Alkanes

27 December 2012

Formulas & Theorems Covered Today:
CnH2n+2- general formula

Hydrocarbons- group of organic compounds containing several homologous series.
- Aliphatic hydrocarbons- straight and branched chain molecules
- Alicyclics- hydrocarbons with closed rings
- Arenes- based on benzene, with rings of carbon atoms stabilised by delocalised electrons

All hydrocarbons are:
- Insoluble in water
- They all burn, and in sufficient O2, give CO2 AND H2O as the only products
- Usable hydrocarbons- fossil fuels- coal, petroleum and natural gas which yield pure hydrocarbons after processing

Aliphatic- belong to alkenes, alkanes or alkynes

- Alkanes- fossil fuels
- Over time, as decomposing plants and animals are exposed to high pressure and heat, crude oil or petroleum is formed with another product, natural gas which is made in a similar process
- Natural gas is largely methane
- Fossilised land plants form coal

Crude oil:
- Primary distillation- process of turning dark, thick, smelly but very valuable crude oil into useful chemicals with a variety of properties
- Primary distillation is an industrial version of the distillation you can carry out in the lab
- Petroleum is boiled and the vapours are cooled and liquefied at particular temperatures
- Fraction- liquid collected over a range of temperatures

Lighter fractions are in demand whereas heavier are not
Scientists crack heavy fractions to make them lighter fractions

- Heating long chain alkanes to high temperatures causes them to split to form shorter chains
- Some will be alkanes and some will be alkenes, particularly ethene
- Carried out in cat cracking used catalytic with the lower temperatures can be used in the process

5 main fractions formed when crude oil is distilled
1. 1-2% refinery gas-
 - the lightest fuel
 - Lower boiling point
 - Large proportion of methane
 - Used mainly as a fuel
 - Used as starting point for other organic syntheses
2. 15-30% gasoline-
 - Mixture of liquid hydrocarbons, C5-C10
 - Used as fuel for internal combustion engines in cars
 - Mixture of straight and branched chain alkanes
 - More branched there are, more useful fuel
3. 10-15% kerosene-
 - Mainly C11 and C12
 - Fuel for aircraft engines
 - Can be cracked to produce gasoline and other useful chemicals
4. 15-20% diesel oil/gas oil-
 - Fuel for industrial boilers
 - Diesel engines in cars
 - Diesel oil can be split further in a catalytic cracker to yield other useful fractions
5. 40-50% residue-
 - Very viscous
 - High boiling temperature
 - Fuel for furnaces of power stations or large ships
 - Further fractioned into lubricating oils and waxes and also bitumen (tar in roads)
 - Has to be processed in a vacuum to avoid high temperatures which could crack the components

Bond fission- breaking bonds
- When bonds are broken in a covalent bond, the shared electrons can be shared out in two ways:

1. Homolytic fission:
 - equal sharing out of electrons in the bond
 - each participant gets one electron when the bond is broken
 - The unpaired electron gained is represented by a dot
 - Becomes extremely reactive because the unpaired electron has a tendency to want to pair up with another substance
 - Equal sharing usually occurs when there is little or no ionic character in the covalent bond

2. Heterolytic fission:
 - Unequal sharing of the electrons in the covalent bond
 - Both electrons go to one atom
 - Two charged particles are made
 - Usually seen when the covalent bond has some degree of polarity