S1 Revision Notes

Key Words: Continuous, discrete, mean, median, mode, cumulative frequency tables, class width/midpoint, coding

- Mean: \(\bar{x} = \frac{\sum x}{n} \) or \(\frac{\sum f x}{\sum f} \)
- For large data: use coding to work out mean of coded data, then equate to coding for original mean
- Linear interpolation (for some x): using your bivariate data, sketch x against f(x). Plot some a where a < x and some b where b > x and consider the gradient of \(\frac{f(x-b)(a-x)}{b-a} \)
 - Used to calculate values in cumulative frequency tables
 - Combined mean of set A (size: n, mean: x) and of set B (size: m, mean: y) is given by \(\frac{n x + m y}{n + m} \)

Key Words: range, lower/upper quartiles, interquartile range, percentile

- Variance \(\sigma^2 = \frac{\sum x^2}{n} - \mu^2 = \frac{1}{\sum} \left(\frac{x}{\sum} \right)^2 \)
- Standard deviation: how much the members of a group differ from the mean value for the group
- For large data: use coding as a standard deviation of coded data
- Additive property: DOESNT affect the SD, but subtractive does! (Same to the SD!)
- Percentile of a variable is a value up to which xth Percentile \(\frac{100}{n} \) of the data is found (used to calculate percentile range)

Key Words: stem and leaf diagram, outliers, box plot, histograms, positive/negative skew,

- An outlier (typically) is any value:
 - Greater than the upper quartile + 1.5 x interquartile range
 - Less than the lower quartile – 1.5 x interquartile range
- Box plot: outlier, (lowest value), (lower quartile), (median), (upper quartile), (highest value), (outlier)
- Histograms (area is proportional to frequency):
 - Frequency density \(\times \) class width = frequency
 - Frequency density always on the y-axis
- Skew is calculated as follows
 - \(Q_2 - Q_1 < Q_3 - Q_2 = +ve \)
 - \(Q_2 - Q_1 > Q_3 - Q_2 = -ve \)
 - Mode < mean = +ve
 - Mode > mean = -ve
- Using \(x = \frac{3(\text{median-mean})}{\text{standard deviation}} \) if
 - \(x = 1 \) = perfect positive skew
 - \(x = -1 \) = perfect negative skew

Key Words: Venn diagrams, Mutually Exclusive, Exhaustive, Independent, Complementary, Conditional Probability

- Mutually Exclusive: events that cannot happen at the same time. e.g. passing and failing an exam
 - \(P(A \text{ or } B) = P(A) + P(B) - P(A \cap B) \text{ if NOT ME} \)
 - \(P(A \text{ or } B) = P(A) + P(B) \text{ if ME} \) \(P(A \cap B) = 0 \)
- Exhaustive: events where all possible outcomes are included. e.g. throwing a head or a tail on a fair coin
 - \(P(A \text{ or } B) = 1 \)
- Independent: one event has no effect on another event occurring e.g. throwing a 1 or a 2 on a fair dice

- \(P(A \text{ and } B) = P(A \cap B) = P(A) \times P(B) \text{ if independent events} \)
- Complementary: \(P(A') = 1 - P(A) \)
- Conditional Probability: \(P(A \text{ given } B) = \frac{P(A \cap B)}{P(B)} \)
- Multiplication rule: \(P(A \text{ and } B) = P(A) \times P(B|A) = P(B) \times P(A|B) \)
- Addition rule: \(P(A \text{ or } B) = P(A) + P(B) - P(A \cap B) \)

Key Words: independent (explanatory) variable, dependent (response) variable, residuals, regression line, interpolation, extrapolation

- A distance, e, from a point (on scatter diagram) to the best fit is called a residual
 - Outliers have relatively large residuals
 - The line of best fit aims to minimise \(\sum e^2 \) called the regression line of y on x
 - Equation of the regression line: \(y = a + bx \) where \(b = \frac{S_{xy}}{S_{xx}} \) and \(a = \bar{y} - b\bar{x} \)
- Interpolation: estimate values within the range of data
- Extrapolation: estimate values outside the range of data

Key Words: random variable, discrete random variable, cumulative frequency distribution

- For discrete random variable: \(\sum P(X = x) = 1 \)
- In a cumulative frequency distribution \(F(x) = P(X \leq x) \)
- \(E(X) = \sum P(x) \times X \)
- \(Var(X) = E(X^2) - E(X)^2 \)
- \(E(aX + b) = aE(X) + b \)
- \(Var(aX + b) = a^2Var(X) \)
- For a discrete uniform distribution over the values \(1, 2, 3, \ldots, n \):
 - \(E(X) = \frac{n+1}{2} \)
 - \(Var(aX + b) = \frac{(n+1)(n+1)}{12} \)

Key Words: random variable, mean, standard deviation

- If \(X \sim N(\mu, \sigma^2) \)
 - \(Z = \frac{X - \mu}{\sigma} \) (called standardising)
 - \(\Phi(z) = P(Z < z) \)
 - \(P(\mu - Z \leq Y \leq \mu + Z) = \Phi(Y) - \Phi(X) \)