FP2 Revision Notes

Inequalities
Key Words: sketch, positive
- Use a sketch to best evaluate points of intersection
- Only multiply by POSITIVE values

Series
Key Words: method of differences, partial fractions, sigma notation rules
- When evaluating \(\sum_{r=1}^{\infty} f(r) \) consider \(r=1, r=2, r=3 \ldots \) then sum and terms will cancel!
- If the general term \(u_r = f(r) - f(r+1) \) then \(\sum u_r = \sum f(r) - f(r+1) \)

Further Complex Numbers
Key Words: modulus-argument form, principal argument, complex exponential form, de Moivre's theorem, binominal expansion, locus of points: circle; perpendicular bisector,
- If \(z = x + iy \) then the complex number can be written as \(z = r = r \cos \theta + i \sin \theta \)
- Principal argument: \(-\pi < \theta \leq \pi \)
- \(e^{i\theta} = \cos \theta + i \sin \theta \) (can be proved using Maclaurin and Taylor Series expansion of \(\sin x \) and \(\cos x \))
- Thus a complex number \(z = r \cos \theta + i \sin \theta \)
- \(\cos x \) = real part
- \(\sin x \) = imaginary part
- \(z^x = r^x \cos x + i \sin x \) (can be proved using induction)
- Remember the following identities
 - \(z + \frac{1}{z} = 2 \cos \theta \)
 - \(z^x + \frac{1}{z^x} = 2 \cos x \)
 - \(z - \frac{1}{z} = 2i \sin \theta \)
 - \(z^x - \frac{1}{z^x} = 2i \sin x \)
 - Can be proved using \(z = r \cos \theta + i \sin \theta \)

- For a complex number \(w, w = u + iv \)
- \(z = r \cos \theta + i \sin \theta \)
- To remove a modulus (use Pythagoras' theorem):
 - \(|z| = k \)
 - \(x + iy = k \)
 - \(x^2 + y^2 = k^2 \)
- To remove an argument:
 - \(\arg(z) = \theta \)
 - \(\arg(x + iy) = \theta \)
 - \(z = \tan \theta \) (adjust accordingly depending on quadrant)
- For a transformation \(T \) from the \(z \)-plane to the \(w \)-plane:
 - \(w = z + a + ib \) is a translation \((a, b) \)
 - \(w = Kz \) is an enlargement scale factor \(k \) centre \((0,0)\)
 - \(w = Kz + a + ib \) is an enlargement scale factor \(k \) centre \((0,0)\) followed by translation \((a, b)\)

First order differential equations
Key Words: family of solution curves, separating the variables, integrating factor, transformations
- If \(\frac{dy}{dx} = f(x)g(y) \), then \(\int \frac{1}{g(y)} dy = \int f(x) dx + c \)
- For a 1st order D.E. in the form \(\frac{dy}{dx} + Py = Q \) where \(P \) and \(Q \) are functions of \(x \), multiply through by the integrating factor to obtain general solution
- When using substitutions get \(y \) and \(\frac{dy}{dx} \) in terms of other variables and it should drop out!

Second order differential equations
Key Words: auxiliary quadratic, general solution, complementary function, particular integral
- For 2nd order D.E. a \(\frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0 \) aux equation is \(am^2 + bm + c = 0 \)
- For roots to the aux equation, the general solution to the 2nd order D.E. is...
 - \(y = Ae^{mx} + Be^{nx} \) (distinct roots \(a \) and \(b \))
 - \(y = (A + Bx)e^{mx} \) (repeated root \(a \))
 - \(y = Acoswx + Bsinwx \) (imaginary roots \pm i\omega\)
 - \(y = e^{mx}(Acoswx + Bsinnx) \) (complex roots \(p \pm iq \))
- \(\frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = f(x) \)
 - Solve for complementary function \(\frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0 \)
 - Then solve for particular integral
 - If \(f(x) \) is in the form... then try...
 - \(k \rightarrow a \)
 - \(kx \rightarrow ax + b \)
 - \(kx^2 \rightarrow ax^2 + bx + c \)
 - \(ke^{mx} \rightarrow Ae^{mx} \)
 - \(mcoswx \rightarrow acoswx + bsinwx \)
 - \(msinwx \rightarrow acoswx + bsinwx \)
 - \(mcoswx + nisinwx \rightarrow acoswx + bsinwx \)
 - General solution is \(y = C.F. + P.I. \)
- When using substitutions get \(y, \frac{dy}{dx} \) and \(\frac{d^2y}{dx^2} \) in terms of other variables and it should drop out!

Maclaurin and Taylor Series
Key Words: look at formula booklet

Polar coordinates
Key Words: polar, Cartesian, converting
- \(r \cos \theta = x \)
- \(r \sin \theta = y \)
- \(x^2 + y^2 = r^2 \)
- \(\theta = \arctan \frac{y}{x} \)
- Area \(= \frac{1}{2} \int_0^{2\pi} r^2 d\theta \)
- For tangents parallel to initial line \(\frac{d}{d\theta} (r \sin \theta) = 0 \)
- For tangents perpendicular to initial line \(\frac{d}{d\theta} (r \cos \theta) = 0 \)
- For \(r = p + q \cos \theta \): conditions for a 'dimple' \(q \leq p < 2q \)