Blood supply
- Splanchnic circulation includes:
 - Arteries that branch off aorta to serve digestive organs
 - Hepatic, splenic, and left gastric arteries
 - Inferior and superior mesenteric arteries

- Hepatic portal circulation
 - Drains nutrient-rich blood from digestive organs
 - Delivers blood to liver for processing

GI wall composition:

-Digestive organs: Be familiar with the basic processes carried out by the GI system & know the general laminar structure of the wall of the GI tract and the tissues

- Structures of the GI tract
- Mouth, pharynx, and esophagus:
 - Mouth
• Kidneys: form urine
 • Gross Anatomy
 • Paired, bean shaped
 • Retroperitoneal
 • Microscopic anatomy
 • Nephron = functional unit
 • Blood supply
 • Renal arteries enter kidney at hilus
 • Renal veins exit at hilus
 • Function is to filter blood

Physiology of Kidneys
• Three processes are involved in urine formation and adjustment of blood composition:
 • Glomerular filtration: produces cell- and protein-free filtrate
 • Outward pressures
 • Forces that promote filtrate formation
 • Hydrostatic pressure in glomerular capillaries (HPgc) is essentially glomerular blood pressure
Regulation of Glomerular Filtration

- **Intrinsic controls: Renal autoregulation**
 - Myogenic regulation
 - Increased mean arterial pressure increases GFR myogenic regulation
 - Response to stretch in afferent arteriole
 - Muscle contracts in response to stretch
 - Increased resistance lowers glomerular capillary pressure
 - Counteracts effects of increased MAP
 - Tubuloglomerular feedback
 - Response to rate of blood flow past macula densa
 - Afferent arteriole contracts
 - Increased resistance lowers glomerular capillary pressure
 - Counteracts effects of increased MAP

- **Extrinsic controls: Neural and hormonal mechanisms**
 - Sympathetic nervous system
 - When BP is low
 - Norepinephrine (Sympathetic NS) and Epinephrine (adrenal medulla) cause
 - Systemic vasoconstriction, which increases blood pressure
 - Constriction of afferent arterioles, which decreases GFR
 - Blood volume and pressure increases
 - Renin-angiotensin-aldosterone mechanism
 - Main mechanism for increasing blood pressure

- **Tubular reabsorption**: selectively returns 99% of substances from filtrate to blood in renal tubules and collecting ducts
 - Tubular reabsorption quickly reclaims most of tubular contents and returns them to blood
 - Water and solutes move from renal tubules into peritubular capillaries (returned to blood)
 - Renal tubules to interstitial fluid
 - Most occurs in proximal tubule
 - Selective transport
 - Mostly not regulated
- **Transcellular route**
 - Solute enters apical membrane of tubule cells
 - Travels through cytosol of tubule cells
 - Exits basolateral membrane of tubule cells
 - Enters blood through endothelium of peritubular capillaries
- **Paracellular route**
 - Between tubule cells
 - Limited by tight junctions, but leaky in proximal nephron
 - Water, Ca\(^{2+}\), Mg\(^{2+}\), K\(^{+}\), and some Na\(^{+}\) in the PCT move via this route
- **Primary active transport of Sodium**
 - Na-K ATPase pumps
- **Secondary active transport**
 - Electro chemical gradient creates ‘push’ for other solutes