DEFINING ADDITION + MULTIPLICATION

• Let \(f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \),
 \(g(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_m x^m \).

 \[f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1) x + \ldots + (a_n + b_n) x^n \]
 \[f(x) \cdot g(x) = (a_0 b_0) + (a_1 b_0 + a_0 b_1) x + \ldots + a_n b_{n-1} x \]

• **THEOREM:** The set \(R[x] \) of all polynomials with coefficients in a ring \(R \) is a ring under polynomial addition and multiplication.

• **SOME FEATURES:**

 • If \(R \) is commutative, so is \(R[x] \).

 • If \(R \) has unity \(1 \neq 0 \), then \(1 \) is also unity for \(R[x] \).

• **EXAMPLE:** Consider \(\mathbb{Z}_2[x] \).

 \[(x+1)^2 = (x+1)(x+1) = x^2 + (1+1)x + 1 = x^2 + 1 \]
 \[(x+1) + (x+1) = (1+1)x + (1+1) = 0x + 0 = 0 \]

→ TWO INDETERMINATES

• \((R[x])[y] \) is a ring of polynomials in \(y \) with coefficients that are polynomials in \(x \).

• \((R[x])[y] \cong (R[y])[x] \)

• **NOTATION:** \((R[x])[y] = R[x, y] \)

→ RANDOM NOTES

• If \(D \) is an integral domain, so is \(D[x] \).

• If \(D \) is a field, \(D[x] \) is an integral domain.