Health Issues in Adulthood.

- **Across the lifespan**
 - Biological, psychological and social factors influence health of individual change over lifespan.
 - Health risks and problems alter -> change in preventive needs and goals and in responsibility for preventative action.
 - Development in one of bio/psycho/social influences other areas – always in complex interaction.
 - Elderly chromosomes can change due to childhood experiences.
 - Applications = assumptions of life long change, of progression (early experience can effect later life), bio/psycho/social processes affect children, adults and elderly in all different ways, throughout life cycle everyone has crises, stress and transitions, events can be judged as abnormal or normal based on timing of event, social milestones (e.g. optimum time to get married, have children, parents dying, menopause (Penny et al 1994)).
 - 0-16 years = childhood – adolescence, 17-40 years = early adulthood, 41-60 = middle age, 61+ elderly.
 - Twin studies have estimated that approximately 20-30% of an individual’s lifespan is related to genetics, the rest is due to individual behaviors and environmental factors which can be modified (Hjelmborg, 2006).

- **Adulthood (mid-life)**
 - Changes to body = vision (lens and vitreous changes), hearing (high frequency loss), skin (wrinkles, elasticity, age spots), muscle-fat proportion (wt gain, lose muscle mass), skeleton (osteooporosis), reproductive system (fertility), increased risk of cancer.

- **Growing older**
 - Men’s social clock: upward mobility in paid work, women: desire to do well, have clear structure.
 - Longitudinal (30 years)
 - Women try to improve, reconstruct, assimilate or anticipate changes to their clock.
 - Looking back from 40’s, 77% deviated from social clock, e.g. timing of kids, marriage, divorce.
 - During 40s – transition – more opportunities, status, confidence, assertiveness.
 - During 50’s – more time for self, enjoy present, own person, less pressure from clock.

- **Can we slow ageing?**
 - Some evidence
 - Rats/mice fed 30-40% less calories after maturity – increased longevity (Roth 2000)
 - Rhesus and squirrel monkeys: less torso fat, withstood physical stress better after surgery, infections (Weindruch, 2001)
 - Calorie reduced monkeys have youthful levels of DHEA’s
 - DHEA’s made in adrenal cortex and decline with ageing, associated with diabetes, cancers and immune disease.
 - Higher levels = improve carbohydrate metabolism protecting against diabetes, improve...