UNIT-II

Sets and Disjoint Set Union: A set is a group of elements. A set consists of \(\{ 1, 2, 3, \ldots, n \} \) numbers as their elements. If \(S_i \) and \(S_j \), \(i \neq j \) are two sets, these two sets are called pairwise disjoint, when there is no element that is in both \(S_i \) and \(S_j \).

For example, \(n=10 \), elements are partitioned into 3 disjoint sets: \(S_1 = \{ 1, 7, 8, 9 \} \), \(S_2 = \{ 2, 5, 10 \} \), \(S_3 = \{ 3, 4, 6 \} \).

Representation of sets as trees:

\[S_1 \]
1
7
8
9

\[S_2 \]
5
2
10

\[S_3 \]
3
4
6

Operations that can be performed on these sets are:

1. **Disjoint Set Union**: If \(S_i \) and \(S_j \) are two disjoint sets, then their union \(S_i \cup S_j \) = all elements \(x \) such that \(x \) is in \(S_i \) or \(S_j \), since all the sets are disjoint the sets \(S_i \) and \(S_j \) are replaced by \(S_i \cup S_j \) in collection of sets.

 For example: \(S_1 \cup S_2 = \{ 1, 7, 8, 9, 2, 5, 10 \} \)

2. **Find(i)**: Given an element \(i \), find the set containing \(i \). Thus, 4 is in set \(S_3 \), and 9 is in set \(S_1 \) etc.

Union and Find Operations: If we want to obtain the union of \(S_1 \) and \(S_2 \). Make one of the trees a sub tree of the other. \(S_1 \cup S_2 \) could then have one of the representations.
If adjacency lists are used, a BFT will obtain the connected components in $\Theta(n + e)$ time.

In the similar way DFT can also be used to find the connected components by modifying DFS algorithm.

Spanning Trees:

The graph G has a spanning tree iff G is connected. BFS easily determines the existence of a spanning tree. Modify the algorithm BFS by adding statements $t := 0$; initially and $t = t \cup \{(u, w)\}$ when a new vertex is visited. Call the resulting algorithm BFS*. If BFS* is called with ‘v’ any vertex on connected undirected graph g, then on termination, the edges in t form a spanning tree of G. the spanning tree obtained using BFS is called Breadth first spanning tree.

Algorithm BFSTree(v)

// Breadth first search Spanning tree using BFS
{
 u := v;
 visited[v] := 1;
 t := 0;
 repeat
 {
 For all vertices w adjacent t from u do
 {
 If (visited[w] = 0) then
 {
 Add w to q; // w is unexplored
 visited[w] := 1;
 t := $t \cup \{(u, w)\}$;
 }

 }
 If q is empty then return; // no explored vertex
 Delete the next element u from q; // get next unexplored vertex.
 } until (false);
}
Similarly if DFS is Modified by adding \(t := 0 \) and \(t = t \cup \{(u,w)\} \) when it terminates the edges in \(t \) define a spanning tree for the undirected graph \(G \), if \(G \) is connected. A spanning tree obtained in this manner is called a depth first spanning tree.

Algorithm DFSTree \((v)\)

// Depth first spanning Tree using DFS
{
 \text{Visited}[v] := 1;
 t := 0;
 \text{for each vertex } w \text{ adjacent from } v \text{ do}
 {
 \text{If (visited } [w] = 0 \text{) then}
 {
 t := t \cup \{(v,w)\}
 \text{DFS}(w);
 }
 }
}

Example: