• Comparing the Measures of Central Tendency
 ○ so... which should we use?
 ○ DEPENDS on the situation
 ■ inferential stats
 ● two types:
 ○ PARAMETRIC: trying to estimate what we think the population parameters look like
 ■ MEAN: population standard
 ■ ONLY interval or ratio data

 ■ nominal data
 ● MODE

 ■ ordinal data
 ● by nature, it's telling us info in terms of location (rank)
 ● MEDIAN

 ■ outliers
 ● if they are really outliers-
 ○ KICK THEM OUT, calculate Mean
 ● if there's an inherent skew-
 ○ MEAN will be overly affected, represent only the extreme scores of dist.
 can't trust it
 ○ MEDIAN should be used, whether interval, ratio, etc.

• Skewed Dist.'s: relationships btw mean, median, and mode
 ○ In symmetrical Distributions: MEAN = MEDIAN
 ○ In single-peaked symmetrical dist. it's MEAN = MEDIAN = MODE
 ○ Positively skewed dist.:
 ■ Mean > Median
 ■ the median will be lower than the mean
 ○ Negatively Skewed dist.:
 ■ Mean < Median
 ■ the median will be higher than the mean

• Measures of Dispersion- Ch. 2 = FOUNDATIONAL
 ○ MEMORIZE the big equations- easier transition
 ○ Deviation Score: how much a score (X) differs from the mean (X - M)
 ■ distance btw the score and the mean
 ○ Sum of Deviation Score is 0: \(\sum (X - M) = 0 \)
 ○ EX: 2 3 5 5 10; Mean = 5
 ■ (2-5) + (3-5) + (5-5)
 ○ Variability in scores: Sum of Squares
 ■ Sums of Squares (SS): is the sum of squared dev. from the mean
 ○ why do we need the mean?
 ● the balancing point of the data
 ● parametric statistics- YOU NEED THE MEAN for a lot of formulas
 ● takes ALL scores into consideration
 ○ why do we need to square them?
 ● b/c it equals ZERO