- Venules
 - Know the factors that affect physiology of circulation
 - Blood flow: volume of blood flowing through vessel, organ, or entire circulation in given period
 - Measured in ml/min
 - Blood pressure (BP): force per unit area exerted on wall of blood vessel by blood
 - Expressed in mm Hg
 - Resistance (peripheral resistance): opposition to flow
 1. Blood viscosity
 - Increased viscosity equals increased resistance
 2. Total blood vessel length
 - The longer the vessel, the greater the resistance encountered
 3. Blood vessel diameter
 - Has greatest influence on resistance
 - If radius increases, resistance decreases, and vice-versa

- Relationship of flow, pressure and resistance
 - Blood flow (F) is directly proportional to blood pressure gradient (ΔP)
 - If ΔP increases, blood flow speeds up
 - Blood flow is inversely proportional to peripheral resistance (R)
 - If R increases, blood flow decreases, so
 - \[F = \frac{\Delta P}{R} \]
 - R is more important in influencing local blood flow because it is easily changed by altering blood vessel diameter

- Mean arterial pressure
 - Varies with cardiac cycle
 - Systolic blood pressure (SP) = maximum pressure
 - Due to ejection of blood into aorta
 - Diastolic blood pressure (DP) = minimum pressure
 - Not zero due to elastic recoil
 - The measured BP is shown as SP/DP
 - Example: 110 / 70
 - Pulse pressure (PP) is SP – DP
 - Example: 100 – 70 = 30
 - Mean Arterial Pressure (MAP) = DP + (PP/3)
 - Example: 70 + (30 / 3) = 80 mm Hg
• Fever: Abnormally high body temperature that is systemic response to invading microorganisms
 • Leukocytes and macrophages exposed to foreign substances secrete pyrogens
 • Pyrogens act on body’s thermostat in hypothalamus, raising body temperature

-Be familiar with the types of adaptive immune responses
 • Humoral immunity
 • Antibodies, produced by lymphocytes, circulate freely in body fluids
 • Humoral immunity has extracellular targets
 • Cellular Immunity
 • Lymphocytes act against target cell
 • Cellular immunity has cellular targets
 • Antigens: substances that can mobilize adaptive defenses and provoke an immune response
 • Characteristics of antigens
 • Can be a complete antigen or hapten (incomplete)
 • Complete antigen - foreign proteins, polysaccharides, lipids, and nucleic acids
 • Hapten: binds to body’s own proteins and together gets recognized as foreign substance
 • Contain antigenic determinants: parts of antigen that antibodies or lymphocyte receptors bind to