Unit 7: The Anti-Derivative

\[f(x) = \int_0^x 5 \, dt \]
\[g(x) = \int_0^x 3 \, dt \]
\[h(x) = \int_0^x t \, dt \]
\[j(x) = \int_0^x 2t+1 \, dt \]

<table>
<thead>
<tr>
<th>Function</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 5)</td>
<td>(5x)</td>
</tr>
<tr>
<td>(y = 3)</td>
<td>(3x)</td>
</tr>
<tr>
<td>(y = x)</td>
<td>(\frac{1}{2}x^2)</td>
</tr>
<tr>
<td>(y = 2x+1)</td>
<td>(x^2 + x)</td>
</tr>
</tbody>
</table>

A function \(F(x) \) is said to be the anti-derivative of \(f(x) \) if and only if \(F'(x) = f(x) \).

The indefinite integral:
\[\int f(x) \, dx = F(x) \]

notation for the antiderivative!

The integral as a power:
\[\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C \]

→ "\(x^n \) is the derivative of what?"

1. add 1 to the exponent
2. divide down \(\uparrow \)

eg.
\[\int 5x \, dx = \frac{5}{2} x^2 + C \]
\[\int x^2 + 5x + 6 \, dx = \frac{1}{3} x^3 + \frac{5}{2} x^2 + 6x + C \]