

k
MYA = XAGXA

Gp

M = S + kYA

S = M - kXAGM, k
k

MYA = XAG
XAGp

Preview from Notesale.co.uk

Page 353 of 900

11.1 / APPLICATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS 331

appends the resulting hash value to . Because B possesses , it can recompute
the hash value to verify. Because the secret value itself is not sent, an opponent
cannot modify an intercepted message and cannot generate a false message.

d. Confidentiality can be added to the approach of method (c) by encrypting the
entire message plus the hash code.

When confidentiality is not required, method (b) has an advantage over methods
(a) and (d), which encrypts the entire message, in that less computation is required.
Nevertheless, there has been growing interest in techniques that avoid encryption
(Figure 11.2c). Several reasons for this interest are pointed out in [TSUD92].

• Encryption software is relatively slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

• Encryption hardware costs are not negligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

• Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

• Encryption algorithms may be covered by patents, and there is a cost associated
with licensing their use.

More commonly, message authentication is achieved using a message authentica-
tion code (MAC), also known as a keyed hash function. Typically, MACs are used
between two parties that share a secret key to authenticate information exchanged
between those parties. A MAC function takes as input a secret key and a data block
and produces a hash value, referred to as the MAC. This can then be transmitted with
or stored with the protected message. If the integrity of the message needs to be
checked, the MAC function can be applied to the message and the result compared
with the stored MAC value.An attacker who alters the message will be unable to alter
the MAC value without knowledge of the secret key. Note that the verifying party also
knows who the sending party is because no one else knows the secret key.

Note that the combination of hashing and encryption results in an overall
function that is, in fact, a MAC (Figure 11.2b). That is, E(, H()) is a function of a
variable-length message and a secret key , and it produces a fixed-size output
that is secure against an opponent who does not know the secret key. In practice,
specific MAC algorithms are designed that are generally more efficient than an
encryption algorithm.

We discuss MACs in Chapter 12.

Digital Signatures

Another important application, which is similar to the message authentication
application, is the digital signature. The operation of the digital signature is similar
to that of the MAC. In the case of the digital signature, the hash value of a message
is encrypted with a user’s private key. Anyone who knows the user’s public key can
verify the integrity of the message that is associated with the digital signature. In this

KM
MK

SM

Preview from Notesale.co.uk

Page 358 of 900

11.4 / HASH FUNCTIONS BASED ON CIPHER BLOCK CHAINING 341

of the chaining variable is the hash value. Often, hence the term
compression. The hash function can be summarized as

where the input to the hash function is a message consisting of the blocks
.

The motivation for this iterative structure stems from the observation by Merkle
[MERK89] and Damgard [DAMG89] that if the compression function is collision resis-
tant, then so is the resultant iterated hash function.1 Therefore, the structure can be used
to produce a secure hash function to operate on a message of any length. The problem
of designing a secure hash function reduces to that of designing a collision-resistant
compression function that operates on inputs of some fixed size.

Cryptanalysis of hash functions focuses on the internal structure of f and is
based on attempts to find efficient techniques for producing collisions for a single
execution of f. Once that is done, the attack must take into account the fixed value of
IV. The attack on f depends on exploiting its internal structure. Typically, as with
symmetric block ciphers, f consists of a series of rounds of processing, so that the
attack involves analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because we
are mapping a message of length at least equal to twice the block size (because we
must append a length field) into a hash code of length , where . What is
required is that it is computationally infeasible to find collisions.

The attacks that have been mounted on hash functions are rather complex
and beyond our scope here. For the interested reader, [DOBB96] and [BELL97]
are recommended.

11.4 HASH FUNCTIONS BASED ON CIPHER BLOCK CHAINING

A number of proposals have been made for hash functions based on using a cipher
block chaining technique, but without using the secret key. One of the first such
proposals was that of Rabin [RABI78]. Divide a message into fixed-size blocks

and use a symmetric encryption system such as DES to compute
the hash code as

This is similar to the CBC technique, but in this case, there is no secret key.As with any
hash code, this scheme is subject to the birthday attack, and if the encryption algorithm
is DES and only a 64-bit hash code is produced, then the system is vulnerable.

G = HN

Hi = E(Mi, Hi - 1)

H0 = initial value

G
M1, M2, Á , MN

M

b Ú nn
b

Y0, Y1, Á , YL - 1

M

 H(M) = CVL

CVi = f(CVi - 1, Yi - 1) 1 … i … L

CV0 = IV = initial n-bit value

b 7 n;

1The converse is not necessarily true.

Preview from Notesale.co.uk

Page 368 of 900

11.5 / SECURE HASH ALGORITHM (SHA) 345

These values are stored in big-endian format, which is the most significant
byte of a word in the low-address (leftmost) byte position. These words were
obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the first eight prime numbers.

Step 4 Process message in 1024-bit (128-word) blocks. The heart of the algorithm
is a module that consists of 80 rounds; this module is labeled F in Figure 11.8.
The logic is illustrated in Figure 11.9.

Each round takes as input the 512-bit buffer value, abcdefgh, and updates
the contents of the buffer.At input to the first round, the buffer has the value of
the intermediate hash value, . Each round makes use of a 64-bit value ,
derived from the current 1024-bit block being processed .These values are
derived using a message schedule described subsequently. Each round also
makes use of an additive constant , where indicates one of the
80 rounds. These words represent the first 64 bits of the fractional parts of the
cube roots of the first 80 prime numbers.The constants provide a “randomized”
set of 64-bit patterns, which should eliminate any regularities in the input data.
Table 11.4 shows these constants in hexadecimal format (from left to right).

The output of the eightieth round is added to the input to the first round
to produce .The addition is done independently for each of the eightHi(Hi - 1)

0 … t … 79Kt

(Mi)
WttHi - 1

64

Mi

Wt

Hi

Hi�1

W0

W79

Kt

K0

K79

a b c

Round 0

d e f g h

a b c

Round t

d e f g h

Message
schedule

a b c

Round 79

d e f g h

� � � � � � � �

Figure 11.9 SHA-512 Processing of a Single 1024-Bit Block

Preview from Notesale.co.uk

Page 372 of 900

348 CHAPTER 11 / CRYPTOGRAPHIC HASH FUNCTIONS

a b c d e f g h

a b c d
512 bits

e f g h

Ch

Kt

Wt

Maj

+

+

+

+

+

+

+

Figure 11.10 Elementary SHA-512 Operation (single round)

It remains to indicate how the 64-bit word values are derived from the
1024-bit message. Figure 11.11 illustrates the mapping. The first 16 values of are
taken directly from the 16 words of the current block. The remaining values are
defined as

where

circular right shift (rotation) of the 64-bit argument by bits
left shift of the 64-bit argument by bits with padding by
zeros on the right
addition modulo 264+ =

nx SHRn(x) =
nx ROTRn(x) =

s1
512(x) = ROTR19(x) � ROTR61(x) � SHR6(x)

s0
512(x) = ROTR1(x) � ROTR8(x) � SHR7(x)

Wt = s1
512(Wt- 2)+Wt- 7+s0

512(Wt- 15)+Wt- 16

Wt

Wt

1024 bits

64 bits

Wt–16W0 W1 W9 W14 W63 W65 W71 W76Wt–15 Wt–7 Wt–2

W0 W1 W15 W16 Wt

Mi

W79

+

σ0 σ1 σ0 σ1 σ0 σ1

+ +

Figure 11.11 Creation of 80-word Input Sequence for SHA-512 Processing of Single Block

Preview from Notesale.co.uk

Page 375 of 900

12.2 / MESSAGE AUTHENTICATION FUNCTIONS 371

there are possible messages with . Furthermore, with a -bit key, there
are possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC.
Then, there are a total of different messages but only different MACs. So, on
average, each MAC value is generated by a total of different mes-
sages. If a 5-bit key is used, then there are different mappings from the set of
messages to the set of MAC values.

It turns out that, because of the mathematical properties of the authentication
function, it is less vulnerable to being broken than encryption.

The process depicted in Figure 12.4a provides authentication but not confiden-
tiality, because the message as a whole is transmitted in the clear. Confidentiality can
be provided by performing message encryption either after (Figure 12.4b) or before
(Figure 12.4c) the MAC algorithm. In both these cases, two separate keys are needed,
each of which is shared by the sender and the receiver. In the first case, the MAC is
calculated with the message as input and is then concatenated to the message. The
entire block is then encrypted. In the second case, the message is encrypted first.
Then the MAC is calculated using the resulting ciphertext and is concatenated to the
ciphertext to form the transmitted block.Typically, it is preferable to tie the authenti-
cation directly to the plaintext, so the method of Figure 12.4b is used.

Because symmetric encryption will provide authentication and because it is
widely used with readily available products, why not simply use this instead of a sep-
arate message authentication code? [DAVI89] suggests three situations in which a
message authentication code is used.

1. There are a number of applications in which the same message is broadcast to
a number of destinations. Examples are notification to users that the network
is now unavailable or an alarm signal in a military control center. It is cheaper
and more reliable to have only one destination responsible for monitoring
authenticity. Thus, the message must be broadcast in plaintext with an associ-
ated message authentication code. The responsible system has the secret key
and performs authentication. If a violation occurs, the other destination
systems are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load
and cannot afford the time to decrypt all incoming messages. Authentication
is carried out on a selective basis, messages being chosen at random for
checking.

3. Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having to decrypt it every time,
which would be wasteful of processor resources. However, if a message authenti-
cation code were attached to the program, it could be checked whenever assur-
ance was required of the integrity of the program.

Three other rationales may be added.

4. For some applications, it may not be of concern to keep messages secret, but it is
important to authenticate messages. An example is the Simple Network
Management Protocol Version 3 (SNMPv3), which separates the functions of

25 = 32
2100/210 = 290

2102100

2k
kN 77 2nN

Preview from Notesale.co.uk

Page 398 of 900

12.3 / REQUIREMENTS FOR MESSAGE AUTHENTICATION CODES 373

way of knowing which is the correct key. On average, a total of keys
will produce a match. Thus, the opponent must iterate the attack.

2k/2n = 2(k - n)

And so on. On average, α rounds will be needed if . For example, if an
80-bit key is used and the tab is 32 bits, then the first round will produce about
possible keys. The second round will narrow the possible keys to about possibili-
ties. The third round should produce only a single key, which must be the one used
by the sender.

If the key length is less than or equal to the tag length, then it is likely that a
first round will produce a single match. It is possible that more than one key will
produce such a match, in which case the opponent would need to perform the same
test on a new (message, tag) pair.

Thus, a brute-force attempt to discover the authentication key is no less effort
and may be more effort than that required to discover a decryption key of the same
length. However, other attacks that do not require the discovery of the key are
possible.

Consider the following MAC algorithm. Let be a
message that is treated as a concatenation of 64-bit blocks . Then define

where is the exclusive-OR (XOR) operation and the encryption algorithm is
DES in electronic codebook mode. Thus, the key length is 56 bits, and the tag length
is 64 bits. If an opponent observes , a brute-force attempt to{M || MAC(K, M)}

�

¢(M) = X1 � X2 � Á � Xm

MAC(K, M) = E(K, ¢(M))

Xi

M = (X1 || X2 || Á || Xm)

216
248

k = a * n

• Round 1

Given:M1, T1 = MAC(K,M1)
Compute for all keys2kTi = MAC(Ki,M1)
Number of matches ≈ 2(k - n)

• Round 2

Given:M2, T2 = MAC(K,M2)
Compute for the keys resulting from Round 121k-n)Ti = MAC(Ki,M2)
Number of matches ≈ 21k- 2 *n)

determine will require at least encryptions. But the opponent can attack the
system by replacing through with any desired values through and
replacing with , where is calculated as

The opponent can now concatenate the new message, which consists of
through , using the original tag to form a message that will be accepted as authen-
tic by the receiver. With this tactic, any message of length bits can be
fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider the
types of attacks that may be mounted against it. With that in mind, let us state the
requirements for the function. Assume that an opponent knows the MAC function

64 * (m - 1)
Ym

Y1

Ym = Y1 � Y2 � Á � Ym - 1 � ¢(M)

YmYmXm

Ym - 1Y1Xm - 1X1

256K

Preview from Notesale.co.uk

Page 400 of 900

374 CHAPTER 12 / MESSAGE AUTHENTICATION CODES

but does not know . Then the MAC function should satisfy the following
requirements.

1. If an opponent observes and , it should be computationally
infeasible for the opponent to construct a message such that

2. should be uniformly distributed in the sense that for randomly cho-
sen messages, and , the probability that is

, where is the number of bits in the tag.

3. Let be equal to some known transformation on . That is, . For
example, f may involve inverting one or more specific bits. In that case,

The first requirement speaks to the earlier example, in which an opponent is
able to construct a new message to match a given tag, even though the opponent
does not know and does not learn the key. The second requirement deals with the
need to thwart a brute-force attack based on chosen plaintext. That is, if we assume
that the opponent does not know but does have access to the MAC function and
can present messages for MAC generation, then the opponent could try various
messages until finding one that matches a given tag. If the MAC function exhibits
uniform distribution, then a brute-force method would require, on average,
attempts before finding a message that fits a given tag.

The final requirement dictates that the authentication algorithm should not be
weaker with respect to certain parts or bits of the message than others. If this were
not the case, then an opponent who had and could attempt varia-
tions on at the known “weak spots” with a likelihood of early success at produc-
ing a new message that matched the old tags.

12.4 SECURITY OF MACS

Just as with encryption algorithms and hash functions, we can group attacks on
MACs into two categories: brute-force attacks and cryptanalysis.

Brute-Force Attacks

A brute-force attack on a MAC is a more difficult undertaking than a brute-force
attack on a hash function because it requires known message-tag pairs. Let us see
why this is so. To attack a hash code, we can proceed in the following way. Given a
fixed message with -bit hash code , a brute-force method of finding a
collision is to pick a random bit string and check if . The attacker can
do this repeatedly off line. Whether an off-line attack can be used on a MAC algo-
rithm depends on the relative size of the key and the tag.

To proceed, we need to state the desired security property of a MAC algo-
rithm, which can be expressed as follows.

• Computation resistance: Given one or more text-MAC pairs ,
it is computationally infeasible to compute any text-MAC pair

for any new input .x Z xi[x, MAC(K, x)]

[xi, MAC(K, xi)]

H(y) = H(x)y
h = H(x)nx

M
MAC(K, M)M

2(n - 1)

K

 Pr [MAC(K, M) = MAC(K, M¿)] = 2- n

M¿ = f(M)MM¿
n2- n

MAC(K, M) = MAC(K, M¿)M¿M
MAC(K, M)

MAC(K, M¿) = MAC(K, M)

M¿
MAC(K, M)M

K

Preview from Notesale.co.uk

Page 401 of 900

376 CHAPTER 12 / MESSAGE AUTHENTICATION CODES

a MAC derived from a cryptographic hash function. The motivations for this
interest are

1. Cryptographic hash functions such as MD5 and SHA generally execute faster
in software than symmetric block ciphers such as DES.

2. Library code for cryptographic hash functions is widely available.

With the development of AES and the more widespread availability of code
for encryption algorithms, these considerations are less significant, but hash-based
MACs continue to be widely used.

A hash function such as SHA was not designed for use as a MAC and cannot
be used directly for that purpose, because it does not rely on a secret key.There have
been a number of proposals for the incorporation of a secret key into an existing
hash algorithm. The approach that has received the most support is HMAC
[BELL96a, BELL96b]. HMAC has been issued as RFC 2104, has been chosen as the
mandatory-to-implement MAC for IP security, and is used in other Internet proto-
cols, such as SSL. HMAC has also been issued as a NIST standard (FIPS 198).

HMAC Design Objectives

RFC 2104 lists the following design objectives for HMAC.

• To use, without modifications, available hash functions. In particular, to use
hash functions that perform well in software and for which code is freely and
widely available.

• To allow for easy replaceability of the embedded hash function in case faster
or more secure hash functions are found or required.

• To preserve the original performance of the hash function without incurring a
significant degradation.

• To use and handle keys in a simple way.

• To have a well understood cryptographic analysis of the strength of the
authentication mechanism based on reasonable assumptions about the
embedded hash function.

The first two objectives are important to the acceptability of HMAC. HMAC
treats the hash function as a “black box.” This has two benefits. First, an existing
implementation of a hash function can be used as a module in implementing
HMAC. In this way, the bulk of the HMAC code is prepackaged and ready to use
without modification. Second, if it is ever desired to replace a given hash function in
an HMAC implementation, all that is required is to remove the existing hash func-
tion module and drop in the new module. This could be done if a faster hash func-
tion were desired. More important, if the security of the embedded hash function
were compromised, the security of HMAC could be retained simply by replacing
the embedded hash function with a more secure one (e.g., replacing SHA with
SHA).

The last design objective in the preceding list is, in fact, the main advantage of
HMAC over other proposed hash-based schemes. HMAC can be proven secure

-3
-2

Preview from Notesale.co.uk

Page 403 of 900

380 CHAPTER 12 / MESSAGE AUTHENTICATION CODES

In the second attack, the attacker is looking for two messages and that
produce the same hash: . This is the birthday attack discussed in
Chapter 11. We have shown that this requires a level of effort of for a hash
length of . On this basis, the security of MD5 is called into question, because a level
of effort of looks feasible with today’s technology. Does this mean that a 128-bit
hash function such as MD5 is unsuitable for HMAC? The answer is no, because of
the following argument.To attack MD5, the attacker can choose any set of messages
and work on these off line on a dedicated computing facility to find a collision.
Because the attacker knows the hash algorithm and the default , the attacker can
generate the hash code for each of the messages that the attacker generates.
However, when attacking HMAC, the attacker cannot generate message/code pairs
off line because the attacker does not know . Therefore, the attacker must observe
a sequence of messages generated by HMAC under the same key and perform the
attack on these known messages. For a hash code length of 128 bits, this requires
observed blocks generated using the same key. On a 1-Gbps link, one
would need to observe a continuous stream of messages with no change in key for
about 150,000 years in order to succeed. Thus, if speed is a concern, it is fully accept-
able to use MD5 rather than SHA-1 as the embedded hash function for HMAC.

12.6 MACS BASED ON BLOCK CIPHERS: DAA AND CMAC

In this section, we look at two MACs that are based on the use of a block cipher
mode of operation. We begin with an older algorithm, the Data Authentication
Algorithm (DAA), which is now obsolete. Then we examine CMAC, which is
designed to overcome the deficiencies of DAA.

Data Authentication Algorithm

The Data Authentication Algorithm (DAA), based on DES, has been one of the
most widely used MACs for a number of years. The algorithm is both a FIPS publi-
cation (FIPS PUB 113) and an ANSI standard (X9.17). However, as we discuss sub-
sequently, security weaknesses in this algorithm have been discovered, and it is
being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode of
operation of DES (Figure 6.4) with an initialization vector of zero.The data (e.g., mes-
sage, record, file, or program) to be authenticated are grouped into contiguous 64-bit
blocks: . If necessary, the final block is padded on the right with zeroes
to form a full 64-bit block. Using the DES encryption algorithm E and a secret key ,
a data authentication code (DAC) is calculated as follows (Figure 12.7).

O1 = E(K, D)
O2 = E(K, [D2 � O1])
O3 = E(K, [D3 � O2])###
ON = E(K, [DN � ON - 1])

K
D1, D2, Á , DN

(272 bits)
264

K

IV

264
n

2n/2
H(M) = H(M¿)

M¿M

Preview from Notesale.co.uk

Page 407 of 900

12.7 / AUTHENTICATED ENCRYPTION: CCM AND GCM 385

3. For , do .

4. Set .

5. Apply the counter generation function to generate the counter blocks
, where

6. For , do .

7. Set .

8. Return .C = (P � MSBPlen(S)) || (T � MSBTlen(S0))

S = S1 || S2 || Á || Sm

Sj = E(K, Ctrj)j = 0 to m

m = <Plen/128=.Ctr0, Ctr1, Á , Ctrm

T = MSBTlen(Yr)

Yi = E(K, (Bi { Yi - 1))i = 1 to r

(a) Authentication

(b) Encryption

B0

Ctr0

B1 B2 Br

Tag

Tag

Nonce Plaintext

Plaintext

Ciphertext

Ass. Data

K CMAC

MSB(Tlen)
K

CTRCtr1, Ctr2, ..., Ctrm

EncryptK

Figure 12.9 Counter with Cipher Block Chaining-Message Authentication Code (CCM)

Preview from Notesale.co.uk

Page 412 of 900

390 CHAPTER 12 / MESSAGE AUTHENTICATION CODES

We noted in Chapters 7 and 10 that, because an encryption algorithm pro-
duces an apparently random output, it can serve as the basis of a (PRNG). Similarly,
a hash function or MAC produces apparently random output and can be used to
build a PRNG. Both ISO standard 18031 () and NIST SP
800-90 (Recommendation for Random Number Generation Using Deterministic
Random Bit Generators) define an approach for random number generation using a
cryptographic hash function. SP 800-90 also defines a random number generator
based on HMAC. We look at these two approaches in turn.

PRNG Based on Hash Function

Figure 12.12a shows the basic strategy for a hash-based PRNG specified in SP 800-90
and ISO 18031. The algorithm takes as input:

, where is a desired security level
expressed in bits

= desired number of output bitsn

kseedlen = bit length of V Ú k + 64

V = seed

Random Bit Generation

(a) PRNG using cryptographic hash function

(b) PRNG using HMAC

V

K

Cryptographic
 hash function

Pseudorandom
output

+1

V

HMAC

Pseudorandom
output

Figure 12.12 Basic Structure of Hash-Based PRNGs (SP 800-90)

Preview from Notesale.co.uk

Page 417 of 900

408 CHAPTER 13 / DIGITAL SIGNATURES

“Exactly, Watson,” nodded Sherlock Holmes. “Originally, the RSA digital sig-
nature was formed by encrypting the document by the signatory’s private decryption
key ‘d’, and the signature could be verified by anyone through its decryption using
publicly known encryption key ‘e’. One can verify that the signature S was formed by
the person who knows d, which is supposed to be the only signatory. Now the problem
of Mr. Hosgrave can be solved in the same way by slight generalization of the process,
that is ...”

Finish the explanation.
13.2 DSA specifies that if the signature generation process results in a value of , a

new value of should be generated and the signature should be recalculated. Why?
13.3 What happens if a value used in creating a DSA signature is compromised?
13.4 The DSS document includes a recommended algorithm for testing a number for

primality.
1. [Choose w] Let be a random odd integer. Then is even and can be

expressed in the form with odd. That is, is the largest power of 2 that
divides .

2. [Generate b] Let be a random integer in the range .
3. [Exponentiate] Set and .
4. [Done?] If and , or if , then passes the test and may be

prime; go to step 8.
5. [Terminate?] If and , then is not prime; terminate algorithm for

this .
6. [Increase j] Set . If , set and go to step 4.
7. [Terminate] is not prime; terminate algorithm for this .
8. [Test again?] If enough random values of have been tested, then accept as

prime and terminate algorithm; otherwise, go to step 2.
a. Explain how the algorithm works.
b. Show that it is equivalent to the Miller-Rabin test described in Chapter 8.

13.5 With DSS, because the value of is generated for each signature, even if the same
message is signed twice on different occasions, the signatures will differ. This is not
true of RSA signatures. What is the practical implication of this difference?

13.6 Consider the problem of creating domain parameters for DSA. Suppose we have
already found primes and such that . Now we need to find with
of order . Consider the following two algorithms:qmod p

gg H Zpq|(p - 1)qp

k

wb
ww

z = z2modwj 6 aj = j + 1
w

wz = 1j 7 0

wz = w - 1z = 1j = 0
z = bmmod wj = 0

1 6 b 6 wb
(w - 1)

2am2am
(w - 1)w

k
k

s = 0

Algorithm 1 Algorithm 2
repeat repeat

select g � Zp select h � Zp
h; gqmod p g; h(p - l)/p mod p

until (and)g Z 1h = 1 until (g Z 1)
return g return g

a. Prove that the value returned by Algorithm 1 has order .
b. Prove that the value returned by Algorithm 2 has order .
c. Suppose and . How many loop iterations do you expect

Algorithm 1 to make before it finds a generator?
d. If is 1024 bits and is 160 bits, would you recommend using Algorithm 1 to find ?

Explain.
e. Suppose and . What is the probability that Algorithm 2 com-

putes a generator in its very first loop iteration? (If it is helpful, you may use the

fact that when answering this question.)a
d ƒ n

w1d2 = n

q = 157p = 40193

gqp

q = 157p = 40193
q
q

Preview from Notesale.co.uk

Page 435 of 900

14.1 / SYMMETRIC KEY DISTRIBUTION USING SYMMETRIC ENCRYPTION 413

14.1 SYMMETRIC KEY DISTRIBUTION
USING SYMMETRIC ENCRYPTION

For symmetric encryption to work, the two parties to an exchange must share the
same key, and that key must be protected from access by others. Furthermore, fre-
quent key changes are usually desirable to limit the amount of data compromised if
an attacker learns the key. Therefore, the strength of any cryptographic system
rests with the key distribution technique, a term that refers to the means of deliver-
ing a key to two parties who wish to exchange data without allowing others to see
the key. For two parties A and B, key distribution can be achieved in a number of
ways, as follows:

1. A can select a key and physically deliver it to B.

2. A third party can select the key and physically deliver it to A and B.

3. If A and B have previously and recently used a key, one party can transmit the
new key to the other, encrypted using the old key.

4. If A and B each has an encrypted connection to a third party C, C can deliver
a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this is a
reasonable requirement, because each link encryption device is going to be exchang-
ing data only with its partner on the other end of the link. However, for end-to-end
encryption over a network, manual delivery is awkward. In a distributed system, any
given host or terminal may need to engage in exchanges with many other hosts and
terminals over time. Thus, each device needs a number of keys supplied dynamically.
The problem is especially difficult in a wide-area distributed system.

The scale of the problem depends on the number of communicating pairs that
must be supported. If end-to-end encryption is done at a network or IP level, then a
key is needed for each pair of hosts on the network that wish to communicate. Thus,
if there are hosts, the number of required keys is . If encryption is
done at the application level, then a key is needed for every pair of users or
processes that require communication. Thus, a network may have hundreds of hosts
but thousands of users and processes. Figure 14.1 illustrates the magnitude of the
key distribution task for end-to-end encryption.1 A network using node-level
encryption with 1000 nodes would conceivably need to distribute as many as half a
million keys. If that same network supported 10,000 applications, then as many as
50 million keys may be required for application-level encryption.

Returning to our list, option 3 is a possibility for either link encryption or end-
to-end encryption, but if an attacker ever succeeds in gaining access to one key, then
all subsequent keys will be revealed. Furthermore, the initial distribution of poten-
tially millions of keys still must be made.

[N(N - 1)]/2N

1Note that this figure uses a log-log scale, so that a linear graph indicates exponential growth. A basic
review of log scales is in the math refresher document at the Computer Science Student Resource Site at
WilliamStallings.com/StudentSupport.html.

Preview from Notesale.co.uk

Page 440 of 900

442 CHAPTER 14 / KEY MANAGEMENT AND DISTRIBUTION

“Hmm, please describe the communication protocol used on the network.”
Holmes opened his eyes, thus proving that he had followed Lestrade’s talk with an
attention that contrasted with his sleepy look.

“Well, the protocol is as follows. Each node N of the network has been assigned
a unique secret key . This key is used to secure communication between the node
and a trusted server.That is, all the keys are stored also on the server. User A, wishing
to send a secret message to user B, initiates the following protocol:

1. A generates a random number and sends to the server his name A, destination
B, and .

2. Server responds by sending to A.
3. A sends together with to B.
4. B knows , thus decrypts , to get and will subsequently use to

decrypt to get .

You see that a random key is generated every time a message has to be sent. I admit
the man could intercept messages sent between the top-secret trusted nodes, but I see
no way he could decrypt them.”

“Well, I think you have your man, Lestrade. The protocol isn’t secure because
the server doesn’t authenticate users who send him a request. Apparently designers
of the protocol have believed that sending implicitly authenticates user X as
the sender, as only X (and the server) knows . But you know that can be
intercepted and later replayed. Once you understand where the hole is, you will be
able to obtain enough evidence by monitoring the man’s use of the computer he has
access to. Most likely he works as follows. After intercepting and E(,)
(see steps 1 and 3 of the protocol), the man, let’s denote him as Z, will continue by
pretending to be A and ...

Finish the sentence for Holmes.
14.3 The 1988 version of X.509 lists properties that RSA keys must satisfy to be secure

given current knowledge about the difficulty of factoring large numbers. The discus-
sion concludes with a constraint on the public exponent and the modulus :

It must be ensured that to prevent attack by taking the eth root
mod to disclose the plaintext.

Although the constraint is correct, the reason given for requiring it is incorrect. What
is wrong with the reason given and what is the correct reason?

14.4 Find at least one intermediate certification authority’s certificate and one trusted root
certification authority’s certificate on your computer (e.g. in the browser). Print
screenshots of both the general and details tab for each certificate.

14.5 NIST defines the term cryptoperiod as the time span during which a specific key is
authorized for use or in which the keys for a given system or application may remain
in effect. One document on key management uses the following time diagram for a
shared secret key.

n
e 7 log2(n)

n

MRE(Ka, R)

E(Kx, R)Kx

E(Kx, R)

ME(R, M)
RRE(Kb, R)Kb

E(Kb, R)E(R, M)
E(Kb, R)

E(Ka, R)
R

M

Kn

Originator Usage Period

Recipient Usage Period

Cryptoperiod

Preview from Notesale.co.uk

Page 469 of 900

14.7 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 443

Explain the overlap by giving an example application in which the originator’s usage
period for the shared secret key begins before the recipient’s usage period and also
ends before the recipients usage period.

14.6 Consider the following protocol, designed to let A and B decide on a fresh, shared
session key . We assume that they already share a long-term key .
1. .
2.
3.
a. We first try to understand the protocol designer’s reasoning:
—Why would A and B believe after the protocol ran that they share with the

other party?
—Why would they believe that this shared key is fresh?

In both cases, you should explain both the reasons of both A and B, so your
answer should complete the sentences
A believes that she shares with B since...
B believes that he shares with A since...
A believes that is fresh since...
B believes that is fresh since...

b. Assume now that A starts a run of this protocol with B. However, the connection
is intercepted by the adversary C. Show how C can start a new run of the protocol
using reflection, causing A to believe that she has agreed on a fresh key with B (in
spite of the fact that she has only been communicating with C).Thus, in particular,
the belief in (a) is false.

c. Propose a modification of the protocol that prevents this attack.
14.7 What are the core components of a PKI? Briefly describe each component.
14.8 Explain the problems with key management and how it affects symmetric cryptography.

Note: The remaining problems deal with the a cryptographic product developed by IBM,
which is briefly described in a document at this book’s Web site (IBMCrypto.pdf). Try these
problems after reviewing the document.

14.9 What is the effect of adding the instruction EMKi

14.10 Suppose N different systems use the IBM Cryptographic Subsystem with host master
keys . Devise a method for communicating between systems
without requiring the system to either share a common host master key or to divulge
their individual host master keys. Hint: each system needs three variants of its host
master key.

14.11 The principal objective of the IBM Cryptographic Subsystem is to protect transmis-
sions between a terminal and the processing system. Devise a procedure, perhaps
adding instructions, which will allow the processor to generate a session key KS and
distribute it to Terminal i and Terminal j without having to store a key-equivalent
variable in the host.

KMH[i](i = 1, 2, Á N)

EMKi: X: E(KMHi, X) i = 0, 1

Kœ
AB

Kœ
AB

Kœ
AB

Kœ
AB

Kœ
AB

A: B:E(Kœ
AB, NA)

B: A:E(KAB, [NA, Kœ
AB])

A: B:A, NA

KABKœ
AB

Preview from Notesale.co.uk

Page 470 of 900

CHAPTER

USER AUTHENTICATION

15.1 Remote User-Authentication Principles

Mutual Authentication
One-Way Authentication

15.2 Remote User-Authentication Using Symmetric Encryption

Mutual Authentication
One-Way Authentication

15.3 Kerberos

Motivation
Kerberos Version 4
Kerberos Version 5

15.4 Remote User Authentication Using Asymmetric Encryption

Mutual Authentication
One-Way Authentication

15.5 Federated Identity Management

Identity Management
Identity Federation

15.6 Recommended Reading and Web Sites

15.7 Key Terms, Review Questions, and Problems

Appendix 15A Kerberos Encryption Techniques

444

Preview from Notesale.co.uk

Page 471 of 900

446 CHAPTER 15 / USER AUTHENTICATION

obtain or guess Alice’s password, then the combination of Alice’s user ID and
password enables administrators to set up Alice’s access permissions and audit her
activity. Because Alice’s ID is not secret, system users can send her e-mail, but
because her password is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed iden-
tity to the system; user authentication is the means of establishing the validity of the
claim. Note that user authentication is distinct from message authentication. As
defined in Chapter 12, message authentication is a procedure that allows communi-
cating parties to verify that the contents of a received message have not been
altered and that the source is authentic. This chapter is concerned solely with user
authentication.

There are four general means of authenticating a user’s identity, which can be
used alone or in combination:

• Something the individual knows: Examples include a password, a
personal identification number (PIN), or answers to a prearranged set of
questions.

• Something the individual possesses: Examples include cryptographic keys,
electronic keycards, smart cards, and physical keys. This type of authenticator
is referred to as a token.

• Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

• Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a
token. A user may forget a password or lose a token. Furthermore, there is a signifi-
cant administrative overhead for managing password and token information on
systems and securing such information on systems. With respect to biometric
authenticators, there are a variety of problems, including dealing with false positives
and false negatives, user acceptance, cost, and convenience. For network-based user
authentication, the most important methods involve cryptographic keys and some-
thing the individual knows, such as a password.

The process of verifying an identity claimed by or for a system entity. An
authentication process consists of two steps:

• Identification step: Presenting an identifier to the security system.
(Identifiers should be assigned carefully, because authenticated identities
are the basis for other security services, such as access control service.)

• Verification step: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier.

Preview from Notesale.co.uk

Page 473 of 900

15.1 / REMOTE USER-AUTHENTICATION PRINCIPLES 447

Mutual Authentication

An important application area is that of mutual authentication protocols. Such
protocols enable communicating parties to satisfy themselves mutually about each
other’s identity and to exchange session keys.This topic was examined in Chapter 14.
There, the focus was key distribution. We return to this topic here to consider the
wider implications of authentication.

Central to the problem of authenticated key exchange are two issues: confiden-
tiality and timeliness. To prevent masquerade and to prevent compromise of session
keys, essential identification and session-key information must be communicated in
encrypted form. This requires the prior existence of secret or public keys that can be
used for this purpose.The second issue, timeliness, is important because of the threat of
message replays. Such replays, at worst, could allow an opponent to compromise a ses-
sion key or successfully impersonate another party.At minimum, a successful replay can
disrupt operations by presenting parties with messages that appear genuine but are not.

[GONG93] lists the following examples of replay attacks:

• Simple replay: The opponent simply copies a message and replays it later.

• Repetition that can be logged: An opponent can replay a timestamped message
within the valid time window.

• Repetition that cannot be detected: This situation could arise because the
original message could have been suppressed and thus did not arrive at its
destination; only the replay message arrives.

• Backward replay without modification: This is a replay back to the message
sender. This attack is possible if symmetric encryption is used and the sender
cannot easily recognize the difference between messages sent and messages
received on the basis of content.

One approach to coping with replay attacks is to attach a sequence number to
each message used in an authentication exchange.A new message is accepted only if
its sequence number is in the proper order. The difficulty with this approach is that
it requires each party to keep track of the last sequence number for each claimant it
has dealt with. Because of this overhead, sequence numbers are generally not used
for authentication and key exchange. Instead, one of the following two general
approaches is used:

• Timestamps: Party A accepts a message as fresh only if the message contains a
timestamp that, in A’s judgment, is close enough to A’s knowledge of current
time. This approach requires that clocks among the various participants be
synchronized.

• Challenge/response: Party A, expecting a fresh message from B, first sends B a
nonce (challenge) and requires that the subsequent message (response)
received from B contain the correct nonce value.

It can be argued (e.g., [LAM92a]) that the timestamp approach should not be
used for connection-oriented applications because of the inherent difficulties with
this technique. First, some sort of protocol is needed to maintain synchronization
among the various processor clocks. This protocol must be both fault tolerant, to

Preview from Notesale.co.uk

Page 474 of 900

15.3 / KERBEROS 453

Motivation

If a set of users is provided with dedicated personal computers that have no network
connections, then a user’s resources and files can be protected by physically securing
each personal computer. When these users instead are served by a centralized time-
sharing system, the time-sharing operating system must provide the security. The
operating system can enforce access-control policies based on user identity and use
the logon procedure to identify users.

Today, neither of these scenarios is typical. More common is a distributed archi-
tecture consisting of dedicated user workstations (clients) and distributed or central-
ized servers. In this environment, three approaches to security can be envisioned.

1. Rely on each individual client workstation to assure the identity of its user or
users and rely on each server to enforce a security policy based on user identi-
fication (ID).

2. Require that client systems authenticate themselves to servers, but trust the client
system concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also
require that servers prove their identity to clients.

In a small, closed environment in which all systems are owned and operated by
a single organization, the first or perhaps the second strategy may suffice.6 But in a
more open environment in which network connections to other machines are
supported, the third approach is needed to protect user information and resources
housed at the server. Kerberos supports this third approach. Kerberos assumes a
distributed client/server architecture and employs one or more Kerberos servers to
provide an authentication service.

The first published report on Kerberos [STEI88] listed the following
requirements.

• Secure: A network eavesdropper should not be able to obtain the necessary
information to impersonate a user. More generally, Kerberos should be strong
enough that a potential opponent does not find it to be the weak link.

• Reliable: For all services that rely on Kerberos for access control, lack of
availability of the Kerberos service means lack of availability of the supported
services. Hence, Kerberos should be highly reliable and should employ a
distributed server architecture with one system able to back up another.

• Transparent: Ideally, the user should not be aware that authentication is taking
place beyond the requirement to enter a password.

• Scalable: The system should be capable of supporting large numbers of clients
and servers. This suggests a modular, distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a
trusted third-party authentication service that uses a protocol based on that pro-
posed by Needham and Schroeder [NEED78], which was discussed in Section 15.2.

6However, even a closed environment faces the threat of attack by a disgruntled employee.

Preview from Notesale.co.uk

Page 480 of 900

15.3 / KERBEROS 463

may be willing to provide service to users from other realms, provided that those
users are authenticated.

Kerberos provides a mechanism for supporting such interrealm authentication.
For two realms to support interrealm authentication, a third requirement is added:

3. The Kerberos server in each interoperating realm shares a secret key with the
server in the other realm.The two Kerberos servers are registered with each other.

The scheme requires that the Kerberos server in one realm trust the Kerberos
server in the other realm to authenticate its users. Furthermore, the participating
servers in the second realm must also be willing to trust the Kerberos server in the
first realm.

With these ground rules in place, we can describe the mechanism as follows
(Figure 15.2): A user wishing service on a server in another realm needs a ticket for
that server. The user’s client follows the usual procedures to gain access to the local
TGS and then requests a ticket-granting ticket for a remote TGS (TGS in another
realm).The client can then apply to the remote TGS for a service-granting ticket for
the desired server in the realm of the remote TGS.

The details of the exchanges illustrated in Figure 15.2 are as follows (compare
Table 15.1).

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The ticket presented to the remote server () indicates the realm in which
the user was originally authenticated. The server chooses whether to honor the
remote request.

One problem presented by the foregoing approach is that it does not scale well to
many realms. If there are realms, then there must be secure key
exchanges so that each Kerberos realm can interoperate with all other Kerberos realms.

Kerberos Version 5

Kerberos version 5 is specified in RFC 4120 and provides a number of improve-
ments over version 4 [KOHL94]. To begin, we provide an overview of the changes
from version 4 to version 5 and then look at the version 5 protocol.

DIFFERENCES BETWEEN VERSIONS 4 AND 5 Version 5 is intended to address the
limitations of version 4 in two areas: environmental shortcomings and technical
deficiencies. Let us briefly summarize the improvements in each area.8

N(N - 1)/2N

Vrem

C: Vrem: Ticketvrem || Authenticatorc

TGSrem: C: E1Kc,tgsrem, [Kc, vrem || IDvrem || TS6 || Ticketvrem]2
C: TGSrem: IDvrem || Tickettgsrem || Authenticatorc

TGS: C: E1Kc,tgs, [Kc, tgsrem || IDtgsrem || TS4 || Tickettgsrem]2
C: TGS: IDtgsrem || Tickettgs || Authenticatorc

AS: C: E1Kc, [Kc, tgs || IDtgs || TS2 || Lifetime2 || Tickettgs]2
C:AS: IDc || IDtgs || TS1

8The following discussion follows the presentation in [KOHL94].

Preview from Notesale.co.uk

Page 490 of 900

464 CHAPTER 15 / USER AUTHENTICATION

AS

TGS

Kerberos
Client

Realm A

AS

TGS

Kerberos

Server

Realm B

1. Request ticket for local TGS

2. Ticket for local TGS

3. Request ticket for remote TGS

4. Ticket for remote TGS

5. R
equest ticket for rem

ote server

6. Ticket for rem
ote server

7. R
equest rem

ote service

Figure 15.2 Request for Service in Another Realm

Kerberos version 4 was developed for use within the Project Athena environ-
ment and, accordingly, did not fully address the need to be of general purpose. This
led to the following environmental shortcomings.

1. Encryption system dependence: Version 4 requires the use of DES. Export
restriction on DES as well as doubts about the strength of DES were thus of
concern. In version 5, ciphertext is tagged with an encryption-type identifier
so that any encryption technique may be used. Encryption keys are tagged
with a type and a length, allowing the same key to be used in different

Preview from Notesale.co.uk

Page 491 of 900

470 CHAPTER 15 / USER AUTHENTICATION

15.4 REMOTE USER AUTHENTICATION USING
ASYMMETRIC ENCRYPTION

Mutual Authentication

In Chapter 14, we presented one approach to the use of public-key encryption for
the purpose of session-key distribution (Figure 14.8). This protocol assumes that
each of the two parties is in possession of the current public key of the other. It may
not be practical to require this assumption.

A protocol using timestamps is provided in [DENN81]:

1.

2.

3.

In this case, the central system is referred to as an authentication server (AS),
because it is not actually responsible for secret-key distribution. Rather, the AS pro-
vides public-key certificates. The session key is chosen and encrypted by A; hence,
there is no risk of exposure by the AS. The timestamps protect against replays of
compromised keys.

This protocol is compact but, as before, requires the synchronization of clocks.
Another approach, proposed by Woo and Lam [WOO92a], makes use of nonces.
The protocol consists of the following steps.

1.

2.

3.

4.

5.

6.

7.

In step 1, A informs the KDC of its intention to establish a secure connection
with B. The KDC returns to A a copy of B’s public-key certificate (step 2). Using B’s
public key,A informs B of its desire to communicate and sends a nonce (step 3). In
step 4, B asks the KDC for A’s public-key certificate and requests a session key; B
includes A’s nonce so that the KDC can stamp the session key with that nonce. The
nonce is protected using the KDC’s public key. In step 5, the KDC returns to B a copy
of A’s public-key certificate, plus the information This information basi-
cally says that is a secret key generated by the KDC on behalf of B and tied to ;
the binding of and will assure A that is fresh. This triple is encrypted using
the KDC’s private key to allow B to verify that the triple is in fact from the KDC. It is
also encrypted using B’s public key so that no other entity may use the triple in an
attempt to establish a fraudulent connection with A. In step 6, the triple
still encrypted with the KDC’s private key, is relayed to A, together with a nonce
generated by B. All the foregoing are encrypted using A’s public key. A retrieves the

Nb

{Na, Ks, IDB},

KsNaKs

NaKs

{Na, Ks, IDB}.

Na

A: B: E1Ks, Nb2
B:A: E1PUa, [E1PRauth, [1Na || Ks || IDB2]2 || Nb]2
KDC: B: E(PRauth, [IDA || PUa]) || E(PUb, E(PRauth, [Na || Ks || IDB]))

B: KDC: IDA || IDB || E(PUauth, Na)

A: B: E1PUb, [Na || IDA]2
KDC:A: E1PRauth, [IDB || PUb]2
A: KDC: IDA || IDB

E1PUb, E1PRa, [Ks || T]22A: B: E1PRas, [IDA || PUa || T]2 || E1PRas, [IDB || PUb || T]2 ||
AS:A: E1PRas, [IDA || PUa || T]2 || E1PRas, [IDB || PUb || T]2
A:AS: IDA || IDB

Preview from Notesale.co.uk

Page 497 of 900

477

User store

(a) Federation based on account linking

(b) Chained Web services

Workplace.com
(employee portal)

Name
Joe
Jane
Ravi

ID
1213
1410
1603

User store
Name
Joe
Jane
Ravi

ID
1213
1410
1603

Links:
health benefits
etc.

Health.com

Workplace.com

End user
(employee)

Initial
authentication

User store

(b) Federation based on roles

Workplace.com
(employee portal)

Name
Joe
Jane
Ravi

ID
1213
1410
1603

Dept
Eng
Purch
Purch

User store
Role

Engineer
Purchaser

Links:
parts supplier
etc.

PartsSupplier.com
Welcome Joe!
Technical doc.
Troubleshooting

End user
(employee)

Initial
authentication

Procurement
application

End user

Soap
message

Initial message
authentication

Soap
message

PinSupplies.com

Purchasing
Web service

E-ship.com

Shipping
Web service

Figure 15.5 Federated Identity Scenarios

Preview from Notesale.co.uk

Page 504 of 900

482 CHAPTER 15 / USER AUTHENTICATION

Next, the bit string is compacted to 56 bits by aligning the bits in “fanfold” fash-
ion and performing a bitwise XOR. For example, if the bit string is of length 59, then

This creates a 56-bit DES key. To conform to the expected 64-bit key format, the
string is treated as a sequence of eight 7-bit blocks and is mapped into eight 8-bit
blocks to form an input key .

Finally, the original password is encrypted using the cipher block chaining
(CBC) mode of DES with key . The last 64-bit block returned from this process,
known as the CBC checksum, is the output key associated with this password.

The entire algorithm can be viewed as a hash function that maps an arbitrary
password into a 64-bit hash code.

Kpw

Kpw

b[55] = b[55] � b[56]
b[54] = b[54] � b[57]
b[53] = b[53] � b[58]

-

1 character

-
s[1]

-
s[2]

Password in
7-bit ASCII

(n characters)

Flattened bit
stream (7 � n bits)

(a) Convert password to bit stream

s[0]

(b) Convert bit stream to input key

Fanfold onto
56 bits

Bitwise XOR

64-bit
input key Kpw

56 bits

s[0] through s[7]

s[8] through s[15]

DES DES

s[n � 8] through s[n � 1]

Output key
Kc

(c) Generate DES CBC checksum of password

Kpw Kpw Kpw

�

DES

�

Figure 15.6 Generation of Encryption Key from Password

Preview from Notesale.co.uk

Page 509 of 900

502 CHAPTER 16 / TRANSPORT-LEVEL SECURITY

16.3 TRANSPORT LAYER SECURITY

TLS is an IETF standardization initiative whose goal is to produce an Internet
standard version of SSL. TLS is defined as a Proposed Internet Standard in RFC
5246. RFC 5246 is very similar to SSLv3. In this section, we highlight the
differences.

Version Number

The TLS Record Format is the same as that of the SSL Record Format
(Figure 16.4), and the fields in the header have the same meanings. The one differ-
ence is in version values. For the current version of TLS, the major version is 3 and
the minor version is 3.

Message Authentication Code

There are two differences between the SSLv3 and TLS MAC schemes: the actual
algorithm and the scope of the MAC calculation. TLS makes use of the HMAC
algorithm defined in RFC 2104. Recall from Chapter 12 that HMAC is defined as

HMACK(M)= H[(K
+ opad)||H[(K+ ipad)||M]]

where

H = embedded hash function (for TLS, either MD5 or SHA-1)

M = message input to HMAC
K+ = secret key padded with zeros on the left so that the result is equal

to the block length of the hash code (for MD5 and SHA-1, block
length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)
opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

SSLv3 uses the same algorithm, except that the padding bytes are
concatenated with the secret key rather than being XORed with the secret key
padded to the block length. The level of security should be about the same in
both cases.

For TLS, the MAC calculation encompasses the fields indicated in the following
expression:

MAC(MAC_write_secret,seq_num || TLSCompressed.type ||

TLSCompressed.version || TLSCompressed.length ||
TLSCompressed.fragment)

The MAC calculation covers all of the fields covered by the SSLv3 calculation,
plus the field TLSCompressed.version, which is the version of the protocol
being employed.

��Preview from Notesale.co.uk

Page 529 of 900

16.5 / SECURE SHELL (SSH) 511

The next step is key exchange. The specification allows for alternative methods
of key exchange, but at present, only two versions of Diffie-Hellman key exchange are
specified. Both versions are defined in RFC 2409 and require only one packet in each
direction. The following steps are involved in the exchange. In this, C is the client; S is
the server; is a large safe prime; is a generator for a subgroup of GF(); is the
order of the subgroup; V_S is S’s identification string; V_C is C’s identification string;
K_S is S’s public host key; I_C is C’s SSH_MSG_KEXINIT message and I_S is S’s
SSH_MSG_KEXINIT message that have been exchanged before this part begins. The
values of , , and are known to both client and server as a result of the algorithm
selection negotiation. The hash function hash() is also decided during algorithm
negotiation.

1. C generates a random number and computes . C
sends to S.

2. S generates a random number and computes .
S receives . It computes mod ,

, and signature on with its private host key. S sends
to C. The signing operation may involve a second hashing

operation.
(K_S || f || s)

HsK_S || e || f || K)
H = hash(V_C || V_S || I_C || I_S ||pK = eye

f = gy mod py(0 6 y 6 q)

e
e = gx mod px(1 6 x 6 q)

qgp

qpgp

pdlpktl

pktl = packet length
pdl = padding length

seq # padding

Payload

SSH Packet

Compressed payload

Ciphertext

COMPRESS

ENCRYPT MAC

Figure 16.10 SSH Transport Layer Protocol Packet Formation

Preview from Notesale.co.uk

Page 538 of 900

16.7 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 519

16.6 RECOMMENDED READING AND WEB SITES

[RESC01] is a good detailed treatment of SSL and TLS. [BARR05] provides a thorough
treatment of SSH. The original version (SSH-1) of SSH was introduced in [YLON96].

BARR05 Barrett, D.; Silverman, R.; and Byrnes, R. SSH The Secure Shell: The Definitive
Guide. Sebastopol, CA: O’Reilly, 2005.

RESC01 Rescorla, E. SSL and TLS: Designing and Building Secure Systems. Reading,
MA: Addison-Wesley, 2001.

YLON96 Ylonen, T. “SSH - Secure Login Connections over the Internet.” Proceedings,
Sixth USENIX Security Symposium, July 1996.

Recommended Web Sites:

• Transport Layer Security Charter: Latest RFCs and Internet drafts for TLS.

• OpenSSL Project: Project to develop open-source SSL and TLS software. Site includes
documents and links.

16.7 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

Alert protocol
Change Cipher Spec protocol
Handshake protocol

HTTPS (HTTP over SSL)
Master Secret
Secure Shell (SSH)

Secure Socket Layer (SSL)
Transport Layer Security

(TLS)

Review Questions

16.1 What are the advantages of each of the three approaches shown in Figure 16.1?
16.2 What protocols comprise SSL?
16.3 What is the difference between an SSL connection and an SSL session?
16.4 List and briefly define the parameters that define an SSL session state.
16.5 List and briefly define the parameters that define an SSL session connection.
16.6 What services are provided by the SSL Record Protocol?
16.7 What steps are involved in the SSL Record Protocol transmission?
16.8 What is the purpose of HTTPS?
16.9 For what applications is SSH useful?

16.10 List and briefly define the SSH protocols.

Preview from Notesale.co.uk

Page 546 of 900

17.1 / IEEE 802.11 WIRELESS LAN OVERVIEW 527

Table 17.2 IEEE 802.11 Services

Service Provider Used to support

Association Distribution system MSDU delivery

Authentication Station LAN access and security

Deauthentication Station LAN access and security

Disassociation Distribution system MSDU delivery

Distribution Distribution system MSDU delivery

Integration Distribution system MSDU delivery

MSDU delivery Station MSDU delivery

Privacy Station LAN access and security

Reassociation Distribution system MSDU delivery

IEEE 802.11 Services

IEEE 802.11 defines nine services that need to be provided by the wireless LAN to
achieve functionality equivalent to that which is inherent to wired LANs. Table 17.2
lists the services and indicates two ways of categorizing them.

1. The service provider can be either the station or the DS. Station services are
implemented in every 802.11 station, including AP stations. Distribution ser-
vices are provided between BSSs; these services may be implemented in an AP
or in another special-purpose device attached to the distribution system.

2. Three of the services are used to control IEEE 802.11 LAN access and confi-
dentiality. Six of the services are used to support delivery of MSDUs between
stations. If the MSDU is too large to be transmitted in a single MPDU, it may
be fragmented and transmitted in a series of MPDUs.

Following the IEEE 802.11 document, we next discuss the services in an order
designed to clarify the operation of an IEEE 802.11 ESS network. MSDU delivery,
which is the basic service, already has been mentioned. Services related to security
are introduced in Section 17.2.

DISTRIBUTION OF MESSAGES WITHIN A DS The two services involved with the
distribution of messages within a DS are distribution and integration. Distribution is
the primary service used by stations to exchange MPDUs when the MPDUs must
traverse the DS to get from a station in one BSS to a station in another BSS. For
example, suppose a frame is to be sent from station 2 (STA 2) to station 7 (STA 7) in
Figure 17.3. The frame is sent from STA 2 to AP 1, which is the AP for this BSS. The
AP gives the frame to the DS, which has the job of directing the frame to the AP
associated with STA 7 in the target BSS. AP 2 receives the frame and forwards it to
STA 7. How the message is transported through the DS is beyond the scope of the
IEEE 802.11 standard.

If the two stations that are communicating are within the same BSS, then the
distribution service logically goes through the single AP of that BSS.

Preview from Notesale.co.uk

Page 554 of 900

546 CHAPTER 17 / WIRELESS NETWORK SECURITY

• Support for navigation among cards and decks: WML includes provisions for
event handling, which is used for navigation or executing scripts.

In an HTML-based Web browser, a user navigates by clicking on links. At a
WML-capable mobile device, a user interacts with cards, moving forward and back
through the deck.

WAP Architecture

Figure 17.13, from the WAP architecture document, illustrates the overall stack
architecture implemented in a WAP client. In essence, this is a five-layer model.
Each layer provides a set of functions and/or services to other services and applica-
tions through a set of well-defined interfaces. Each of the layers of the architecture
is accessible by the layers above, as well as by other services and applications. Many
of the services in the stack may be provided by more than one protocol. For exam-
ple, either HTTP or WSP may provide the Hypermedia Transfer service.

Common to all five layers are sets of services that are accessible by multiple
layers. These common services fall into two categories: security services and service
discovery.

Service
Discovery

Security

Crypto
libraries

Auth.

Identity

PKI

Secure
transport

Secure
bearer

EFI

Pro-
visioning

Navigation
Discovery

Service
lookup

Push

Content Formats

WEA/WTA user agent(s)

Multimedia messaging

Push-OTA

Synchronisation

Cookies

Capability negotiation
Session
Services

Application
Framework

P
ro

to
co

l F
ra

m
ew

or
k

IPv6

IPv4

MPAK

SOS

ReFLEX

FLEX

GUTS

GHOST

USSD

SMS
Bearer

Networks

DatagramsTransport
Services

Hypermedia
transfer

Streaming
Message
transfer

Transfer
Services

Connections

Figure 17.13 WAP Architecture

Preview from Notesale.co.uk

Page 573 of 900

548 CHAPTER 17 / WIRELESS NETWORK SECURITY

that are intended to ease the task of developing applications and devices supported
by WAP. The major elements of the WAE model (Figure 17.13) are

• WAE user agents: Software that executes in the user’s wireless device and that
provides specific functionality (e.g., display content) to the end user.

• Wireless telephony applications (WTA): A collection of telephony-specific
extensions for call and feature control mechanisms that provide authors
advanced mobile network services. Using WTA, applications developers can
use the microbrowser to originate telephone calls and to respond to events
from the telephone network.

• Standard content encoding: Defined to allow a WAE user agent (e.g., a
browser) to conveniently navigate Web content. On the server side are content
generators. These are applications (or services) on origin servers (e.g., CGI
scripts) that produce standard content formats in response to requests from
user agents in the mobile terminal. WAE does not specify any standard
content generators but expects that there will be a variety available running
on typical HTTP origin servers commonly used in WWW today.

• Push: A service to receive push transmissions from the server, i.e., transmis-
sions that are not in response to a Web client request but are sent on the
initiative of the server. This service is supported by the Push-OTA (Push Over
The Air) session service.

• Multimedia messaging: Provides for the transfer and processing of multimedia
messages, such as e-mail and instant messages, to WAP devices.

WAP Protocol Architecture

The WAP architecture illustrated in Figure 17.13 dictates a collection of services at
each level and provides interface specifications at the boundary between each pair
of layers. Because several of the services in the WAP stack can be provided using
different protocols based on the circumstances, there are more than one possible
stack configurations. Figure 17.14 depicts a common protocol stack configuration in
which a WAP client device connects to a Web server via a WAP gateway. This con-
figuration is common with devices that implement version 1 of the WAP specifica-
tion but is also used in version 2 devices (WAP2) if the bearer network does not
support TCP/IP.

Bearer

WDP

WTLS

WTP

WSP

IP

TCP

TLS

HTTP

WAP Gateway

Bearer

WDP

WTLS

WTP

WSP

WAE

WAP Device

IP

TCP

TLS

WAE

Web Server

HTTP

Figure 17.14 WTP 1.x Gateway

Preview from Notesale.co.uk

Page 575 of 900

552 CHAPTER 17 / WIRELESS NETWORK SECURITY

• Connection end: Whether this entity is considered a client or a server in this
secure session.

• Bulk cipher algorithm: Includes the key size of this algorithm, how much of
that key is secret, whether it is a block or stream cipher, and the block size of
the cipher (if appropriate).

• MAC algorithm: Includes the size of the key used for MAC calculation and
the size of the hash which is returned by the MAC algorithm.

• Compression algorithm: Includes all information the algorithm requires to do
compression.

• Master secret: A 20-byte secret shared between the client and server.

• Client random: A 16-byte value provided by the client.

• Server random: A 16-byte value provided by the server.

• Sequence number mode: Which scheme is used to communicate sequence
numbers in this secure connection.

• Key refresh: Defines how often some connection state parameters (encryption
key, MAC secret, and IV) are updated. New keys are calculated at every

messages, that is, when the sequence number is 0, , , etc.

WTLS Protocol Architecture

WTLS is not a single protocol but rather two layers of protocols, as illustrated in
Figure 17.15. The WTLS Record Protocol provides basic security services to various
higher-layer protocols. In particular, the Hypertext Transfer Protocol (HTTP),
which provides the transfer service for Web client/server interaction, can operate on
top of WTLS. Three higher-layer protocols are defined as part of WTLS: the
Handshake Protocol, The Change Cipher Spec Protocol, and the Alert Protocol.
These WTLS-specific protocols are used in the management of WTLS exchanges
and are examined subsequently in this section.

WTLS RECORD PROTOCOL The WTLS Record Protocol takes user data from the
next higher layer (WTP, WTLS Handshake Protocol, WTLS Alert Protocol, and
WTLS Change Cipher Spec Protocol) and encapsulates these data in a PDU. The
following steps occur (Figure 17.16).

3n2nn = 2key_refresh

WDP or UDP/IP

WTLS Record Protocol

WTLS
Handshake

Protocol

WTLS Change
Cipher Spec

Protocol

WTLS Alert
Protocol

WTP

Figure 17.15 WTLS Protocol Stack

Preview from Notesale.co.uk

Page 579 of 900

554 CHAPTER 17 / WIRELESS NETWORK SECURITY

part of HMAC, and cryptographic attributes, such as MAC code size. There are
two states associated with each session. Once a session is established, there is a
current operating state for both read and write (i.e., receive and send). In addition,
during the Handshake Protocol, pending read and write states are created.

The Change Cipher Spec Protocol is one of the three WTLS-specific protocols
that use the WTLS Record Protocol, and it is the simplest. This protocol consists of
a single message, which consists of a single byte with the value 1.The sole purpose of
this message is to cause the pending state to be copied into the current state, which
updates the cipher suite to be used on this connection. Thus, when the Change
Cipher Spec message arrives, the sender of the message sets the current write state
to the pending state and the receiver sets the current read state to the pending state.

ALERT PROTOCOL The Alert Protocol is used to convey WTLS-related alerts to the
peer entity. As with other applications that use WTLS, alert messages are
compressed and encrypted, as specified by the current state.

r = reserved
C = cipher spec indicator
S = sequence number field indicator
L = record length field indicator
MAC = message authentication code

Content type

Sequence number

Record length

rCSL

Plaintext
(optionally

compressed)

MAC (0, 16, or 20 bytes)

E
nc

ry
pt

ed

Sc
op

e
of

 M
A

C

Figure 17.17 WTLS Record Format

Preview from Notesale.co.uk

Page 581 of 900

17.6 / RECOMMENDED READING AND WEB SITES 563

CHEN05 Chen, J.; Jiang, M.; and Liu, Y. “Wireless LAN Security and IEEE 802.11i.”
IEEE Wireless Communications, February 2005.

FRAN07 Frankel, S.; Eydt, B.; Owens, L.; and Scarfone, K. Establishing Wireless Robust
Security Networks: A Guide to IEEE 802.11i. NIST Special Publication SP 800-97,
February 2007.

ROSH04 Roshan, P., and Leary, J. 802.11 Wireless LAN Fundamentals. Indianapolis:
Cisco Press, 2004.

STAL07 Stallings, W. Data and Computer Communications, Eighth Edition. Upper
Saddle River, NJ: Prentice Hall, 2007.

User

Validation

CACHE: URL set to secure proxy mapping

Click: Bank

Establish Secure WTLS session (if not present)

Error 300: Body= XML Navigation Document

Error 300: Body= XML Navigation Document

GET:
http://bank.com/...

GET:
http://bank.com/...

GET:
http://bank.com/...

GET: http://bank.com/...

Display wml deck

secure.bank.com/xx.wml

User-Agent

Trusted
Master/Default

Pull Proxy OS
Secure Subordinate

Pull Proxy
OS (Secure

Domain)

Figure 17.22 WAP Transport Layer End-to-End Security Example

17.6 RECOMMENDED READING AND WEB SITES

The IEEE 802.11 and WiFi specifications are covered in more detail in [STAL07]. A good
book-length treatment is [ROSH04]. [FRAN07] is an excellent, detailed treatment of IEEE
802.11i. [CHEN05] provides an overview of IEEE 802.11i.

Preview from Notesale.co.uk

Page 590 of 900

568 CHAPTER 18 / ELECTRONIC MAIL SECURITY

Despite the refusal of VADM Poindexter and LtCol North to appear, the Board’s
access to other sources of information filled much of this gap. The FBI provided
documents taken from the files of the National Security Advisor and relevant
NSC staff members, including messages from the PROF system between VADM
Poindexter and LtCol North. The PROF messages were conversations by com-
puter, written at the time events occurred and presumed by the writers to be pro-
tected from disclosure. In this sense, they provide a first-hand, contemporaneous
account of events.

—The Tower Commission Report to President Reagan on the
Iran-Contra Affair, 1987

KEY POINTS

◆ PGP is an open-source, freely available software package for e-mail secu-
rity. It provides authentication through the use of digital signature, confi-
dentiality through the use of symmetric block encryption, compression
using the ZIP algorithm, and e-mail compatibility using the radix-64
encoding scheme.

◆ PGP incorporates tools for developing a public-key trust model and
public-key certificate management.

◆ S/MIME is an Internet standard approach to e-mail security that incorporates
the same functionality as PGP.

◆ DKIM is a specification used by e-mail providers for cryptographically
signing e-mail messages on behalf of the source domain.

In virtually all distributed environments, electronic mail is the most heavily
used network-based application. Users expect to be able to, and do, send
e-mail to others who are connected directly or indirectly to the Internet,
regardless of host operating system or communications suite. With the explo-
sively growing reliance on e-mail, there grows a demand for authentication
and confidentiality services. Two schemes stand out as approaches that enjoy
widespread use: Pretty Good Privacy (PGP) and S/MIME. Both are examined
in this chapter. The chapter closes with a discussion of DomainKeys Identified
Mail.

18.1 PRETTY GOOD PRIVACY

PGP is a remarkable phenomenon. Largely the effort of a single person, Phil
Zimmermann, PGP provides a confidentiality and authentication service that can
be used for electronic mail and file storage applications. In essence, Zimmermann
has done the following:

Preview from Notesale.co.uk

Page 595 of 900

580 CHAPTER 18 / ELECTRONIC MAIL SECURITY

• User ID: Typically, this will be the user’s e-mail address (e.g., stallings@acm.org).
However, the user may choose to associate a different name with each pair
(e.g., Stallings, WStallings, WilliamStallings, etc.) or to reuse the same User ID
more than once.

The private-key ring can be indexed by either User ID or Key ID; later we will
see the need for both means of indexing.

Although it is intended that the private-key ring be stored only on the
machine of the user that created and owns the key pairs and that it be accessible
only to that user, it makes sense to make the value of the private key as secure as
possible. Accordingly, the private key itself is not stored in the key ring. Rather, this
key is encrypted using CAST-128 (or IDEA or 3DES). The procedure is as follows:

1. The user selects a passphrase to be used for encrypting private keys.

2. When the system generates a new public/private key pair using RSA, it asks
the user for the passphrase. Using SHA-1, a 160-bit hash code is generated
from the passphrase, and the passphrase is discarded.

3. The system encrypts the private key using CAST-128 with the 128 bits of
the hash code as the key.The hash code is then discarded, and the encrypted
private key is stored in the private-key ring.

Subsequently, when a user accesses the private-key ring to retrieve a pri-
vate key, he or she must supply the passphrase. PGP will retrieve the encrypted
private key, generate the hash code of the passphrase, and decrypt the encrypted
private key using CAST-128 with the hash code.

This is a very compact and effective scheme. As in any system based on pass-
words, the security of this system depends on the security of the password. To avoid
the temptation to write it down, the user should use a passphrase that is not easily
guessed but that is easily remembered.

Figure 18.4 also shows the general structure of a public-key ring. This data
structure is used to store public keys of other users that are known to this user. For
the moment, let us ignore some fields shown in the figure and describe the following
fields.

• Timestamp: The date/time when this entry was generated.

• Key ID: The least significant 64 bits of the public key for this entry.

• Public Key: The public key for this entry.

• User ID: Identifies the owner of this key. Multiple user IDs may be associated
with a single public key.

The public-key ring can be indexed by either User ID or Key ID; we will see
the need for both means of indexing later.

We are now in a position to show how these key rings are used in message
transmission and reception. For simplicity, we ignore compression and radix-64 con-
version in the following discussion. First consider message transmission (Figure 18.5)
and assume that the message is to be both signed and encrypted. The sending PGP
entity performs the following steps.

Preview from Notesale.co.uk

Page 607 of 900

18.2 / S/MIME 591

Here is a simple example of a multipart message containing two parts—both
consisting of simple text (taken from RFC 2046).

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: Sample message

MIME-Version: 1.0

Content-type: multipart/mixed; boundary="simple
boundary"

This is the preamble. It is to be ignored, though it
is a handy place for mail composers to include an
explanatory note to non-MIME conformant readers.

—simple boundary

This is implicitly typed plain ASCII text. It does NOT
end with a linebreak.

—simple boundary

Content-type: text/plain; charset=us-ascii

This is explicitly typed plain ASCII text. It DOES end
with a linebreak.

—simple boundary—

This is the epilogue. It is also to be ignored.

There are four subtypes of the multipart type, all of which have the same over-
all syntax. The multipart/mixed subtype is used when there are multiple indepen-
dent body parts that need to be bundled in a particular order. For the
multipart/parallel subtype, the order of the parts is not significant. If the recipient’s
system is appropriate, the multiple parts can be presented in parallel. For example, a
picture or text part could be accompanied by a voice commentary that is played
while the picture or text is displayed.

For the multipart/alternative subtype, the various parts are different represen-
tations of the same information. The following is an example:

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: Formatted text mail

MIME-Version: 1.0

Content-Type: multipart/alternative;
boundary=boundary42

—boundary42

Content-Type: text/plain; charset=us-ascii

...plain text version of message goes here....

Preview from Notesale.co.uk

Page 618 of 900

592 CHAPTER 18 / ELECTRONIC MAIL SECURITY

—boundary42

Content-Type: text/enriched

.... RFC 1896 text/enriched version of same message
goes here ...

—boundary42—

In this subtype, the body parts are ordered in terms of increasing preference.
For this example, if the recipient system is capable of displaying the message in the
text/enriched format, this is done; otherwise, the plain text format is used.

The multipart/digest subtype is used when each of the body parts is inter-
preted as an RFC 5322 message with headers. This subtype enables the construction
of a message whose parts are individual messages. For example, the moderator of a
group might collect e-mail messages from participants, bundle these messages, and
send them out in one encapsulating MIME message.

The message type provides a number of important capabilities in MIME. The
message/rfc822 subtype indicates that the body is an entire message, including
header and body. Despite the name of this subtype, the encapsulated message may
be not only a simple RFC 5322 message but also any MIME message.

The message/partial subtype enables fragmentation of a large message into a
number of parts, which must be reassembled at the destination. For this subtype,
three parameters are specified in the Content-Type: Message/Partial field: an id
common to all fragments of the same message, a sequence number unique to each
fragment, and the total number of fragments.

The message/external-body subtype indicates that the actual data to be con-
veyed in this message are not contained in the body. Instead, the body contains the
information needed to access the data. As with the other message types, the mes-
sage/external-body subtype has an outer header and an encapsulated message with
its own header. The only necessary field in the outer header is the Content-Type
field, which identifies this as a message/external-body subtype. The inner header is
the message header for the encapsulated message. The Content-Type field in the
outer header must include an access-type parameter, which indicates the method of
access, such as FTP (file transfer protocol).

The application type refers to other kinds of data, typically either uninter-
preted binary data or information to be processed by a mail-based application.

MIME TRANSFER ENCODINGS The other major component of the MIME
specification, in addition to content type specification, is a definition of transfer
encodings for message bodies. The objective is to provide reliable delivery across
the largest range of environments.

The MIME standard defines two methods of encoding data. The Content-
Transfer-Encoding field can actually take on six values, as listed in Table 18.4.
However, three of these values (7bit, 8bit, and binary) indicate that no encoding has
been done but provide some information about the nature of the data. For SMTP
transfer, it is safe to use the 7bit form. The 8bit and binary forms may be usable in
other mail transport contexts. Another Content-Transfer-Encoding value is x-token,

Preview from Notesale.co.uk

Page 619 of 900

602 CHAPTER 18 / ELECTRONIC MAIL SECURITY

Digital IDs can also contain other user-supplied information, including

• Address

• E-mail address

• Basic registration information (country, zip code, age, and gender)

VeriSign provides three levels, or classes, of security for public-key certificates,
as summarized in Table 18.8. A user requests a certificate online at VeriSign’s Web
site or other participating Web sites. Class 1 and Class 2 requests are processed
on line, and in most cases take only a few seconds to approve. Briefly, the following
procedures are used.

• For Class 1 Digital IDs, VeriSign confirms the user’s e-mail address by sending
a PIN and Digital ID pick-up information to the e-mail address provided in
the application.

• For Class 2 Digital IDs, VeriSign verifies the information in the application
through an automated comparison with a consumer database in addition to

Table 18.8 Verisign Public-Key Certificate Classes

Class 1 Class 2 Class 3

Summary of
Confirmation
of Identity

Automated unam-
biguous name and
e-mail address search.

Same as Class 1, plus
automated enrollment infor-
mation check and automated
address check.

Same as Class 1, plus personal
presence and ID documents
plus Class 2 automated ID
check for individuals; business
records (or filings) for
organizations.

IA Private Key
Protection

PCA: trustworthy
hardware; CA: trust-
worthy software or
trustworthy hardware.

PCA and CA: trustworthy
hardware.

PCA and CA: trustworthy
hardware.

Certificate
Applicant and
Subscriber
Private Key
Protection

Encryption software
(PIN protected)
recommended but not
required.

Encryption software (PIN
protected) required.

Encryption software (PIN
protected) required; hardware
token recommended but not
required.

Applications
Implemented or
Contemplated
by Users

Web-browsing and
certain e-mail usage.

Individual and intra- and
inter-company e-mail, online
subscriptions, password
replacement, and software
validation.

E-banking, corp. database
access, personal banking,
membership-based online
services, content integrity
services, e-commerce server,
software validation; authenti-
cation of LRAAs; and strong
encryption for certain servers.

IA = Issuing Authority
CA = Certification Authority
PCA = VeriSign public primary certification authority
PIN = Personal Identification Number
LRAA = Local Registration Authority Administrator

Preview from Notesale.co.uk

Page 629 of 900

18.3 / DOMAINKEYS IDENTIFIED MAIL 603

performing all of the checking associated with a Class 1 Digital ID. Finally,
confirmation is sent to the specified postal address alerting the user that a
Digital ID has been issued in his or her name.

• For Class 3 Digital IDs, VeriSign requires a higher level of identity assurance.
An individual must prove his or her identity by providing notarized creden-
tials or applying in person.

Enhanced Security Services

As of this writing, three enhanced security services have been proposed in an
Internet draft. The details of these may change, and additional services may be
added. The three services are

• Signed receipts: A signed receipt may be requested in a SignedData object.
Returning a signed receipt provides proof of delivery to the originator of a
message and allows the originator to demonstrate to a third party that the
recipient received the message. In essence, the recipient signs the entire origi-
nal message plus the original (sender’s) signature and appends the new signa-
ture to form a new S/MIME message.

• Security labels: A security label may be included in the authenticated attrib-
utes of a SignedData object. A security label is a set of security information
regarding the sensitivity of the content that is protected by S/MIME encapsu-
lation. The labels may be used for access control, by indicating which users are
permitted access to an object. Other uses include priority (secret, confidential,
restricted, and so on) or role based, describing which kind of people can see
the information (e.g., patient’s health-care team, medical billing agents, etc.).

• Secure mailing lists: When a user sends a message to multiple recipients, a cer-
tain amount of per-recipient processing is required, including the use of each
recipient’s public key. The user can be relieved of this work by employing the
services of an S/MIME Mail List Agent (MLA). An MLA can take a single
incoming message, perform the recipient-specific encryption for each recipi-
ent, and forward the message. The originator of a message need only send the
message to the MLA with encryption performed using the MLA’s public key.

18.3 DOMAINKEYS IDENTIFIED MAIL

DomainKeys Identified Mail (DKIM) is a specification for cryptographically signing
e-mail messages, permitting a signing domain to claim responsibility for a message in
the mail stream. Message recipients (or agents acting in their behalf) can verify the
signature by querying the signer’s domain directly to retrieve the appropriate public
key and thereby can confirm that the message was attested to by a party in posses-
sion of the private key for the signing domain. DKIM is a proposed Internet
Standard (RFC 4871: DomainKeys Identified Mail (DKIM) Signatures). DKIM has
been widely adopted by a range of e-mail providers, including corporations, govern-
ment agencies, gmail, yahoo, and many Internet Service Providers (ISPs).

Preview from Notesale.co.uk

Page 630 of 900

606 CHAPTER 18 / ELECTRONIC MAIL SECURITY

2. At the next level are professional senders of bulk spam mail. These attackers
often operate as commercial enterprises and send messages on behalf of third
parties. They employ more comprehensive tools for attack, including Mail
Transfer Agents (MTAs) and registered domains and networks of compromised
computers (zombies) to send messages and (in some cases) to harvest addresses
to which to send.

3. The most sophisticated and financially motivated senders of messages are those
who stand to receive substantial financial benefit, such as from an e-mail-based
fraud scheme. These attackers can be expected to employ all of the above
mechanisms and additionally may attack the Internet infrastructure itself,
including DNS cache-poisoning attacks and IP routing attacks.

CAPABILITIES RFC 4686 lists the following as capabilities that an attacker might
have.

1. Submit messages to MTAs and Message Submission Agents (MSAs) at
multiple locations in the Internet.

2. Construct arbitrary Message Header fields, including those claiming to be
mailing lists, resenders, and other mail agents.

3. Sign messages on behalf of domains under their control.

4. Generate substantial numbers of either unsigned or apparently signed messages
that might be used to attempt a denial-of-service attack.

5. Resend messages that may have been previously signed by the domain.

6. Transmit messages using any envelope information desired.

7. Act as an authorized submitter for messages from a compromised computer.

8. Manipulation of IP routing. This could be used to submit messages from specific
IP addresses or difficult-to-trace addresses, or to cause diversion of messages to a
specific domain.

9. Limited influence over portions of DNS using mechanisms such as cache
poisoning. This might be used to influence message routing or to falsify adver-
tisements of DNS-based keys or signing practices.

10. Access to significant computing resources, for example, through the conscription of
worm-infected “zombie” computers. This could allow the “bad actor” to perform
various types of brute-force attacks.

11. Ability to eavesdrop on existing traffic, perhaps from a wireless network.

LOCATION DKIM focuses primarily on attackers located outside of the administrative
units of the claimed originator and the recipient.These administrative units frequently
correspond to the protected portions of the network adjacent to the originator and
recipient. It is in this area that the trust relationships required for authenticated
message submission do not exist and do not scale adequately to be practical.
Conversely, within these administrative units, there are other mechanisms (such as
authenticated message submission) that are easier to deploy and more likely to be
used than DKIM. External “bad actors” are usually attempting to exploit the “any-
to-any” nature of e-mail that motivates most recipient MTAs to accept messages from
anywhere for delivery to their local domain. They may generate messages without

Preview from Notesale.co.uk

Page 633 of 900

610 CHAPTER 18 / ELECTRONIC MAIL SECURITY

Before a message is signed, a process known as canonicalization is per-
formed on both the header and body of the RFC 5322 message. Canonicalization
is necessary to deal with the possibility of minor changes in the message made en
route, including character encoding, treatment of trailing white space in message
lines, and the “folding” and “unfolding” of header lines. The intent of canonical-
ization is to make a minimal transformation of the message (for the purpose of
signing; the message itself is not changed, so the canonicalization must be per-
formed again by the verifier) that will give it its best chance of producing the
same canonical value at the receiving end. DKIM defines two header canonical-
ization algorithms (“simple” and “relaxed”) and two for the body (with the same
names). The simple algorithm tolerates almost no modification, while the relaxed
tolerates common modifications.

The signature includes a number of fields. Each field begins with a tag consist-
ing of a tag code followed by an equals sign and ends with a semicolon. The fields
include the following:

• DKIM version.

• Algorithm used to generate the signature; must be either rsa-sha1 or
rsa-sha256.

• Canonicalization method used on the header and the body.

• A domain name used as an identifier to refer to the identity of a respon-
sible person or organization. In DKIM, this identifier is called the Signing
Domain IDentifier (SDID). In our example, this field indicates that the sender
is using a gmail address.

• In order that different keys may be used in different circumstances for
the same signing domain (allowing expiration of old keys, separate depart-
mental signing, or the like), DKIM defines a selector (a name associated with
a key), which is used by the verifier to retrieve the proper key during signature
verification.

• Signed Header fields. A colon-separated list of header field names that
identify the header fields presented to the signing algorithm. Note that in our
example above, the signature covers the domainkey-signature field.This refers
to an older algorithm (since replaced by DKIM) that is still in use.

• The hash of the canonicalized body part of the message. This provides
additional information for diagnosing signature verification failures.

• The signature data in base64 format; this is the encrypted hash code.

18.4 RECOMMENDED READING AND WEB SITES

[LEIB07] provides an overview of DKIM.

b =

bh =

h =

s =

d =
c =

a =
v =

LEIB07 Leiba, B., and Fenton, J. “DomainKeys Identified Mail (DKIM): Using Digital
Signatures for Domain Verification.” Proceedings of Fourth Conference on E-mail
and Anti-Spam (CEAS 07), 2007.

Preview from Notesale.co.uk

Page 637 of 900

18.5 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 611

Recommended Web Sites:

• PGP Home Page: PGP Web site by PGP Corp., the leading PGP commercial vendor.

• International PGP Home Page: Designed to promote worldwide use of PGP. Contains
documents and links of interest.

• PGP Charter: Latest RFCs and Internet drafts for Open Specification PGP.

• S/MIME Charter: Latest RFCs and Internet drafts for S/MIME.

• DKIM: Website hosted by Mutual Internet Practices Association, this site contains a
wide range of documents and information related to DKIM.

• DKIM Charter: Latest RFCs and Internet drafts for DKIM.

18.5 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

detached signature
DomainKeys Identified Mail

(DKIM)
electronic mail

Multipurpose Internet Mail
Extensions (MIME)

Pretty Good Privacy (PGP)
radix 64

session key
S/MIME
trust
ZIP

Review Questions

18.1 What are the five principal services provided by PGP?
18.2 What is the utility of a detached signature?
18.3 Why does PGP generate a signature before applying compression?
18.4 What is R64 conversion?
18.5 Why is R64 conversion useful for an e-mail application?
18.6 How does PGP use the concept of trust?
18.7 What is RFC 5322?
18.8 What is MIME?
18.9 What is S/MIME?

18.10 What is DKIM?

Problems

18.1 PGP makes use of the cipher feedback (CFB) mode of CAST-128, whereas most sym-
metric encryption applications (other than key encryption) use the cipher block
chaining (CBC) mode. We have

CFB: Ci = Pi � E(K, Ci - 1); Pi = Ci � E(K, Ci - 1)

CBC: Ci = E(K, [Ci - 1 � Pi]); Pi = Ci - 1 � D(K, Ci)

Preview from Notesale.co.uk

Page 638 of 900

618

IP
Header

IP
Payload

IP
Header

IPsec
Header

Secure IP
Payload

IPH
eader IPsec

H
eader

Secure IP

PayloadIP
Hea

de
r

IP
se

c
Hea

de
r

Se
cu

re
 IP

Pa
yl

oa
d

IP
Header

IP
Payload

Networking device
with IPsec

Ethernet
switch

Ethernet
switch

User system
with IPsec

Networking device
with IPsec

Public (Internet)
or Private
Network

Figure 19.1 An IP Security Scenario

Preview from Notesale.co.uk

Page 645 of 900

19.1 / IP SECURITY OVERVIEW 621

TRANSPORT MODE Transport mode provides protection primarily for upper-layer
protocols. That is, transport mode protection extends to the payload of an IP
packet.1 Examples include a TCP or UDP segment or an ICMP packet, all of which
operate directly above IP in a host protocol stack. Typically, transport mode is used
for end-to-end communication between two hosts (e.g., a client and a server, or two
workstations). When a host runs AH or ESP over IPv4, the payload is the data that
normally follow the IP header. For IPv6, the payload is the data that normally follow
both the IP header and any IPv6 extensions headers that are present, with the
possible exception of the destination options header, which may be included in
the protection.

ESP in transport mode encrypts and optionally authenticates the IP payload
but not the IP header. AH in transport mode authenticates the IP payload and
selected portions of the IP header.

TUNNEL MODE Tunnel mode provides protection to the entire IP packet. To
achieve this, after the AH or ESP fields are added to the IP packet, the entire
packet plus security fields is treated as the payload of new outer IP packet with a
new outer IP header. The entire original, inner, packet travels through a tunnel
from one point of an IP network to another; no routers along the way are able to
examine the inner IP header. Because the original packet is encapsulated, the new,
larger packet may have totally different source and destination addresses, adding
to the security.Tunnel mode is used when one or both ends of a security association
(SA) are a security gateway, such as a firewall or router that implements IPsec.
With tunnel mode, a number of hosts on networks behind firewalls may engage in
secure communications without implementing IPsec. The unprotected packets
generated by such hosts are tunneled through external networks by tunnel mode
SAs set up by the IPsec software in the firewall or secure router at the boundary of
the local network.

Here is an example of how tunnel mode IPsec operates. Host A on a network
generates an IP packet with the destination address of host B on another network.
This packet is routed from the originating host to a firewall or secure router at the
boundary of A’s network. The firewall filters all outgoing packets to determine the
need for IPsec processing. If this packet from A to B requires IPsec, the firewall
performs IPsec processing and encapsulates the packet with an outer IP header.The
source IP address of this outer IP packet is this firewall, and the destination address
may be a firewall that forms the boundary to B’s local network. This packet is now
routed to B’s firewall, with intermediate routers examining only the outer IP
header. At B’s firewall, the outer IP header is stripped off, and the inner packet is
delivered to B.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP
packet, including the inner IP header. AH in tunnel mode authenticates the entire
inner IP packet and selected portions of the outer IP header.

Table 19.1 summarizes transport and tunnel mode functionality.

1In this chapter, the term IP packet refers to either an IPv4 datagram or an IPv6 packet.

Preview from Notesale.co.uk

Page 648 of 900

622 CHAPTER 19 / IP SECURITY

SPD SPD

SAD

IKEv2 IKEv2

IPsecv3 IPsecv3

Security
association
database

Key exchange

IKE SA

IPsec SA Pair

ESP protects data

Security
association
database

Security
policy

database

Security
policy

database

SAD

Figure 19.2 IPsec Architecture

19.2 IP SECURITY POLICY

Fundamental to the operation of IPsec is the concept of a security policy applied
to each IP packet that transits from a source to a destination. IPsec policy is
determined primarily by the interaction of two databases, the security association
database (SAD) and the security policy database (SPD). This section provides
an overview of these two databases and then summarizes their use during IPsec
operation. Figure 19.2 illustrates the relevant relationships.

Security Associations

A key concept that appears in both the authentication and confidentiality mecha-
nisms for IP is the security association (SA).An association is a one-way logical con-
nection between a sender and a receiver that affords security services to the traffic
carried on it. If a peer relationship is needed for two-way secure exchange, then two
security associations are required. Security services are afforded to an SA for the
use of AH or ESP, but not both.

Table 19.1 Tunnel Mode and Transport Mode Functionality

Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and selected
portions of IP header and IPv6
extension headers.

Authenticates entire inner IP packet (inner
header plus IP payload) plus selected portions
of outer IP header and outer IPv6 extension
headers.

ESP Encrypts IP payload and any IPv6 exten-
sion headers following the ESP header.

Encrypts entire inner IP packet.

ESP with
Authentication

Encrypts IP payload and any IPv6
extension headers following the ESP
header. Authenticates IP payload but
not IP header.

Encrypts entire inner IP packet. Authenticates
inner IP packet.

Preview from Notesale.co.uk

Page 649 of 900

626 CHAPTER 19 / IP SECURITY

Search
security policy

database

Search
security association

database

Determine
policy

Outbound IP packet
(e.g., from TCP or UDP)

Discard
packet

No match
found

No match
found

Match found

Match
found

DISCARD PROTECT

BYPASS

Forward
packet via

IP

Internet
key

exchange

Process
(AH/ESP)

Figure 19.3 Processing Model for Outbound Packets

3. If a match is found, further processing is determined by the first matching
entry in the SPD. If the policy for this packet is DISCARD, then the packet is
discarded. If the policy is BYPASS, then there is no further IPsec processing;
the packet is forwarded to the network for transmission.

4. If the policy is PROTECT, then a search is made of the SAD for a matching
entry. If no entry is found, then IKE is invoked to create an SA with the appro-
priate keys and an entry is made in the SA.

5. The matching entry in the SAD determines the processing for this packet.
Either encryption, authentication, or both can be performed, and either
transport or tunnel mode can be used. The packet is then forwarded to the
network for transmission.

INBOUND PACKETS Figure 19.4 highlights the main elements of IPsec processing for
inbound traffic. An incoming IP packet triggers the IPsec processing. The following
steps occur:

1. IPsec determines whether this is an unsecured IP packet or one that has
ESP or AH headers/trailers, by examining the IP Protocol field (IPv4) or
Next Header field (IPv6).

Preview from Notesale.co.uk

Page 653 of 900

632 CHAPTER 19 / IP SECURITY

For this mode using IPv4, the ESP header is inserted into the IP packet immediately
prior to the transport-layer header (e.g., TCP, UDP, ICMP), and an ESP trailer
(Padding, Pad Length, and Next Header fields) is placed after the IP packet. If
authentication is selected, the ESP Authentication Data field is added after the ESP
trailer. The entire transport-level segment plus the ESP trailer are encrypted.
Authentication covers all of the ciphertext plus the ESP header.

Orig IP
hdr

Hop-by-hop, dest,
routing, fragmentIPv6

Orig IP
hdrIPv4

New IP
hdrIPv4

(b) Transport Mode

New IP
hdr

Ext
headersIPv6

authenticated

encrypted

authenticated

encrypted

authenticated

encrypted

authenticated

encrypted

(c) Tunnel Mode

Orig IP
hdr

Ext
headers TCP Data

ESP
trlr

ESP
auth

ESP
hdr

ESP
auth

Orig IP
hdr TCP Data

ESP
trlr

ESP
auth

ESP
hdr

Dest TCP Data

TCP Data

ESP
trlr

ESP
auth

ESP
trlr

ESP
hdr

ESP
hdr

Orig IP
hdr

Extension headers
(if present) TCP DataIPv6

Orig IP
hdr TCP DataIPv4

(a) Before Applying ESP

Figure 19.8 Scope of ESP Encryption and Authentication

Preview from Notesale.co.uk

Page 659 of 900

642 CHAPTER 19 / IP SECURITY

• Symmetric-key encryption: A key derived by some out-of-band mechanism
can be used to authenticate the exchange by symmetric encryption of exchange
parameters.

IKEV2 EXCHANGES The IKEv2 protocol involves the exchange of messages in
pairs. The first two pairs of exchanges are referred to as the initial exchanges
(Figure 19.11a). In the first exchange, the two peers exchange information
concerning cryptographic algorithms and other security parameters they are willing
to use along with nonces and Diffie-Hellman (DH) values. The result of this
exchange is to set up a special SA called the IKE SA (see Figure 19.2). This SA
defines parameters for a secure channel between the peers over which subsequent
message exchanges take place. Thus, all subsequent IKE message exchanges are
protected by encryption and message authentication. In the second exchange, the
two parties authenticate one another and set up a first IPsec SA to be placed in
the SADB and used for protecting ordinary (i.e. non-IKE) communications between
the peers. Thus, four messages are needed to establish the first SA for general use.

HDR, SAi1, KEi, Ni

rednopseRrotaitinI

(a) Initial exchanges

HDR, SAr1, KEr, Nr, [CERTREQ]

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr}

HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

HDR, SK {[N], SA, Ni, [KEi], [TSi, TSr]}

(b) CREATE_CHILD_SA exchange

HDR, SK {SA, Nr, [KEr], [TSi, TSr]}

HDR, SK {[N,] [D,] [CP,] ...}

(c) Informational exchange

HDR, SK {[N,] [D,] [CP], ...}

HDR = IKE header
SAx1 = offered and chosen algorithms, DH group
KEx = Diffie-Hellman public key
Nx= nonces
CERTREQ = Certificate request
IDx = identity
CERT = certificate

SK {...} = MAC and encrypt
AUTH = Authentication
SAx2 = algorithms, parameters for IPsec SA
TSx = traffic selectors for IPsec SA
N = Notify
D = Delete
CP = Configuration

Figure 19.11 IKEv2 Exchanges

Preview from Notesale.co.uk

Page 669 of 900

19.5 / INTERNET KEY EXCHANGE 643

The CREATE_CHILD_SA exchange can be used to establish further SAs for
protecting traffic. The informational exchange is used to exchange management
information, IKEv2 error messages, and other notifications.

Header and Payload Formats

IKE defines procedures and packet formats to establish, negotiate, modify, and
delete security associations. As part of SA establishment, IKE defines payloads for
exchanging key generation and authentication data. These payload formats provide
a consistent framework independent of the specific key exchange protocol, encryp-
tion algorithm, and authentication mechanism.

IKE HEADER FORMAT An IKE message consists of an IKE header followed by one or
more payloads. All of this is carried in a transport protocol. The specification dictates
that implementations must support the use of UDP for the transport protocol.

Figure 19.12a shows the header format for an IKE message. It consists of the
following fields.

• Initiator SPI (64 bits): A value chosen by the initiator to identify a unique
IKE security association (SA).

• Responder SPI (64 bits): A value chosen by the responder to identify a
unique IKE SA.

• Next Payload (8 bits): Indicates the type of the first payload in the message;
payloads are discussed in the next subsection.

• Major Version (4 bits): Indicates major version of IKE in use.

• Minor Version (4 bits): Indicates minor version in use.

MjVer MnVer Exchange Type FlagsNext Payload

Message ID

Length

(a) IKE header

(b) Generic Payload header

Initiator’s Security Parameter Index (SPI)

Responder’s Security Parameter Index (SPI)

0Bit: 8 16 24 31

RESERVED Payload LengthNext Payload C

0Bit: 8 16 31

Figure 19.12 IKE Formats

Preview from Notesale.co.uk

Page 670 of 900

A.8 / WRITING ASSIGNMENTS 655

A.6 PROGRAMMING PROJECTS

The programming project is a useful pedagogical tool. There are several attractive
features of stand-alone programming projects that are not part of an existing security
facility:

1. The instructor can choose from a wide variety of cryptography and network
security concepts to assign projects.

2. The projects can be programmed by the students on any available computer
and in any appropriate language; they are platform and language independent.

3. The instructor need not download, install, and configure any particular infra-
structure for stand-alone projects.

There is also flexibility in the size of projects. Larger projects give students
more a sense of achievement, but students with less ability or fewer organizational
skills can be left behind. Larger projects usually elicit more overall effort from the
best students. Smaller projects can have a higher concepts-to-code ratio and,
because more of them can be assigned, the opportunity exists to address a variety of
different areas.

Again, as with research projects, the students should first submit a proposal.
The student handout should include the same elements listed in the preceding sec-
tion. The IRC includes a set of twelve possible programming projects.

The following individuals have supplied the research and programming
projects suggested in the IRC: Henning Schulzrinne of Columbia University; Cetin
Kaya Koc of Oregon State University; and David M. Balenson of Trusted Informa-
tion Systems and George Washington University.

A.7 PRACTICAL SECURITY ASSESSMENTS

Examining the current infrastructure and practices of an existing organization is
one of the best ways of developing skills in assessing its security posture. The IRC
contains a list of such activities. Students, working either individually or in small
groups, select a suitable small- to medium-sized organization. They then interview
some key personnel in that organization in order to conduct a suitable selection of
security risk assessment and review tasks as it relates to the organization’s IT infra-
structure and practices. As a result, they can then recommend suitable changes,
which can improve the organization’s IT security. These activities help students
develop an appreciation of current security practices and the skills needed to review
these and recommend changes.

Lawrie Brown of the Australian Defence Force Academy developed these
projects.

A.8 WRITING ASSIGNMENTS

Writing assignments can have a powerful multiplier effect in the learning process in
a technical discipline such as cryptography and network security. Adherents of the
Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu/) report

Preview from Notesale.co.uk

Page 682 of 900

B.3 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD 663

P10_data = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6];

P8_data = [6, 3, 7, 4, 8, 5, 10, 9];

LS1_data = [2, 3, 4, 5, 1];

LS2_data = [3, 4, 5, 1, 2];

IP_data = [2, 6, 3, 1, 4, 8, 5, 7];

IPinv_data = [4, 1, 3, 5, 7, 2, 8, 6];

EP_data = [4, 1, 2, 3, 2, 3, 4, 1];

P4_data = [2, 4, 3, 1];

SW_data = [5, 6, 7, 8, 1, 2, 3, 4];

#
SDES lookup tables
#

S0_data = [[1, 0, 3, 2],
[3, 2, 1, 0],
[0, 2, 1, 3],
[3, 1, 3, 2]];

S1_data = [[0, 1, 2, 3],
[2, 0, 1, 3],
[3, 0, 1, 0],
[2, 1, 0, 3]];

def ApplyPermutation(X, permutation):
r"""
This function takes a permutation list (list of
bit positions.)
And outputs a bit list with the bits taken from X.
"""
permute the list X
l = len(permutation);
return [X[permutation[j]-1] for j in xrange(l)];

def ApplySBox(X, SBox):
r"""
This function Applies the SDES SBox (by table
look up
"""
r = 2*X[0] + X[3];
c = 2*X[1] + X[2];
o = SBox[r][c];
return [o & 2, o & 1];

Preview from Notesale.co.uk

Page 690 of 900

666 APPENDIX B / SAGE EXAMPLES

temp_block1 = EP(right_block);

temp_block2 = XorBlock(temp_block1, K);

left_temp_block2 = LeftHalfBits(temp_block2);
right_temp_block2 = RightHalfBits(temp_block2);

S0_out = S0(left_temp_block2);
S1_out = S1(right_temp_block2);

temp_block3 = concatenate(S0_out, S1_out);

temp_block4 = P4(temp_block3)

temp_block5 = XorBlock(temp_block4, left_block);

output_block = concatenate(temp_block5,
right_block)

return output_block;

def SDESEncrypt(plaintext_block, K):
r"""
Performs a single SDES plaintext block encryption.
(Given plaintext and key as bit lists.)
"""

(K1, K2) = SDESKeySchedule(K);

temp_block1 = IP(plaintext_block);

temp_block2 = f_K(temp_block1, K1);

temp_block3 = SW(temp_block2);

temp_block4 = f_K(temp_block3, K2);

output_block = IPinv(temp_block4);

return output_block;

B.4 CHAPTER 4: BASIC CONCEPTS IN NUMBER THEORY AND
FINITE FIELDS

Example 1: The Euclidean algorithm for the greatest common divisor

def EUCLID(a,b):
r"""
The Euclidean algorithm for finding the gcd of a and b.
This algorithm assumes that a > b => 0

INPUT:

a - positive integer

b - nonnegative integer less than a

Preview from Notesale.co.uk

Page 693 of 900

670 APPENDIX B / SAGE EXAMPLES

the second and third elements are coefficients such that
. This can be called as:

sage: xgcd(17,31)
(1, 11, -6)
sage: xgcd(10, 115)
(5, -11, 1)

This can also be called as a method on Integer objects

sage: x = 300
sage: x.xgcd(36)
(12, 1, -8)

Example 6: Sage includes robust support for working with finite fields and
performing finite field arithmetic. To initialize a finite field with prime order,
use the GF command passing the order as the parameter.

sage: F = GF(2)
sage: F
Finite Field of size 2

sage: F = GF(37)
sage: F
Finite Field of size 37

sage: p = 95131
sage: K = GF(p)
sage: K
Finite Field of size 95131

To initialize a field with a prime power order use the GF command with the
following syntax (to keep track of the primitive element of the extension field.)

sage: F.<a> = GF(128)
sage: F
Finite Field in a of size 2^7

To do arithmetic in finite fields use the following syntax:

sage: K = GF(37)
sage: a = K(3)
sage: b = K(18)
sage: a - b
22
sage: a + b
21
sage: a * b
17
sage: a/b
31

gcd(a,b) = u* a + v* b
u,v

Preview from Notesale.co.uk

Page 697 of 900

B.4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS 671

sage: a^-1
25
sage: 1/a
25

To do arithmetic in a finite field with a prime power order, specify ele-
ments using the primitive element:

sage: F.<a> = GF(128)
sage: b = a^2 + 1
sage: c = a^5 + a^3 + 1
sage: b - c
a^5 + a^3 + a^2
sage: b + c
a^5 + a^3 + a^2
sage: b*c
a^3 + a^2 + a
sage: b/c
a^5 + a^3 + a^2 + a
sage: b^-1
a^5 + a^3 + a
sage: 1/b
a^5 + a^3 + a

Example 7: With Sage you can create rings of polynomials over finite fields
and do arithmetic with them. To create polynomial rings over finite fields do
the following:

sage: R.<x> = GF(2)[]
sage: R

Univariate Polynomial Ring in x over Finite Field of
size 2 (using NTL)
sage: R.<x> = GF(101)[]

sage: R
sage: R.<x> = F[]
sage: R
Univariate Polynomial Ring in x over Finite Field in
a of size 2^7

After initializing a polynomial ring, you can then just perform arithmetic
as you would expect:

sage: R.<x> = GF(2)[]
sage: f = x^3 + x + 1
sage: g = x^5 + x
sage: f + g
x^5 + x^3 + 1
sage: f*g
x^8 + x^6 + x^5 + x^4 + x^2 + x

Preview from Notesale.co.uk

Page 698 of 900

674 APPENDIX B / SAGE EXAMPLES

def SAES_ToStateMatrix(block):
r"""
Converts a bit list into an SAES state matrix.
"""
B = block;

form the plaintext block into a matrix of GF(2^n)
elements
S00 = L(V([B[0], B[1], B[2], B[3]]));
S01 = L(V([B[4], B[5], B[6], B[7]]));
S10 = L(V([B[8], B[9], B[10], B[11]]));
S11 = L(V([B[12], B[13], B[14], B[15]]));

state_matrix = Matrix(L, [[S00,S01],[S10,S11]]);

return state_matrix;

def SAES_FromStateMatrix(State Matrix):
r"""
Converts an SAES State Matrix to a bit list.
"""

output = [];

convert State Matrix back into bit list
for r in xrange(2):

for c in xrange(2):
v = V(State Matrix[r,c]);
for j in xrange(4):

output.append(Integer(v[j]));

return output;

def SAES_AddRoundKey(state_matrix, K):
r"""
Adds a round key to an SAES state matrix.
"""

K_matrix = SAES_ToStateMatrix(K);

next_state_matrix = K_matrix + state_matrix;

return next_state_matrix;

def SAES_MixColumns(state_matrix):
r"""
Performs the Mix Columns operation.
"""
next_state_matrix = MixColumns_matrix*state_matrix;
return next_state_matrix;

Preview from Notesale.co.uk

Page 701 of 900

B.6 / PSEUDORANDOM NUMBER GENERATION AND STREAM CIPHERS 679

way to generate primes, because we do not know how the
internal sage random_prime function works.

p = 3;
while (p < 2^(bitlen-1)) or (3 != (p % 4)):

p = random_prime(2^bitlen);

q = 3;
while (q < 2^(bitlen-1)) or (3 != (q % 4)):

q = random_prime(2^bitlen);

N = p*q;

X = (seed^2 % N)

state = [N, X]

return state;

def BlumBlumShub_Generate(num_bits, state):
r"""
Blum-Blum-Shum random number generation function.

INPUT:

num_bits - the number of bits (iterations) to
generate with this RNG.

state - an internal state of the BBS-RNG (a
list [N, X].)

OUTPUT:

random_bits - a num_bits length list of random
bits.

"""

random_bits = [];

N = state[0]
X = state[1]

for j in xrange(num_bits):

X = X^2 % N
random_bits.append(X % 2)

update the internal state
state[1] = X;

return random_bits;

Example 2: Linear Congruential RNG

def LinearCongruential_Initialize(a, c, m, X0):

Preview from Notesale.co.uk

Page 706 of 900

B.9 / OTHER PUBLIC-KEY CRYPTOSYSTEMS 691

Note that this output is printed . This is a minor technical consideration
because Sage stores points in what is known as “projective coordinates.” The
precise meaning is not important, because for non-infinite points the value z will
always be 1 and the first two values in a coordinate will be the x and y coordi-
nates, exactly as you would expect.This representation is useful because it allows
the point at infinity to be specified as a point with the z coordinate equal to 0:

sage: E(0)
(0 : 1 : 0)

This shows how you can recognize a point at infinity as well as specify it. If you
want to get the x and y coordinates out of a point on the curve, you can do so
as follows:

sage: P = E.random_point(); P
(62 : 38 : 1)
sage: (x,y) = P.xy(); (x,y)
(62, 38)

You can specify a point on the curve by casting an ordered pair to the curve as:

sage: P = E((62,-38)); P
(62 : 63 : 1)

Now that you can find the generators on a curve and specify points you can
experiment with these points and do arithmetic as well. Continuing to use E as
the curve instantiated in the previous example, we can set G1 and G2 to the
generators:

sage: (G1, G2) = E.gens()
sage: P = E.random_point(); P
(49 : 29 : 1)

You can compute the sum of two points as in the following examples:

sage: G1 + G2 + P
(69 : 96 : 1)
sage: G1 + P
(40 : 62 : 1)
sage: P + P + G2
(84 : 25 : 1)

You can compute the inverse of a point using the unary minus (–) operator:

sage: -P
(49 : 72 : 1)
sage: -G1
(7 : 59 : 1)

You can also compute repeated point addition (adding a point to itself many
times) with the * operator:

sage: 13*G1

(x : y: z)

Preview from Notesale.co.uk

Page 718 of 900

B.10 / CRYPTOGRAPHIC HASH FUNCTIONS 693

However, in practice most curves that are used have a prime order:

sage: # Calculate the domain parameters
sage: F = GF(101)
sage: E = EllipticCurve(F, [0, 0, 0, 25, 7])
sage: G = E((97,34))
sage: q = E.order()
sage: # Alice computes a secret values x in 2...q-1
sage: x = randint(2,q-1)
sage: # Alice computes a public value X = x*G
sage: X = x*G
sage: # Bob computes a secret value y in 2...q-1
sage: y = randint(2,q-1)
sage: # Bob computes a public value Y = y*G
sage: Y = y*G
sage: # Alice computes the shared secret value
sage: x*Y
(23 : 15 : 1)
sage: # Bob computes the shared secret value
sage: y*X
(23 : 15 : 1)

B.10 CHAPTER 11: CRYPTOGRAPHIC HASH FUNCTIONS

Example 1: The following is an example of the MASH hash function in
Sage. MASH is a function based on the use of modular arithmetic. It involves
use of an RSA-like modulus M, whose bit length affects the security.
M should be difficult to factor, and for M of unknown factorization, the
security is based in part on the difficulty of extracting modular roots. M also
determines the block size for processing messages. In essence, MASH is
defined as:

where

A = 0xFF00...00

= the largest prime less than M

= the th digit of the base expansion of input . That is, we express
as a number of base M. Thus:

The following is an example of the MASH hash function in Sage

#
This function generates a mash modulus
takes a bit length, and returns a Mash
modulus l or l-1 bits long (if n is odd)

n = x0 + x1M + x2M
2 + Á

nnMixi

Hi - 1

Hi = ((xi { Hi - 1)
2ORHi - 1) (modM)

Preview from Notesale.co.uk

Page 720 of 900

699

REFERENCES

In matters of this kind everyone feels he is justified in writing and publishing the first thing that
comes into his head when he picks up a pen, and thinks his own idea as axiomatic as the fact
that two and two make four. If critics would go to the trouble of thinking about the subject for
years on end and testing each conclusion against the actual history of war, as I have done, they
would undoubtedly be more careful of what they wrote.

—On War Carl von Clausewitz

ABBREVIATIONS

ACM Association for Computing Machinery
IBM International Business Machines Corporation
IEEE Institute of Electrical and Electronics Engineers

ACM04 The Association for Computing Machinery. USACM Policy Brief: Digital Millennium
Copyright Act (DMCA). February 6, 2004. acm.org/usacm/Issues/DMCA.htm

ADAM90 Adams, C., and Tavares, S. “Generating and Counting Binary Bent Sequences.” IEEE
Transactions on Information Theory, 1990.

AGRA02 Agrawal, M.; Keyal, N.; and Saxena, N. “PRIMES is in P.” IIT Kanpur, Preprint, August
2002. http://www.cse.iitk.ac.in/news/primality.pdf.

ANDR04 Andrews, M., and Whittaker, J. “Computer Security.” IEEE Security and Privacy,
September/October 2004.

AKL83 Akl, S. “Digital Signatures: A Tutorial Survey.” Computer, February 1983.
ALVA90 Alvare,A.“How Crackers Crack Passwords or What Passwords to Avoid.” Proceedings,

UNIX Security Workshop II, August 1990.
ANDE80 Anderson, J. Computer Security Threat Monitoring and Surveillance. Fort Washington,

PA: James P. Anderson Co., April 1980.
ANDE93 Anderson, R., et al. “Using the New ACM Code of Ethics in Decision Making.”

Communications of the ACM, February 1993.
ANTE06 Ante, S., and Grow, B. “Meet the Hackers.” Business Week, May 29, 2006.
ASHL01 Ashley, P.; Hinton, H.; and Vandenwauver, M. “Wired versus Wireless Security: The

Internet, WAP and iMode for E-Commerce.” Proceedings, Annual Computer Security
Applications Conference, 2001.

AUDI04 Audin, G. “Next-Gen Firewalls: What to Expect.” Business Communications Review,
June 2004.

AXEL00 Axelsson, S. “The Base-Rate Fallacy and the Difficulty of Intrusion Detection.” ACM
Transactions and Information and System Security, August 2000.

AYCO06 Aycock, J. Computer Viruses and Malware. New York: Springer, 2006.
BACE00 Bace, R. Intrusion Detection. Indianapolis, IN: Macmillan Technical Publishing, 2000.
BARK91 Barker,W. Introduction to the Analysis of the Data Encryption Standard (DES). Laguna

Hills, CA: Aegean Park Press, 1991.
BARK07a Barker, E., and Kelsey, J. Recommendation for Random Number Generation Using

Deterministic Random Bit Generators. NIST SP 800-90, March 2007.
BARK07b Barker, E., et al. Recommendation for Key Management — Part 1: General. NIST

SP800-57, March 2007.
BARK07c Barker, E., et al. Recommendation for Key Management — Part 2: Best Practices for Key

Management Organization. NIST SP800-57, March 2007.
BARK08 Barker, E., et al. Recommendation for Key Management — Part 3: Specific Key Man-

agement Guidance. NIST SP800-57, August 2008.
BARR05 Barrett, D.; Silverman, R.; and Byrnes, R. SSH The Secure Shell: The Definitive Guide.

Sebastopol, CA; O’Reilly, 2005.

Preview from Notesale.co.uk

Page 726 of 900

702 REFERENCES

DAWS96 Dawson, E., and Nielsen, L. “Automated Cryptoanalysis of XOR Plaintext Strings.”
Cryptologia, April 1996.

DENN81 Denning, D.“Timestamps in Key Distribution Protocols.” Communications of the ACM,
August 1981.

DENN82 Denning, D. Cryptography and Data Security. Reading, MA: Addison-Wesley, 1982.
DENN87 Denning, D. “An Intrusion-Detection Model.” IEEE Transactions on Software

Engineering, February 1987.
DESK92 Deskins, W. Abstract Algebra. New York: Dover, 1992.
DIFF76a Diffie, W., and Hellman, M. “New Directions in Cryptography.” Proceedings of the

AFIPS National Computer Conference, June 1976.
DIFF76b Diffie, W., and Hellman, M. “Multiuser Cryptographic Techniques.” IEEE Transactions

on Information Theory, November 1976.
DIFF77 Diffie, W., and Hellman, M. “Exhaustive Cryptanalysis of the NBS Data Encryption

Standard.” Computer, June 1977.
DIFF79 Diffie, W., and Hellman, M. “Privacy and Authentication: An Introduction to Cryptog-

raphy.” Proceedings of the IEEE, March 1979.
DIFF88 Diffie, W. “The First Ten Years of Public-Key Cryptography.” Proceedings of the IEEE,

May 1988.
DOBB96 Dobbertin, H.“The Status of MD5 After a Recent Attack.” CryptoBytes, Summer 1996.
DOJ00 U.S. Department of Justice. The Electronic Frontier: The Challenge of Unlawful Con-

duct Involving the Use of the Internet. March 2000. usdoj.gov/criminal/cybercrime/
unlawful.htm

EAST05 Eastlake, D.’ Schiller, J.; and Crocker, S. Randomness Requirements for Security. RFC
4086, June 2005.

EFF98 Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,Wiretap
Politics, and Chip Design. Sebastopol, CA: O’Reilly, 1998.

ELGA84 Elgamal, T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms.” Proceedings, Crypto 84, 1984.

ELGA85 Elgamal, T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms.” IEEE Transactions on Information Theory, July 1985.

ELLI70 Ellis, J. The Possibility of Secure Non-Secret Digital Encryption. CESG Report, January
1970.

ELLI99 Ellis, J. “The History of Non-Secret Encryption.” Cryptologia, July 1999.
ENGE80 Enger, N., and Howerton, P. Computer Security. New York: Amacom, 1980.
ENGE99 Enge, A. Elliptic Curves and Their Applications to Cryptography. Norwell, MA: Kluwer

Academic Publishers, 1999.
FEIS73 Feistel, H. “Cryptography and Computer Privacy.” Scientific American, May 1973.
FEIS75 Feistel, H.; Notz, W.; and Smith, J. “Some Cryptographic Techniques for Machine-

to-Machine Data Communications.” Proceedings of the IEEE, November 1975.
FERN99 Fernandes, A. “Elliptic Curve Cryptography.” Dr. Dobb’s Journal, December 1999.
FLUH00 Fluhrer, S., and McGrew, D. “Statistical Analysis of the Alleged RC4 Key Stream

Generator.” Proceedings, Fast Software Encryption 2000, 2000.
FLUH01 Fluhrer, S.; Mantin, I.; and Shamir, A. “Weakness in the Key Scheduling Algorithm of

RC4.” Proceedings, Workshop in Selected Areas of Cryptography,2001.
FORR97 Forrest, S.; Hofmeyr, S.; and Somayaji, A. “Computer Immunology.” Communications

of the ACM, October 1997.
FRAN05 Frankel, S., et al. Guide to IPsec VPNs. NIST SP 800-77, 2005.
FRAN07 Frankel, S.; Eydt, B.; Owens, L.; and Scarfone, K. Establishing Wireless Robust Security

Networks: A Guide to IEEE 802.11i. NIST Special Publication SP 800-97, February
2007.

FRAN09 Frankel, S., and Krishnan, S. IP Security (IPsec) and Internet Key Exchange (IKE)
Document Roadmap. draft-ietf-ipsecme-roadmap-01.txt, March 6, 2009.

FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.
FUMY93 Fumy, S., and Landrock, P. “Principles of Key Management.” IEEE Journal on Selected

Areas in Communications, June 1993.
GARD72 Gardner, M. Codes, Ciphers, and Secret Writing. New York: Dover, 1972.

Preview from Notesale.co.uk

Page 729 of 900

REFERENCES 703

GARD77 Gardner, M. “A New Kind of Cipher That Would Take Millions of Years to Break.”
Scientific American, August 1977.

GARF02 Garfinkel, S., and Spafford, G. Web Security, Privacy & Commerce. Sebastapol, CA:
O’Reilly, 2002.

GARR01 Garrett, P. Making, Breaking Codes: An Introduction to Cryptology. Upper Saddle
River, NJ: Prentice Hall, 2001.

GAUD00 Gaudin, S. “The Omega Files.” Network World, June 26, 2000.
GIBB00 Gibbs, J. “The Digital Millennium Copyright Act.” ACM Ubiquity, August 2000.
GILB03 Gilbert, H. and Handschuh, H. “Security Analysis of SHA-256 and Sisters.”

“Proceedings, CRYPTO ’03, 2003; published by Springer-Verlag.
GOLD88 Goldwasser, S.; Micali, S.; and Rivest, R. “A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks.” SIAM Journal on Computing, April 1988.
GONG92 Gong, L. “A Security Risk of Depending on Synchronized Clocks.” Operating Systems

Review, January 1992.
GONG93 Gong, L. “Variations on the Themes of Message Freshness and Replay.” Proceedings,

IEEE Computer Security Foundations Workshop, June 1993.
GOTT99 Gotterbarn, D. “ How the New Software Engineering Code of Ethics Affects You.”

IEEE Software, November/ December 1999.
GRAH94 Graham, R.; Knuth, D.; and Patashnik, O. Concrete Mathematics: A Foundation for

Computer Science. Reading, MA: Addison-Wesley, 1994.
GRAN04 Grance, T.; Kent, K.; and Kim, B. Computer Security Incident Handling Guide. NIST

Special Publication SP 800-61, January 2004.
GUTM02 Gutmann, P. “PKI: It’s Not Dead, Just Resting.” Computer, August 2002.
GUTT06 Gutterman, Z.; Pinkas, B.; and Reinman, T. “ Analysis of the Linux Random Number

Generator.” Proceedings, 2006 IEEE Symposium on Security and Privacy, 2006.
HAMM91 Hamming, R. The Art of Probability for Scientists and Engineers. Reading, MA:

Addison-Wesley, 1991.
HANK04 Hankerson, D.; Menezes, A.; and Vanstone, S. Guide to Elliptic Curve Cryptography.

New York: Springer, 2004.
HARR90 Harrington, S., and McCollum, R. “Lessons from Corporate America Applied to Train-

ing in Computer Ethics.” Proceedings of the ACM Conference on Computers and the
Quality of Life (SIGCAS and SIGCAPH), September 1990.

HEBE92 Heberlein, L.; Mukherjee, B.; and Levitt, K. “Internetwork Security Monitor: An
Intrusion-Detection System for Large-Scale Networks.” Proceedings, 15th National
Computer Security Conference, October 1992.

HEGL06 Hegland, A., et al. “A Survey of Key Management in Ad Hoc Networks.” IEEE
Communications Surveys & Tutorials. 3rd Quarter 2006.

HELD96 Held, G. Data and Image Compression: Tools and Techniques. New York: Wiley, 1996.
HELL79 Hellman, M. “The Mathematics of Public-Key Cryptography.” Scientific American,

August 1970.
HEVI99 Hevia, A., and Kiwi, M. “Strength of Two Data Encryption Standard Implementations

Under Timing Attacks.” ACM Transactions on Information and System Security,
November 1999.

HERS75 Herstein, I. Topics in Algebra. New York: Wiley, 1975.
HEYS95 Heys, H., and Tavares, S. “Avalanche Characteristics of Substitution-Permutation

Encryption Networks.” IEEE Transactions on Computers, September 1995.
HEYS02 Heys, H. “A Tutorial on Linear and Differential Cryptanalysis.” Cryptologia, July 2002.
HONE01 The Honeynet Project. Know Your Enemy: Revealing the Security Tools, Tactics, and

Motives of the Blackhat Community. Reading, MA: Addison-Wesley, 2001.
HORO71 Horowitz, E. “Modular Arithmetic and Finite Field Theory: A Tutorial.” Proceedings of

the Second ACM Symposium and Symbolic and Algebraic Manipulation, March 1971.
HUIT98 Huitema, C. IPv6: The New Internet Protocol. Upper Saddle River, NJ: Prentice Hall,

1998.
HYPP06 Hypponen, M. “Malware Goes Mobile.” Scientific American, November 2006.
IANN06 Iannella, R. “Digital Rights Management.” In Bidgoli, H., editor. Handbook of

Information Security. New York: Wiley, 2006.

Preview from Notesale.co.uk

Page 730 of 900

712 INDEX

Authentication (Continued)
security services, 20–21
timestamp, 447–448, 579–580
user, 444–484
WTLS, 557–558

Authenticated encryption (AE), 383–389
approaches of, 383–384
cipher block chaining–message (CCM) authentication code,

384–386
counter (CTR) mode with, 384–389
Galois counter–message (GCM) authentication code,

386–389
Authentication server (AS), Kerberos, 454–455, 458, 460, 467
Autokey system, 51
Availability of service, 10–13, 22
Avalanche effect, 86–87, 170–174

B
Base-64 (radix-64) transfer encoding, 593
Basic service set (BSS), IEEE 802.11, 525–526
Big-O notation, 297–299
Bijection, defined, 255
Binary operator, 108
Birthday attack, 338, 341–342, 356–361

cipher block chaining (CBC) mode for, 341–342
collision resistant requirements for, 338–340
duplications and, 359–360
inequality of, 359
mathematical basis of, 356–361
overlap between two sets, 360–361
paradox, 338, 357–358

Bit independence criterion (BIC), 94
Bit-by-bit exclusive-OR (XOR) hash function, 333–335
Block ciphers, 35, 66–100, 192–217, 229–232, 380–383

ANSI X9.17 PRNG, 231–232
cipher-based message authentication code (CMAC),

381–383
cipher block chaining (CBC) mode, 201–203
cipher feedback (CFB) mode, 203–204
conversion to stream ciphers (modes), 203–209
counter (CTR) mode, 203, 206–209, 229–231
data authentication algorithm (DAA), 380–381
Data Encryption Standard (DES), 67–68, 77–96
electronic code book (ECB) mode, 198–200
Feistel, 68–77
message authentication codes (MAC) based on, 380–383
multiple DES encryption, 193–198
operation, 192–217
output feedback (OFB) mode, 203, 205–206, 229–230
pseudorandom number generation (PRNG) using, 229–232
Shannon diffusion/confusion concepts, 72–73,
stream ciphers and, 68–69, 203–209
substitution/permutation network (SPN), 72–75
XTS-AES mode for storage encryption, 210–214

Blowfish, 95–96
Blum Blum Shub (BBS) number generator, 227–228
Brute-force attacks, 36, 38, 40–41, 285, 337–340, 374–375

birthday paradox, 338–340
Caesar cipher example of, 40–41
collision resistant, 338–340
encryption and, 36, 38
hash functions and, 337–340
message authentication code (MAC), 374–375
preimage, 338
RSA algorithms and, 258

C
Caesar cipher, 39–41
Canonical form, MIME and S/MIME, 593
Certificates, 268, 427–439, 498–500, 505–506, 600–603

authority (CA), 430–434, 437, 601
enhanced security services, 603

end entity, 437
key and policy information, 436
key distribution and, 427–439
path constraints, 437
public-key, 268, 427–429
public-key infrastructure (PKI), 437–439
registration authority (RA), 438
repository, 438
revocation lists (CRL), 434–435, 438, 600
S/MIME, 600–603
SSL messages for key exchange, 498–500
subject and issuer attributes, 436–437
TLS client types, 505–506
user, 432–434, 601
VeriSign, 601–603
X.509, 429–439

Certificates-only message, S/MIME, 600
Change Cipher Spec Protocol, 489, 493–494, 500, 553–554
Channels, SSH, 515–516
Chinese remainder theorem, 254–257
Chosen ciphertext attack (CCA), 36, 285, 289–291
Chosen plaintext attack, 36–37. See also Differential

cryptanalysis
CIA triad, 10–11
Cipher-based message authentication code (CMAC), 381–383
Cipher block chaining–message (CCM) authentication code,

384–386
Cipher block chaining (CBC) mode, 201–203, 334–335,

341–342, 465, 483–484
block cipher use of, 201–203
hash functions based on, 334–335, 341–342
propagating (PCBC), Kerberos, 465, 483–484

Cipher feedback (CFB) mode, 203–204
Cipher suites, TLS, 505
Ciphers, 35, 38–55, 66–100, 174–176, 192–217, 218–241

block, 35, 66–100, 192–217
Caesar, 39–41
equivalent inverse, AES, 174–176
Hill, 46–49
monoalphabetic, 41–44
Playfair, 44–46
polyalphabetic, 49–52
rail fence, 53–54
stream, 35, 68–69, 218–241
substitution techniques, 38–53
transposition techniques, 53–55
Vernam, 51–52
Vigenère, 49–51

Ciphertext, 32–33, 36–53, 271
asymmetric encryption, 271
brute-force attacks, 36–37
substitution techniques using, 38–53
symmetric encryption, 32–33, 36–53

Ciphertext-stealing technique, 213–214
Clear signing, S/MIME, 599–600
Client/server authentication, Kerberos, 457–460, 467
Coefficient set of integers (S), 123
Collision, hash functions, 335–336, 338–340
Commutative ring, 118
Compression, 340–341, 491, 573–574

hash function (f), 340–341
PGP, 573–574
SSL, 491

Computational resistance, MAC security, 374–375
Confidentiality, 10–12, 20–21, 571–573, 629, 636

connection and connectionless, 20
data, 10, 20–21
Internet Protocol (IP), 629, 636
pretty good privacy (PGP), 571–573
privacy and, 10
selective-field, 20
traffic flow (TFC), 20, 629

Confusion concept, 72–73
Congruent modulo (mod n), 108, 257–259
Connection, SSL, 489

Preview from Notesale.co.uk

Page 739 of 900

INTRUDERS
20.1 Intruders

Intruder Behavior Patterns
Intrusion Techniques

20.2 Intrusion Detection

Audit Records
Statistical Anomaly Detection
Rule-Based Intrusion Detection
The Base-Rate Fallacy
Distributed Intrusion Detection
Honeypots
Intrusion Detection Exchange Format

20.3 Password Management

Password Protection
Password Selection Strategies

20.4 Recommended Reading and Web Sites

20.5 Key Terms, Review Questions, and Problems

Appendix 20A The Base-Rate Fallacy

20-1

CHAPTER

PART 6: SYSTEM SECURITY

Preview from Notesale.co.uk

Page 748 of 900

20.1 / INTRUDERS 20-7

interviews with a number of password crackers, [ALVA90] reports the following
techniques for learning passwords:

1. Try default passwords used with standard accounts that are shipped with the
system. Many administrators do not bother to change these defaults.

2. Exhaustively try all short passwords (those of one to three characters).

3. Try words in the system’s online dictionary or a list of likely passwords. Examples
of the latter are readily available on hacker bulletin boards.

4. Collect information about users, such as their full names, the names of their
spouse and children, pictures in their office, and books in their office that are
related to hobbies.

5. Try users’ phone numbers, Social Security numbers, and room numbers.

6. Try all legitimate license plate numbers for this state.

7. Use a Trojan horse (described in Chapter 21) to bypass restrictions on access.

8. Tap the line between a remote user and the host system.

The first six methods are various ways of guessing a password. If an intruder has
to verify the guess by attempting to log in, it is a tedious and easily countered means of
attack. For example, a system can simply reject any login after three password attempts,
thus requiring the intruder to reconnect to the host to try again. Under these circum-
stances, it is not practical to try more than a handful of passwords. However, the
intruder is unlikely to try such crude methods. For example, if an intruder can gain
access with a low level of privileges to an encrypted password file, then the strategy
would be to capture that file and then use the encryption mechanism of that particular
system at leisure until a valid password that provided greater privileges was discovered.

Guessing attacks are feasible, and indeed highly effective, when a large num-
ber of guesses can be attempted automatically and each guess verified, without the
guessing process being detectable. Later in this chapter, we have much to say about
thwarting guessing attacks.

The seventh method of attack listed earlier, the Trojan horse, can be particularly
difficult to counter. An example of a program that bypasses access controls was cited
in [ALVA90]. A low-privilege user produced a game program and invited the system
operator to use it in his or her spare time.The program did indeed play a game, but in
the background it also contained code to copy the password file, which was unen-
crypted but access protected, into the user’s file. Because the game was running under
the operator’s high-privilege mode, it was able to gain access to the password file.

The eighth attack listed, line tapping, is a matter of physical security.
Other intrusion techniques do not require learning a password. Intruders can

get access to a system by exploiting attacks such as buffer overflows on a program
that runs with certain privileges. Privilege escalation can be done this way as well.

We turn now to a discussion of the two principal countermeasures: detection
and prevention. Detection is concerned with learning of an attack, either before or
after its success. Prevention is a challenging security goal and an uphill battle at all
times.The difficulty stems from the fact that the defender must attempt to thwart all
possible attacks, whereas the attacker is free to try to find the weakest link in the
defense chain and attack at that point.

Preview from Notesale.co.uk

Page 754 of 900

Table 20.2 Measures That May Be Used for Intrusion Detection

Measure Model Type of Intrusion Detected

Login and Session Activity

Login frequency by day and
time

Mean and standard
deviation

Intruders may be likely to log in during off-hours.

Frequency of login at different
locations

Mean and standard
deviation

Intruders may log in from a location that a particu-
lar user rarely or never uses.

Time since last login Operational Break-in on a “dead” account.

Elapsed time per session Mean and standard
deviation

Significant deviations might indicate masquerader.

Quantity of output to location Mean and standard
deviation

Excessive amounts of data transmitted to remote
locations could signify leakage of sensitive data.

Session resource utilization Mean and standard
deviation

Unusual processor or I/O levels could signal an
intruder.

Password failures at login Operational Attempted break-in by password guessing.

Failures to login from specified
terminals

Operational Attempted break-in.

Command or Program Execution Activity

Execution frequency Mean and standard
deviation

May detect intruders, who are likely to use different
commands, or a successful penetration by a legiti-
mate user, who has gained access to privileged
commands.

Program resource utilization Mean and standard
deviation

An abnormal value might suggest injection of a
virus or Trojan horse, which performs side-effects
that increase I/O or processor utilization.

Execution denials Operational model May detect penetration attempt by individual user
who seeks higher privileges.

File Access Activity

Read, write, create, delete
frequency

Mean and standard
deviation

Abnormalities for read and write access for individ-
ual users may signify masquerading or browsing.

Records read, written Mean and standard
deviation

Abnormality could signify an attempt to obtain sen-
sitive data by inference and aggregation.

Failure count for read, write,
create, delete

Operational May detect users who persistently attempt to access
unauthorized files.

20-14 CHAPTER 20 / INTRUDERS

system administrators and security analysts to collect a suite of known penetration
scenarios and key events that threaten the security of the target system.

A simple example of the type of rules that can be used is found in NIDX, an
early system that used heuristic rules that can be used to assign degrees of suspicion
to activities [BAUE88]. Example heuristics are the following:

1. Users should not read files in other users’ personal directories.

2. Users must not write other users’ files.

Preview from Notesale.co.uk

Page 761 of 900

20-16 CHAPTER 20 / INTRUDERS

The Base-Rate Fallacy

To be of practical use, an intrusion detection system should detect a substantial
percentage of intrusions while keeping the false alarm rate at an acceptable level.
If only a modest percentage of actual intrusions are detected, the system provides
a false sense of security. On the other hand, if the system frequently triggers an
alert when there is no intrusion (a false alarm), then either system managers will
begin to ignore the alarms, or much time will be wasted analyzing the false
alarms.

Unfortunately, because of the nature of the probabilities involved, it is very
difficult to meet the standard of high rate of detections with a low rate of false
alarms. In general, if the actual numbers of intrusions is low compared to the
number of legitimate uses of a system, then the false alarm rate will be high unless
the test is extremely discriminating. A study of existing intrusion detection systems,
reported in [AXEL00], indicated that current systems have not overcome the prob-
lem of the base-rate fallacy. See Appendix 20A for a brief background on the math-
ematics of this problem.

Distributed Intrusion Detection

Until recently, work on intrusion detection systems focused on single-system stand-
alone facilities. The typical organization, however, needs to defend a distributed
collection of hosts supported by a LAN or internetwork. Although it is possible to
mount a defense by using stand-alone intrusion detection systems on each host, a
more effective defense can be achieved by coordination and cooperation among
intrusion detection systems across the network.

Porras points out the following major issues in the design of a distributed
intrusion detection system [PORR92]:

• A distributed intrusion detection system may need to deal with different audit
record formats. In a heterogeneous environment, different systems will
employ different native audit collection systems and, if using intrusion detec-
tion, may employ different formats for security-related audit records.

• One or more nodes in the network will serve as collection and analysis points
for the data from the systems on the network. Thus, either raw audit data or
summary data must be transmitted across the network. Therefore, there is a
requirement to assure the integrity and confidentiality of these data. Integrity
is required to prevent an intruder from masking his or her activities by altering
the transmitted audit information. Confidentiality is required because the
transmitted audit information could be valuable.

• Either a centralized or decentralized architecture can be used. With a central-
ized architecture, there is a single central point of collection and analysis of all
audit data. This eases the task of correlating incoming reports but creates a
potential bottleneck and single point of failure. With a decentralized architec-
ture, there are more than one analysis centers, but these must coordinate their
activities and exchange information.

Preview from Notesale.co.uk

Page 763 of 900

20.3 / PASSWORD MANAGEMENT 20-23

as frightening, is shown in Table 20.5. In all, nearly one-fourth of the passwords were
guessed. The following strategy was used:

1. Try the user’s name, initials, account name, and other relevant personal infor-
mation. In all, 130 different permutations for each user were tried.

2. Try words from various dictionaries. The author compiled a dictionary of over
60,000 words, including the online dictionary on the system itself, and various
other lists as shown.

Table 20.5 Passwords Cracked from a Sample Set of 13,797 Accounts [KLEI90]

Type of Password Search Size Number of
Matches

Percentage of Passwords
Matched

Cost/Benefit
Ratioa

User/account name 130 368 2.7% 2.830

Character sequences 866 22 0.2% 0.025

Numbers 427 9 0.1% 0.021

Chinese 392 56 0.4% 0.143

Place names 628 82 0.6% 0.131

Common names 2239 548 4.0% 0.245

Female names 4280 161 1.2% 0.038

Male names 2866 140 1.0% 0.049

Uncommon names 4955 130 0.9% 0.026

Myths & legends 1246 66 0.5% 0.053

Shakespearean 473 11 0.1% 0.023

Sports terms 238 32 0.2% 0.134

Science fiction 691 59 0.4% 0.085

Movies and actors 99 12 0.1% 0.121

Cartoons 92 9 0.1% 0.098

Famous people 290 55 0.4% 0.190

Phrases and patterns 933 253 1.8% 0.271

Surnames 33 9 0.1% 0.273

Biology 58 1 0.0% 0.017

System dictionary 19683 1027 7.4% 0.052

Machine names 9018 132 1.0% 0.015

Mnemonics 14 2 0.0% 0.143

King James bible 7525 83 0.6% 0.011

Miscellaneous words 3212 54 0.4% 0.017

Yiddish words 56 0 0.0% 0.000

Asteroids 2407 19 0.1% 0.007

TOTAL 62727 3340 24.2% 0.053

aComputed as the number of matches divided by the search size. The more words that needed to be tested for
a match, the lower the cost/benefit ratio.

Preview from Notesale.co.uk

Page 770 of 900

20.4 / RECOMMENDED READING AND WEB SITES 20-29

20.4 RECOMMENDED READING AND WEB SITES

Two thorough treatments of intrusion detection are [BACE00] and [PROC01]. A more
concise but very worthwhile treatment is [SCAR07]. Two short but useful survey articles on
the subject are [KENT00] and [MCHU00]. [NING04] surveys recent advances in intrusion
detection techniques. [HONE01] is the definitive account on honeypots and provides a
detailed analysis of the tools and methods of hackers.

0.001

0.01

0.1

1

P
r[

fa
ls

e
po

si
ti

ve
]

20151050

Ratio of hash table size (bits) to dictionary size (words)

4 hash functions

2 hash functions

6 hash functions

Figure 20.6 Performance of Bloom Filter

BACE00 Bace, R. Intrusion Detection. Indianapolis, IN: Macmillan Technical
Publishing, 2000.

HONE01 The Honeynet Project. Know Your Enemy: Revealing the Security Tools,Tactics,
and Motives of the Blackhat Community. Reading, MA:Addison-Wesley, 2001.

KENT00 Kent, S. “On the Trail of Intrusions into Information Systems.” IEEE
Spectrum, December 2000.

MCHU00 McHugh, J.; Christie, A.; and Allen, J. “The Role of Intrusion Detection
Systems.” IEEE Software, September/October 2000.

NING04 Ning, P., et al. “Techniques and Tools for Analyzing Intrusion Alerts.” ACM
Transactions on Information and System Security, May 2004.

PROC01 Proctor, P., The Practical Intrusion Detection Handbook. Upper Saddle River,
NJ: Prentice Hall, 2001.

SCAR07 Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention Systems.
NIST Special Publication SP 800-94, February 2007.

Preview from Notesale.co.uk

Page 776 of 900

21-2 CHAPTER 21 / MALICIOUS SOFTWARE

What is the concept of defense: The parrying of a blow. What is its characteristic
feature: Awaiting the blow.

—On War, Carl Von Clausewitz

KEY POINTS

◆ Malicious software is software that is intentionally included or inserted in
a system for a harmful purpose.

◆ A virus is a piece of software that can “infect” other programs by modify-
ing them; the modification includes a copy of the virus program, which can
then go on to infect other programs.

◆ A worm is a program that can replicate itself and send copies from com-
puter to computer across network connections. Upon arrival, the worm
may be activated to replicate and propagate again. In addition to propaga-
tion, the worm usually performs some unwanted function.

◆ A denial of service (DoS) attack is an attempt to prevent legitimate users
of a service from using that service.

◆ A distributed denial of service attack is launched from multiple coordinated
sources.

Perhaps the most sophisticated types of threats to computer systems are presented by
programs that exploit vulnerabilities in computing systems. Such threats are referred to
as malicious software, or malware. In this context, we are concerned with threats to
application programs as well as utility programs, such as editors and compilers, and
kernel-level programs.

This chapter examines malicious software, with a special emphasis on viruses
and worms. The chapter begins with a survey of various types of malware, with a
more detailed look at the nature of viruses and worms. We then turn to distributed
denial-of-service attacks. Throughout, the discussion presents both threats and
countermeasures.

21.1 TYPES OF MALICIOUS SOFTWARE

The terminology in this area presents problems because of a lack of universal agree-
ment on all of the terms and because some of the categories overlap. Table 21.1 is a
useful guide.

Malicious software can be divided into two categories: those that need a host
program, and those that are independent. The former, referred to as parasitic, are
essentially fragments of programs that cannot exist independently of some
actual application program, utility, or system program. Viruses, logic bombs,

Preview from Notesale.co.uk

Page 785 of 900

21.1 / TYPES OF MALICIOUS SOFTWARE 21-5

workers [GAUD00]. Ultimately, Lloyd was sentenced to 41 months in prison and
ordered to pay $2 million in restitution.

Trojan Horses

A Trojan horse1 is a useful, or apparently useful, program or command procedure
containing hidden code that, when invoked, performs some unwanted or harmful
function.

Trojan horse programs can be used to accomplish functions indirectly that an
unauthorized user could not accomplish directly. For example, to gain access to the
files of another user on a shared system, a user could create a Trojan horse program
that, when executed, changes the invoking user’s file permissions so that the files are
readable by any user. The author could then induce users to run the program by
placing it in a common directory and naming it such that it appears to be a useful
utility program or application. An example is a program that ostensibly produces a
listing of the user’s files in a desirable format. After another user has run the
program, the author of the program can then access the information in the user’s
files. An example of a Trojan horse program that would be difficult to detect is a
compiler that has been modified to insert additional code into certain programs as
they are compiled, such as a system login program [THOM84]. The code creates a
backdoor in the login program that permits the author to log on to the system using
a special password. This Trojan horse can never be discovered by reading the source
code of the login program.

Another common motivation for the Trojan horse is data destruction. The
program appears to be performing a useful function (e.g., a calculator program), but
it may also be quietly deleting the user’s files. For example, a CBS executive was
victimized by a Trojan horse that destroyed all information contained in his com-
puter’s memory [TIME90]. The Trojan horse was implanted in a graphics routine
offered on an electronic bulletin board system.

Trojan horses fit into one of three models:

• Continuing to perform the function of the original program and additionally
performing a separate malicious activity

• Continuing to perform the function of the original program but modifying the
function to perform malicious activity (e.g., a Trojan horse version of a login
program that collects passwords) or to disguise other malicious activity (e.g., a
Trojan horse version of a process listing program that does not display certain
processes that are malicious)

• Performing a malicious function that completely replaces the function of the
original program

1In Greek mythology, the Trojan horse was used by the Greeks during their siege of Troy. Epeios
constructed a giant hollow wooden horse in which thirty of the most valiant Greek heroes concealed
themselves. The rest of the Greeks burned their encampment and pretended to sail away but actually hid
nearby. The Trojans, convinced the horse was a gift and the siege over, dragged the horse into the city.
That night, the Greeks emerged from the horse and opened the city gates to the Greek army. A blood-
bath ensued, resulting in the destruction of Troy and the death or enslavement of all its citizens.

Preview from Notesale.co.uk

Page 788 of 900

21.2 / VIRUSES 21-9

 program CV :�

{goto main;
 01234567;

 subroutine infect-executable :�
 {loop:
 file :� get-random-executable-file;
 if (first-line-of-file � 01234567) then goto loop;
 (1) compress file;
 (2) prepend CV to file;
 }

main: main-program :�
 {if ask-permission then infect-executable;
 (3) uncompress rest-of-file;
 (4) run uncompressed file;}
 }

Figure 21.2 Logic for a Compression Virus

CV

P1� P1� P2�P1

t1t0

P2P2

CV CV

1

2

3

4

Figure 21.3 A Compression Virus

phase of the program is reasonably rapid, a user is unlikely to notice any difference
between the execution of an infected and an uninfected program.

A virus such as the one just described is easily detected because an infected
version of a program is longer than the corresponding uninfected one. A way to
thwart such a simple means of detecting a virus is to compress the executable file so
that both the infected and uninfected versions are of identical length. Figure 21.2
[COHE94] shows in general terms the logic required. The key lines in this virus are
numbered, and Figure 21.3 [COHE94] illustrates the operation. We assume that
program P1 is infected with the virus CV. When this program is invoked, control
passes to its virus, which performs the following steps:

1. For each uninfected file P2 that is found, the virus first compresses that file to
produce , which is shorter than the original program by the size of the virus.

2. A copy of the virus is prepended to the compressed program.

3. The compressed version of the original infected program, , is uncompressed.

4. The uncompressed original program is executed.

P¿1

P¿2

Preview from Notesale.co.uk

Page 792 of 900

21.2 / VIRUSES 21-11

• Stealth virus: A form of virus explicitly designed to hide itself from detection
by antivirus software. Thus, the entire virus, not just a payload is hidden.

• Polymorphic virus: A virus that mutates with every infection, making detec-
tion by the “signature” of the virus impossible.

• Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites itself
completely at each iteration, increasing the difficulty of detection.
Metamorphic viruses may change their behavior as well as their appearance.

One example of a stealth virus was discussed earlier: a virus that uses com-
pression so that the infected program is exactly the same length as an uninfected
version. Far more sophisticated techniques are possible. For example, a virus can
place intercept logic in disk I/O routines, so that when there is an attempt to read
suspected portions of the disk using these routines, the virus will present back the
original, uninfected program.Thus, stealth is not a term that applies to a virus as such
but, rather, refers to a technique used by a virus to evade detection.

A polymorphic virus creates copies during replication that are functionally
equivalent but have distinctly different bit patterns. As with a stealth virus, the pur-
pose is to defeat programs that scan for viruses. In this case, the “signature” of the
virus will vary with each copy. To achieve this variation, the virus may randomly
insert superfluous instructions or interchange the order of independent instructions.
A more effective approach is to use encryption. The strategy of the encryption virus
is followed. The portion of the virus that is responsible for generating keys and
performing encryption/decryption is referred to as the mutation engine. The muta-
tion engine itself is altered with each use.

Virus Kits

Another weapon in the virus writers’ armory is the virus-creation toolkit. Such a
toolkit enables a relative novice to quickly create a number of different viruses.
Although viruses created with toolkits tend to be less sophisticated than viruses
designed from scratch, the sheer number of new viruses that can be generated using
a toolkit creates a problem for antivirus schemes.

Macro Viruses

In the mid-1990s, macro viruses became by far the most prevalent type of virus.
Macro viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Many macro viruses infect Microsoft
Word documents or other Microsoft Office documents. Any hardware plat-
form and operating system that supports these applications can be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of a document
rather than a program.

3. Macro viruses are easily spread.A very common method is by electronic mail.

4. Because macro viruses infect user documents rather than system programs, tra-
ditional file system access controls are of limited use in preventing their spread.

Preview from Notesale.co.uk

Page 794 of 900

21-12 CHAPTER 21 / MALICIOUS SOFTWARE

Macro viruses take advantage of a feature found in Word and other office
applications such as Microsoft Excel, namely the macro. In essence, a macro is an
executable program embedded in a word processing document or other type of file.
Typically, users employ macros to automate repetitive tasks and thereby save
keystrokes. The macro language is usually some form of the Basic programming
language. A user might define a sequence of keystrokes in a macro and set it up so
that the macro is invoked when a function key or special short combination of keys
is input.

Successive releases of MS Office products provide increased protection
against macro viruses. For example, Microsoft offers an optional Macro Virus
Protection tool that detects suspicious Word files and alerts the customer to the
potential risk of opening a file with macros. Various antivirus product vendors have
also developed tools to detect and correct macro viruses. As in other types of
viruses, the arms race continues in the field of macro viruses, but they no longer are
the predominant virus threat.

E-Mail Viruses

A more recent development in malicious software is the e-mail virus. The first
rapidly spreading e-mail viruses, such as Melissa, made use of a Microsoft Word
macro embedded in an attachment. If the recipient opens the e-mail attachment, the
Word macro is activated. Then

1. The e-mail virus sends itself to everyone on the mailing list in the user’s e-mail
package.

2. The virus does local damage on the user’s system.

In 1999, a more powerful version of the e-mail virus appeared. This newer
version can be activated merely by opening an e-mail that contains the virus rather
than opening an attachment. The virus uses the Visual Basic scripting language
supported by the e-mail package.

Thus we see a new generation of malware that arrives via e-mail and uses e-mail
software features to replicate itself across the Internet. The virus propagates itself as
soon as it is activated (either by opening an e-mail attachment or by opening the
e-mail) to all of the e-mail addresses known to the infected host. As a result, whereas
viruses used to take months or years to propagate, they now do so in hours.This makes
it very difficult for antivirus software to respond before much damage is done.
Ultimately, a greater degree of security must be built into Internet utility and applica-
tion software on PCs to counter the growing threat.

21.3 VIRUS COUNTERMEASURES

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get
into the system in the first place, or block the ability of a virus to modify any files
containing executable code or macros. This goal is, in general, impossible to achieve,

Preview from Notesale.co.uk

Page 795 of 900

21-22 CHAPTER 21 / MALICIOUS SOFTWARE

An example of a mobile phone worm is CommWarrior, which was launched in
2005. This worm replicates by means of Bluetooth to other phones in the receiving
area. It also sends itself as an MMS file to numbers in the phone’s address book and
in automatic replies to incoming text messages and MMS messages. In addition, it
copies itself to the removable memory card and inserts itself into the program
installation files on the phone.

Worm Countermeasures

There is considerable overlap in techniques for dealing with viruses and worms.
Once a worm is resident on a machine, antivirus software can be used to detect it. In
addition, because worm propagation generates considerable network activity, net-
work activity and usage monitoring can form the basis of a worm defense.

To begin, let us consider the requirements for an effective worm countermea-
sure scheme:

• Generality: The approach taken should be able to handle a wide variety of
worm attacks, including polymorphic worms.

• Timeliness: The approach should respond quickly so as to limit the number of
infected systems and the number of generated transmissions from infected
systems.

• Resiliency: The approach should be resistant to evasion techniques employed
by attackers to evade worm countermeasures.

• Minimal denial-of-service costs: The approach should result in minimal reduc-
tion in capacity or service due to the actions of the countermeasure software.
That is, in an attempt to contain worm propagation, the countermeasure
should not significantly disrupt normal operation.

• Transparency: The countermeasure software and devices should not require
modification to existing (legacy) OSs, application software, and hardware.

• Global and local coverage: The approach should be able to deal with attack
sources both from outside and inside the enterprise network.

No existing worm countermeasure scheme appears to satisfy all these require-
ments. Thus, administrators typically need to use multiple approaches in defending
against worm attacks.

COUNTERMEASURE APPROACHES Following [JHI07], we list six classes of worm
defense:

A. Signature-based worm scan filtering: This type of approach generates a worm
signature, which is then used to prevent worm scans from entering/leaving a
network/host. Typically, this approach involves identifying suspicious flows
and generating a worm signature. This approach is vulnerable to the use of
polymorphic worms: Either the detection software misses the worm or, if it is
sufficiently sophisticated to deal with polymorphic worms, the scheme may
take a long time to react. [NEWS05] is an example of this approach.

B. Filter-based worm containment: This approach is similar to class A but focuses
on worm content rather than a scan signature. The filter checks a message to

Preview from Notesale.co.uk

Page 805 of 900

Internet

Remote sensor
Honeypot

Passive
sensor

Firewall
sensor

Correlation
server

Application
server

Instrumented applications

Sandboxed
environment

Enterprise network

Hypothesis testing
and analysis

Patch
generation

3. Forward
features

5. Possible fix generation

6. Application update

4. Vulnerability
testing and
identification

1. Worm scans or
infection attempts

2. Notifications

Figure 21.8 Placement of Worm Monitors

The success of such an automated patching system depends on maintaining a
current list of potential attacks and developing general tools for patching software
to counter such attacks. Examples of approaches are as follows:

• Increasing the size of buffers

• Using minor code-randomization techniques [BHAT03] so that the infection
no longer works because the code to be attacked is no longer in the same form
and location

• Adding filters to the application that enable it to recognize and ignore an attack

21.5 DISTRIBUTED DENIAL OF SERVICE ATTACKS

Distributed denial of service (DDoS) attacks present a significant security threat to
corporations, and the threat appears to be growing [VIJA02]. In one study, covering
a three-week period in 2001, investigators observed more than 12,000 attacks
against more than 5000 distinct targets, ranging from well-known ecommerce com-
panies such as Amazon and Hotmail to small foreign ISPs and dial-up connections
[MOOR01]. DDoS attacks make computer systems inaccessible by flooding servers,
networks, or even end user systems with useless traffic so that legitimate users can
no longer gain access to those resources. In a typical DDoS attack, a large number of

21-26 CHAPTER 21 / MALICIOUS SOFTWARE

Preview from Notesale.co.uk

Page 809 of 900

SYN
packets

Attack
machine

Attack
machine

Reflector
machines

Slave
servers

1

1

2

2

3

3

(a) Distributed SYN flood attack

(a) Distributed ICMP attack

Internet

Target Web
server

Target
router

SYN
packets

SYN/ACK
packets

Figure 21.9 Examples of Simple DDoS Attacks

21-28

Preview from Notesale.co.uk

Page 811 of 900

22-10 CHAPTER 22 / FIREWALLS

Table 22.2 Example Stateful Firewall Connection State Table [WACK02]

Source Address Source Port Destination
Address

Destination Port Connection
State

192.168.1.100 1030 210.22.88.29 80 Established

192.168.1.102 1031 216.32.42.123 80 Established

192.168.1.101 1033 173.66.32.122 25 Established

192.168.1.106 1035 177.231.32.12 79 Established

223.43.21.231 1990 192.168.1.6 80 Established

2122.22.123.32 2112 192.168.1.6 80 Established

210.922.212.18 3321 192.168.1.6 80 Established

24.102.32.23 1025 192.168.1.6 80 Established

223.21.22.12 1046 192.168.1.6 80 Established

(client) application is a number between 1024 and 65535.The numbers less than 1024
are the “well-known” port numbers and are assigned permanently to particular
applications (e.g., 25 for server SMTP). The numbers between 1024 and 65535 are
generated dynamically and have temporary significance only for the lifetime of a
TCP connection.

A simple packet filtering firewall must permit inbound network traffic on all
these high-numbered ports for TCP-based traffic to occur. This creates a vulnerabil-
ity that can be exploited by unauthorized users.

A stateful inspection packet firewall tightens up the rules for TCP traffic by
creating a directory of outbound TCP connections, as shown in Table 22.2. There is
an entry for each currently established connection. The packet filter will now allow
incoming traffic to high-numbered ports only for those packets that fit the profile of
one of the entries in this directory.

A stateful packet inspection firewall reviews the same packet information as a
packet filtering firewall, but also records information about TCP connections
(Figure 22.1c). Some stateful firewalls also keep track of TCP sequence numbers to
prevent attacks that depend on the sequence number, such as session hijacking. Some
even inspect limited amounts of application data for some well-known protocols like
FTP, IM and SIPS commands, in order to identify and track related connections.

Application-Level Gateway

An application-level gateway, also called an application proxy, acts as a relay of
application-level traffic (Figure 22.1d). The user contacts the gateway using a
TCP/IP application, such as Telnet or FTP, and the gateway asks the user for the
name of the remote host to be accessed. When the user responds and provides a
valid user ID and authentication information, the gateway contacts the application
on the remote host and relays TCP segments containing the application data
between the two endpoints. If the gateway does not implement the proxy code for a
specific application, the service is not supported and cannot be forwarded across the
firewall. Further, the gateway can be configured to support only specific features of

Preview from Notesale.co.uk

Page 827 of 900

22.4 / FIREWALL BASING 22-13

• Each proxy maintains detailed audit information by logging all traffic, each
connection, and the duration of each connection. The audit log is an essential
tool for discovering and terminating intruder attacks.

• Each proxy module is a very small software package specifically designed for
network security. Because of its relative simplicity, it is easier to check such
modules for security flaws. For example, a typical UNIX mail application may
contain over 20,000 lines of code, while a mail proxy may contain fewer
than 1000.

• Each proxy is independent of other proxies on the bastion host. If there is a
problem with the operation of any proxy, or if a future vulnerability is discov-
ered, it can be uninstalled without affecting the operation of the other proxy
applications. Also, if the user population requires support for a new service,
the network administrator can easily install the required proxy on the
bastion host.

• A proxy generally performs no disk access other than to read its initial config-
uration file. Hence, the portions of the file system containing executable code
can be made read only. This makes it difficult for an intruder to install Trojan
horse sniffers or other dangerous files on the bastion host.

• Each proxy runs as a nonprivileged user in a private and secured directory on
the bastion host.

Host-Based Firewalls

A host-based firewall is a software module used to secure an individual host.
Such modules are available in many operating systems or can be provided as an
add-on package. Like conventional stand-alone firewalls, host-resident firewalls
filter and restrict the flow of packets. A common location for such firewalls is a
server. There are several advantages to the use of a server-based or workstation-
based firewall:

• Filtering rules can be tailored to the host environment. Specific corporate
security policies for servers can be implemented, with different filters for
servers used for different application.

• Protection is provided independent of topology. Thus both internal and exter-
nal attacks must pass through the firewall.

• Used in conjunction with stand-alone firewalls, the host-based firewall pro-
vides an additional layer of protection. A new type of server can be added to
the network, with its own firewall, without the necessity of altering the net-
work firewall configuration.

Personal Firewall

A personal firewall controls the traffic between a personal computer or workstation
on one side and the Internet or enterprise network on the other side. Personal fire-
wall functionality can be used in the home environment and on corporate intranets.
Typically, the personal firewall is a software module on the personal computer. In a

Preview from Notesale.co.uk

Page 830 of 900

22.5 / FIREWALL LOCATION AND CONFIGURATIONS 22-17

3. Multiple internal firewalls can be used to protect portions of the internal
network from each other. For example, firewalls can be configured so that
internal servers are protected from internal workstations and vice versa.
A common practice is to place the DMZ on a different network interface on
the external firewall from that used to access the internal networks.

Virtual Private Networks

In today’s distributed computing environment, the virtual private network (VPN)
offers an attractive solution to network managers. In essence, a VPN consists of a set
of computers that interconnect by means of a relatively unsecure network and that
make use of encryption and special protocols to provide security. At each corporate
site, workstations, servers, and databases are linked by one or more local area net-
works (LANs). The Internet or some other public network can be used to intercon-
nect sites, providing a cost savings over the use of a private network and offloading
the wide area network management task to the public network provider. That same
public network provides an access path for telecommuters and other mobile
employees to log on to corporate systems from remote sites.

But the manager faces a fundamental requirement: security. Use of a public
network exposes corporate traffic to eavesdropping and provides an entry point for
unauthorized users. To counter this problem, a VPN is needed. In essence, a VPN
uses encryption and authentication in the lower protocol layers to provide a secure
connection through an otherwise insecure network, typically the Internet. VPNs are
generally cheaper than real private networks using private lines but rely on having
the same encryption and authentication system at both ends.The encryption may be
performed by firewall software or possibly by routers. The most common protocol
mechanism used for this purpose is at the IP level and is known as IPsec.

An organization maintains LANs at dispersed locations. A logical means of
implementing an IPsec is in a firewall, as shown in Figure 22.4, which essentially
repeats Figure 19.1. If IPsec is implemented in a separate box behind (internal to)
the firewall, then VPN traffic passing through the firewall in both directions is
encrypted. In this case, the firewall is unable to perform its filtering function or
other security functions, such as access control, logging, or scanning for viruses.
IPsec could be implemented in the boundary router, outside the firewall. However,
this device is likely to be less secure than the firewall and thus less desirable as an
IPsec platform.

Distributed Firewalls

A distributed firewall configuration involves stand-alone firewall devices plus host-
based firewalls working together under a central administrative control. Figure 22.5
suggests a distributed firewall configuration. Administrators can configure host-
resident firewalls on hundreds of servers and workstations as well as configure
personal firewalls on local and remote user systems. Tools let the network adminis-
trator set policies and monitor security across the entire network. These firewalls
protect against internal attacks and provide protection tailored to specific machines
and applications. Stand-alone firewalls provide global protection, including internal
firewalls and an external firewall, as discussed previously.

Preview from Notesale.co.uk

Page 834 of 900

22.7 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 22-21

22.7 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

Review Questions

22.1 List three design goals for a firewall.
22.2 List four techniques used by firewalls to control access and enforce a security policy.
22.3 What information is used by a typical packet filtering firewall?
22.4 What are some weaknesses of a packet filtering firewall?
22.5 What is the difference between a packet filtering firewall and a stateful inspection

firewall?
22.6 What is an application-level gateway?
22.7 What is a circuit-level gateway?
22.8 What are the differences among the firewalls of Figure 22.1?
22.9 What are the common characteristics of a bastion host?

22.10 Why is it useful to have host-based firewalls?
22.11 What is a DMZ network and what types of systems would you expect to find on such

networks?
22.12 What is the difference between an internal and an external firewall?

Problems

22.1 As was mentioned in Section 22.3, one approach to defeating the tiny fragment attack
is to enforce a minimum length of the transport header that must be contained in the
first fragment of an IP packet. If the first fragment is rejected, all subsequent frag-
ments can be rejected. However, the nature of IP is such that fragments may arrive
out of order. Thus, an intermediate fragment may pass through the filter before the
initial fragment is rejected. How can this situation be handled?

22.2 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to
Total Length – (4 × IHL). If this value is less than the required minimum (8 octets for
TCP), then this fragment and the entire packet are rejected. Suggest an alternative
method of achieving the same result using only the Fragment Offset field.

22.3 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that
results in new fragments overwriting any overlapped portions of previously received
fragments. Given such a reassembly implementation, an attacker could construct a
series of packets in which the lowest (zero-offset) fragment would contain innocuous
data (and thereby be passed by administrative packet filters), and in which some sub-
sequent packet having a non-zero offset would overlap TCP header information (des-
tination port, for instance) and cause it to be modified. The second packet would be
passed through most filter implementations because it does not have a zero fragment
offset. Suggest a method that could be used by a packet filter to counter this attack.

application-level gateway
bastion host
circuit-level gateway
distributed firewalls
DMZ

firewall
host-based firewall
IP address spoofing
IP security (IPsec)
packet filtering firewall

personal firewall
proxy
stateful inspection firewall
tiny fragment attack
virtual private network (VPN)

Preview from Notesale.co.uk

Page 838 of 900

22-22 CHAPTER 22 / FIREWALLS

22.4 Table 22.3 shows a sample of a packet filter firewall ruleset for an imaginary network
of IP address that range from 192.168.1.0 to 192.168.1.254. Describe the effect of each
rule.

22.5 SMTP (Simple Mail Transfer Protocol) is the standard protocol for transferring mail
between hosts over TCP. A TCP connection is set up between a user agent and a
server program. The server listens on TCP port 25 for incoming connection requests.
The user end of the connection is on a TCP port number above 1023. Suppose you
wish to build a packet filter rule set allowing inbound and outbound SMTP traffic.
You generate the following ruleset:

Table 22.3 Sample Packet Filter Firewall Ruleset

Source Address Source Port Dest Address Dest Port Action

1 Any Any 192.168.1.0 > 1023 Allow

2 192.168.1.1 Any Any Any Deny

3 Any Any 192.168.1.1 Any Deny

4 192.168.1.0 Any Any Any Allow

5 Any Any 192.168.1.2 SMTP Allow

6 Any Any 192.168.1.3 HTTP Allow

7 Any Any Any Any Deny

Rule Direction Src Addr Dest Addr Protocol Dest Port Action

A In External Internal TCP 25 Permit

B Out Internal External TCP >1023 Permit

C Out Internal External TCP 25 Permit

D In External Internal TCP >1023 Permit

E Either Any Any Any Any Deny

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

1 In 192.168.3.4 172.16.1.1 TCP 25 ?

2 Out 172.16.1.1 192.168.3.4 TCP 1234 ?

3 Out 172.16.1.1 192.168.3.4 TCP 25 ?

4 In 192.168.3.4 172.16.1.1 TCP 1357 ?

a. Describe the effect of each rule.
b. Your host in this example has IP address 172.16.1.1. Someone tries to send e-mail

from a remote host with IP address 192.168.3.4. If successful, this generates an
SMTP dialogue between the remote user and the SMTP server on your host con-
sisting of SMTP commands and mail. Additionally, assume that a user on your
host tries to send e-mail to the SMTP server on the remote system. Four typical
packets for this scenario are as shown:

Indicate which packets are permitted or denied and which rule is used in each
case.

Preview from Notesale.co.uk

Page 839 of 900

22-24 CHAPTER 22 / FIREWALLS

sensitivity tag (classification if you like) in its subject and for external e-mail to have
the lowest sensitivity tag. Discuss how this measure could be implemented in a firewall
and what components and architecture would be needed to do this.

22.10 You are given the following “informal firewall policy” details to be implemented
using a firewall like that in Figure 22.3:

1. E-mail may be sent using SMTP in both directions through the firewall, but it
must be relayed via the DMZ mail gateway that provides header sanitization and
content filtering. External e-mail must be destined for the DMZ mail server.

2. Users inside may retrieve their e-mail from the DMZ mail gateway, using either
POP3 or POP3S, and authenticate themselves.

3. Users outside may retrieve their e-mail from the DMZ mail gateway, but only if
they use the secure POP3 protocol, and authenticate themselves

4. Web requests (both insecure and secure) are allowed from any internal user out
through the firewall but must be relayed via the DMZ Web proxy, which provides
content filtering (noting this is not possible for secure requests), and users must
authenticate with the proxy for logging.

5. Web requests (both insecure and secure) are allowed from anywhere on the
Internet to the DMZ Web server

6. DNS lookup requests by internal users allowed via the DMZ DNS server, which
queries to the Internet.

7. External DNS requests are provided by the DMZ DNS server.
8. Management and update of information on the DMZ servers is allowed using

secure shell connections from relevant authorized internal users (may have differ-
ent sets of users on each system as appropriate).

9. SNMP management requests are permitted from the internal management hosts
to the firewalls, with the firewalls also allowed to send management traps (i.e.,
notification of some event occurring) to the management hosts

Design suitable packet filter rulesets (similar to those shown in Table 22.1) to be
implemented on the “External Firewall” and the “Internal Firewall” to satisfy the
aforementioned policy requirements.

Preview from Notesale.co.uk

Page 841 of 900

23-6 CHAPTER 23 / LEGAL AND ETHICAL ASPECTS

Characteristics of
law enforcement agencies

Characteristics of
cybercrime victims

Characteristics of
cybercriminals

Lack of confidence with law
enforcement agencies

Increased success/confidence

Globalization of cybercrime

Compliance with
cybercriminal's demands

Low reporting rates

Weak defense mechanisms

Failure to catch up with
cybercrime technologies
Inexperience with cybercrimes
Inability to solve cybercrimes
Lack of collaboration with industry

Lack of collaborations/global cooperation

Sophisticated technology
Links with organized crime

Expertise/experience
Unique profiles

Figure 23.1 The Vicious Cycle of Cybercrime

rates and the reluctance to work with law enforcement on the part of victims feeds
into the handicaps under which law enforcement works, completing the vicious
cycle.

Working With Law Enforcement

Executive management and security administrators need to look upon law enforce-
ment as another resource and tool, alongside technical, physical, and human-factor
resources. The successful use of law enforcement depends much more on people
skills than technical skills. Management needs to understand the criminal investiga-
tion process, the inputs that investigators need, and the ways in which the victim can
contribute positively to the investigation.

Preview from Notesale.co.uk

Page 847 of 900

23-10 CHAPTER 23 / LEGAL AND ETHICAL ASPECTS

DMCA, signed into law in 1998, is designed to implement World Intellectual
Property Organization (WIPO) treaties, signed in 1996. In essence, DMCA
strengthens the protection of copyrighted materials in digital format.

The DMCA encourages copyright owners to use technological measures to
protect copyrighted works. These measures fall into two categories: measures that
prevent access to the work and measures that prevent copying of the work. Further,
the law prohibits attempts to bypass such measures. Specifically, the law states that
“no person shall circumvent a technological measure that effectively controls access
to a work protected under this title.” Among other effects of this clause, it prohibits
almost all unauthorized decryption of content. The law further prohibits the manu-
facture, release, or sale of products, services, and devices that can crack encryption
designed to thwart either access to or copying of material unauthorized by the
copyright holder. Both criminal and civil penalties apply to attempts to circumvent
technological measures and to assist in such circumvention.

Certain actions are exempted from the provisions of the DMCA and other
copyright laws, including the following:

• Fair use: This concept is not tightly defined. It is intended to permit others to
perform, show, quote, copy, and otherwise distribute portions of the work for
certain purposes. These purposes include review, comment, and discussion of
copyrighted works.

• Reverse engineering: Reverse engineering of a software product is allowed if
the user has the right to use a copy of the program and if the purpose of the
reverse engineering is not to duplicate the functionality of the program but
rather to achieve interoperability.

• Encryption research: “Good faith” encryption research is allowed. In essence,
this exemption allows decryption attempts to advance the development of
encryption technology.

• Security testing: This is the access of a computer or network for the good faith
testing, investigating, or correcting a security flaw or vulnerability, with the
authorization of the owner or operator.

• Personal privacy: It is generally permitted to bypass technological measures if
that is the only reasonable way to prevent the access to result in the revealing
or recording of personally identifying information.

Despite the exemptions built into the Act, there is considerable concern, espe-
cially in the research and academic communities, that the act inhibits legitimate secu-
rity and encryption research. These parties feel that DMCA stifles innovation and
academic freedom and is a threat to open source software development [ACM04].

Digital Rights Management

Digital Rights Management (DRM) refers to systems and procedures that ensure
that holders of digital rights are clearly identified and receive the stipulated pay-
ment for their works. The systems and procedures may also impose further restric-
tions on the use of digital objects, such as inhibiting printing or prohibiting further
distribution.

Preview from Notesale.co.uk

Page 851 of 900

User query

Response

Government
owned

Independently
operated

Contains associative memory index (AMI)
Update in real time

Cross-source
privacy

appliance

Privacy
appliance

Privacy
appliance

Privacy
appliance

Authentication
Authorization
Anonymization
Immutable audit trail
Inference checking

Selective revelation
Data transformation
Policy is embedded
Create AMI

Data
source

Data
source

Data
source

Private or
agency owned

Figure 23.5 Privacy Appliance Concept

23-17

Preview from Notesale.co.uk

Page 858 of 900

23-28 CHAPTER 23 / LEGAL AND ETHICAL ASPECTS

related to social power. Construct a table that shows for each theme and for each
code, the relevant clause or clauses in the code that address the theme.

23.10 This book’s Web site includes a copy of the ACM Code of Professional Conduct from
1982. Compare this Code with the 1997 ACM Code of Ethics and Professional
Conduct (Figure 23.7).
a. Are there any elements in the 1982 Code not found in the 1997 Code? Propose a

rationale for excluding these.
b. Are there any elements in the 1997 Code not found in the 1982 Code? Propose a

rationale for adding these.
23.11 This book’s Web site includes a copy of the IEEE Code of Ethics from 1979. Compare

this Code with the 2006 IEEE Code of Ethics (Figure 23.8).
a. Are there any elements in the 1979 Code not found in the 2006 Code? Propose a

rationale for excluding these.
b. Are there any elements in the 2006 Code not found in the 1979 Code? Propose a

rationale for adding these.
23.12 This book’s Web site includes a copy of the 1999 Software Engineering Code of Ethics

and Professional Practice (Version 5.2) as recommended by an ACM/IEEE-CS Joint
Task Force. Compare this Code with each of the three codes reproduced in this
chapter (Figure 23.7 through 23.9). Comment in each case on the differences.

Preview from Notesale.co.uk

Page 869 of 900

APPENDIX C

SAGE EXERCISES

By Dan Shumow
University of Washington

C.1 Getting Started With Sage . C-2

C.2 Programming With Sage . C-4

Input to the Interpreter . C-4
Data Types . C-4
Mathematical Operators . C-6
Control Statements . C-6
Functions . C-7

C.3 Chapter 2: Classical Encryption . C-8

C.4 Chapter 3: Block Ciphers And The Data Encryption Standard C-9

C.5 Chapter 4: Basic Concepts In Number Theory And Finite Fields C-10

C.6 Chapter 5: Advanced Encryption Standard . C-12

C.7 Chapter 6: Pseudorandom Number Generation And Stream Ciphers . . C-13

C.8 Chapter 8: Number Theory . C-14

C.9 Chapter 9: Public-Key Cryptography And RSA . C-18

C.10 Chapter 10: Other Public-Key Cryptosystems . C-19

C.11 Chapter 11: Cryptographic Hash Functions . C-22

C.12 Chapter 13: Digital Signatures . C-22

C-1

Preview from Notesale.co.uk

Page 870 of 900

C.2 / PROGRAMMING WITH SAGE C-7

for A in foo:

print A

prints the list of the elements in the list foo. Or

for j in range(10):

print j

prints the integers from 1 to 10.
The most common exception to using a list or a tuple as an iterable object is

iterating through a list of integers using the xrange function. For example:

for j in xrange(len(foo)):

print ‘j=’, j, foo[j]

prints a list of the indices and the elements at that index in the array.
The xrange function allows loops to iterate through the integers [0, 1,

..., (len(foo)–1)] without instantiating the list as the function range would.
The function xrange takes the parameters are the same as the range function does,
the only difference is the output.

While loops have the syntax:

while <boolean expression> :

<tab> <block of code>

For example:

while (x < 1):

y = y + x

x = x/2

With both while and for loops, the break keyword cause execution of the loop
to stop, and continue causes control to begin executing at the next iteration of the
loop.

Functions

Creating functions is very easy:

def <function-name>(< comma separated list of parame-
ters>):

<tab> <block of code>

Just like control statements, the body of the function must be delimited by in-
dentation. The return statement specifies the value of the function to return. If

Preview from Notesale.co.uk

Page 876 of 900

C-8 APPENDIX C / SAGE EXERCISES

the function does not have a return statement, or the end of the body of the func-
tion is reached without hitting a return statement, then the function returns the
value None. For example, the following function:

def f1(x, y):

if (0 == x % 2):

z = x^2 + x + 1

else:

z = x-y

return y

For more information on Python programming, see http://www.Python.org/.At this time
Sage uses Python 2.x,and not Python 3.0 or higher.This is not likely to change,but as the
differences in the language are significant, if the examples here are not working, it may
be worth checking out if the underlying version of Python that Sage uses has changed.

C.3 CHAPTER 2: CLASSICAL ENCRYPTION

2.1 Implement Sage functions that perform affine cipher encryption/decryption,
given a key that consists of a pair of integers , both in with not
divisible by 2 or 13. The functions should work on strings, and leave any non-
alphabetic characters unchanged. Show the operation of your functions on an
example. See problem 2.1 in Chapter 2 for a definition of an affine cipher.

2.2 This question is to implement some functions useful to performing classical
cipher attacks.
a. Implement a Sage function that performs frequency attacks on a mono-

alphabetic substitution ciphers. This function should take a ciphertext string,
compute a histogram of the incidence of each letter (ignoring all non alpha-
bet characters), and return a list of pairs (letter, incidence percentage)
sorted by incidence percentage.

b. Implement a Sage function that takes a partial mono-alphabetic substitution
and a ciphertext and returns a potential plaintext. The partial mono-alpha-
betic substitution should be specified as follows: As a 26 character string
where the character at position i is the substitution of ith character of the
alphabet, OR an underscore ‘_’ if the corresponding substitution is unknown.
The potential plaintext should be the ciphertext with values specified by
the mono-alphabetic substitution replaced by the lower-case plaintext. If the
corresponding character is unknown (i.e. ‘_’ in the monoalphabetic substitu-
tion cipher) print the cipher text as an uppercase character.)

c. Use your functions from (a) and (b) to decrypt the following ciphertext:
“ztmn pxtne cfa peqef kecnp cjt tmn zcwsenp ontmjsw ztnws tf wsvp
xtfwvfefw, c feb fcwvtf, xtfxevqea vf gvoenwk, cfa aeavxcwea wt wse
rntrtpvwvtf wscw cgg lef cne xnecwea eymcg.”

2.3 Implement Sage functions to perform encryption/decryption with Hill
Cipher. The key should be an invertible Sage matrix over the integers mod 26.

2 * 2

a{1, 2, . . , 25}a, bPreview from Notesale.co.uk

Page 877 of 900

C.10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS C-21

d. Suppose you know that , and
, use the fact that you have two subsequent outputs to

determine the possible internal states that could have generated these two
outputs.

10.5 For all of the following questions show your Sage input/output.
a. Compute the order of the curve defined by over the

finite field with 47 elements.
b. On the curve defined by compute the

inverse of the point (1,1).
c. On the curve defined by over the finite field

with 701 elements, find a generator and show its order.
d. On the curve defined by over finite field of size

6421 compute the sum of the points (3711,373) and (4376,2463).
e. On the elliptic curve defined by over finite field

of size 8461 compute 1001 times the point (1735, 3464).
f. On the elliptic curve defined by over finite field

of size 8191, let P1 = (1794, 1318) and P2 = (3514, 409), compute the sum of
13 times P1 plus 28 times P2.

10.6 In this problem, use the domain parameters. E is the elliptic curve defined by
over the finite field with order 70177.The generator

point has order 70393. Show your Sage input/output.
a. Suppose you are Bob and Alice has sent the point (10117, 64081) compute

an integer y the point Y and the shared secret.
b. Suppose that Alice chooses the secret value and Bob chooses the

secret value y = 15276.
c. Perform a full simulated secret agreement between Alice and Bob.

10.7 The purpose of this question is to implement Sage functions to perform
ECDH.
a. Write a function that takes a curve, and a base point on the curve and gen-

erates the secret value x and the public value X as per ECDH.
b. Write a function that takes a public value and a secret value and computes

the shared secret.
c. Assume that your domain parameters are:

Elliptic Curve defined by over Finite Field of
size 63709

Show your functions work by simulating an ECDH key exchange.
10.8 Recall that for cryptographic purposes, we use curves with prime order. The

purpose of this question is to show why. Let E be the elliptic curve defined by
over Finite Field of size 23431. This curve has

order 23304. Let the base point be (20699, 19493).
a. Compute 10 random multiples of this base point. What do you notice?
b. Why is this bad? (Hint: What would happen if this was Alice or Bob’s public

point?)

y2 = x3 + 7489*x + 12591

G = (53819,6786)
q = 63839

y2 = x3 + 26484*x + 15456

x = 2532

G = (49359,30149)
y2 = x3 + 8871*x + 7063

y2 = x3 + 1800*x + 1357

y2 = x3 + 3361*x + 6370

y2 = x3 + 4187*x + 3814

y2 + y = x3 + x2 + x + 1

y2 + x*y = x3 + x over GF(28)

y2 = x3 + 7*x + 25

64511473570997445
o[i + 1] =o[i] = 58246156843038996

Preview from Notesale.co.uk

Page 890 of 900

This page intentionally left blank

Preview from Notesale.co.uk

Page 893 of 900

G-6 GLOSSARY

trapdoor one-way function A function that is easily computed, and the calculation of its
inverse is infeasible unless certain privileged information is known.

Trojan horse* A computer program that appears to have a useful function, but also has a
hidden and potentially malicious function that evades security mechanisms, sometimes by
exploiting legitimate authorizations of a system entity that invokes the program.

trusted system A computer and operating system that can be verified to implement a given
security policy.

unconditionally secure Secure even against an opponent with unlimited time and unlimit-
ed computing resources.

virtual private network Consists of a set of computers that interconnect by means of a
relatively unsecure network and that make use of encryption and special protocols to pro-
vide security.

virus Code embedded within a program that causes a copy of itself to be inserted in one or
more other programs. In addition to propagation, the virus usually performs some unwanted
function.

worm Program that can replicate itself and send copies from computer to computer across
network connections. Upon arrival, the worm may be activated to replicate and propagate
again. In addition to propagation, the worm usually performs some unwanted function.

zombie A program that secretly takes over another Internet-attached computer and then
uses that computer to launch attacks that are difficult to trace to the zombie’s creator.

Preview from Notesale.co.uk

Page 899 of 900

