(3) V due to a spherical shell.
(i) For \(r > R \), \(V = \frac{-GM}{r} \)
(ii) For \(r = R \), \(V = \frac{-GM}{R} \)
(iii) For \(r < R \), \(V = \frac{-GM}{R} \)

(4) V due to a ring
(i) At the centre \(V_C = -\frac{GM}{a} \)
(ii) At a point on its axis \(V_{axis} = \frac{GM}{a^2 + r^2} \)

(c) The gravitational P.E. of a point mass \(m \) at a distance \(r \) from the centre of the earth (where \(r > R \)) is given by the gravitational potential \(\Phi = \frac{GMm}{r} \). For \(r = R \), \(U = -\frac{GMm}{R} \) and if \(r = \infty \) then \(V_p = 0 \) at infinity.

This is the maximum value of \(V \).

Gravitational Potential (V)

(1) Due to a point mass at a distance \(r \), \(V = -\frac{GM}{r} \).

(2) V due to a uniform solid sphere.
For \(r > R \), \(V = -\frac{GM}{r} \).
For \(r = R \), \(V = -\frac{GM}{R} \).
At the centre, \(V = \frac{3GM}{2R} \).

Graph of \(V \) against \(r \).

Graph of \(I \) against \(r \).

Intensity due to a uniform circular ring

(i) At a point on the axis \(I = \frac{GMr}{(a^2 + x^2)^{3/2}} \)
(ii) At the centre of the ring \(I = 0 \)

(b) Gravitation Potential (V): If \(W \) is the work done in bringing a body of mass \(m_0 \) from infinity to a point \(P \) in the gravitational field without acceleration, then the gravitational potential at \(P = V_p = \frac{W}{mass} = \frac{W}{m_0} \). It is measured in J/kg or \(m^2/sec^2 \) and its dimensional formula is \([V] = \left[\frac{W}{m_0} \right] = \left[\frac{M^1 L^2 T^{-2}}{M} \right] = [M^0 L^2 T^{-2}] \).

It is a scalar quantity.

- The gravitational potential at a point \(P \) at a distance \(r \) from the centre of the earth of radius \(R \) and mass \(M \), where \(r > R \), is given by \(V_p = -\frac{GM}{r} \).

Thus \(V_p \) is always negative. At the surface of the earth, \(r = R \).

\(\therefore \) \(V_p = -\frac{GM}{R} \) and if \(r = \infty \) then \(V_p = 0 \) at infinity.

This is the maximum value of \(V \).

Useful Points:

(i) Gravitational force is independent of the intervening medium. The ratio of the gravitational force to the electrostatic force between two electrons is of the order of \(10^{39} \).

(ii) The escape velocity of a body from the surface of the earth is about 11.2 km/s, while for the moon escape velocity is about 2.38 km/s.