left lung – smaller, 2 lobes separated by oblique fissure
 8-9 bronchopulmonary segments
right lung – three lobes separated by oblique and horizontal fissure
 10 bronchopulmonary segments
lobules are the smallest subdivisions, served by bronchioles and their branches
trachea → primary bronchi → secondary (segmental) bronchi → tertiary bronchi → bronchioles → terminal bronchioles

Respiratory zone: site of gas exchange – microscopic structures: respiratory bronchioles, alveolar ducts and alveoli

Conduction zone: conducts air to gas exchange sites – includes all other structures
 branches from trachea to terminal bronchioles are conducting airways. They do not participate in gas exchange!!

respiratory muscles: diaphragm, intercostals, etc.

Pulmonary Lobule = functional unit of respiratory system
 lymphatic vessel, arteriole, capillary bed, venule, terminal bronchiole and alveolar sacs

transpulmonary pressure = 4 mmHg (760-756 mmHg) keeps airways open, the greater the trans pressure, the larger the lungs

intrapleural pressure = -4 mmHg (756 mmHg) fluctuates with breathing but always a negative pressure

intrapulmonary / intra-alveolar pressure = 0 mmHg (562-760 mmHg) fluctuates with breathing (758 when air comes in, 762 when air goes out)

inhalation is active, exhalation is passive (AT REST)

Boyles Law: pressure of a gas in a closed container is inversely proportional to the volume of the container

inhalation muscles consume energy to overcome factors that hinder air passage and pulmonary ventilation:
 airways resistance – friction; \(F = \frac{\text{change in } P}{R} \); resistance is usually insignificant
 copd narrows / obstructs airways, greater pressure differences are needed to maintain flow, atm pressure doesn’t change so intrapulmonary pressure has to
 - emphysema, chronic bronchitis
 alveolar surface tension
 lung compliance – amount of effort needed to stretch lungs and chest wall; elastic fibers!
 decreased compliance – scar tissue from tuberculosis, or pulmonary edema; emphysema – destruction of alveolar wall leaving an air pocket, destruction of elastic fibers → lungs inflate easily but elastic recoil doesn’t work

Lung Volumes and Capacities
 normal breathing = 12 breaths/min
 normal volume air inspired and expired = 500mL (TIDAL VOLUME)
 minute ventilation = total volume of air inhaled and exhaled each minute; breathing frequency x TV