○ RIG-like receptors
 ▪ Cytoplasmic
 ▪ MDA-5 recognises double stranded RNA (dsRNA) from viruses
 ▪ Similar to TLR - redundancy
 ▪ African Horse Sickness
 □ dsRNA virus
 □ Infection increases mDA5 pathway signalling
 ○ PPRs very important
 ▪ Recognse conserved PAMPs
 ○ Different PPRs = different responses (different PAMPs)

Cells with PRR
 ○ Dendritic
 ○ Macrophages
 ○ Neutrophils
 ○ Eosinophils
 ○ Basophils
 ○ Mast cells
 ○ Natural Killer Cells
 ○ PPRs also on non-immune cells

 ○ Dendritic cells and macrophages are in tissyes
 ▪ "sentinel cells" - skin, liver, gut, lungs, etc.
 ▪ Range of PPRs to detect pathogens
 ○ Dendritic cells
 ▪ Langerhans in skin
 ▪ Range of PPRs
 ▪ Activation leads to inflammation
 ▪ Release of immune molecules
 □ Cytokines
 ◆ Small soluble
 ◆ Interleukins
 ◆ e.g. interleukin and interferons
 ◆ Bind to specific receptors on immune cells
 □ Chemokines
 ◆ Specialised cytokines - chemoattractant
 ◆ Attracts immune cells to tissues or within tissues
 ▪ Mediate immune responses
 ▪ Does not kill pathogens
 ▪ Takes in and presents pathogenic antigens
 ▪ Attract other immune cells
 ○ Macrophages
 ▪ Range of PRR
 ▪ Phagocytosis after PRR activation
 ▪ Can kill pathogens
 ▪ Critical for adaptive response

Killing
1. PRR and other receptors bind micropathogen
2. Transported by phagosome into cell
3. Fuse with lysosomes
4. Pathogen destroyed
 • Acification, oxygen derive toxins, antimicrobial peptides (defensins etc.), enzymes, competitors (lactoferrin sequesters iron)
 • Immune evasion
 □ Deliberate modulation of host immune system
 □ Capsules to prevent phagocytosis
- 1st lymphoid follicle - B cells
- Paracortical area - T cells
- Medullary cortex - macrophages
- Naïve lymphocytes constantly circulating
- Antigens and APCs move from infected tissues to lymph nodes

Spleen
- Filter microbes, antigens from blood **only**
- APCs and lymphocytes
- Same activation role as lymph nodes
- Red pulp
 - RBC destruction and storage - non-immune
- White pulp
 - Mature DCs and macrophages migrate from tissues to spleen via blood
 - Reside in marginal zone
 - Interact with lymphocytes in spleen

MALT - Mucosa Associated Lymphoid Tissues
- Gut Associated Lymphoid Tissues - GALT
- Nasal Associated Lymphoid Tissues - NALT
- Bronchus Associated Lymphoid Tissues - BALT
- Skin Associated Lymphoid Tissues - SALT
- Different environments
- Most exposure to pathogens at mucosal surfaces
- Higher lymphocytes concentration than the rest of the body
- Specialised lymphocytes
- Lots of IgA antibodies
 - Protected from mucosal proteases

GALT
 - Peyers patches
3. **Antibody-dependent cell-mediated cytotoxicity**
 - ADCC
 - Antibodies bind non-self antigens on the host cell
 - Immune cell Fc receptors bind antibodies
 - Host cell apoptosis triggered
 - Perforins etc.
 - Neutrophils, macrophages, eosinophils, NK cells

4. **Activation of Complement**
 - Antibodies 1 way of activating the complement cascade
 - Complement is a series of proteins in serum
 - Part of innate immune response
 - 3 pathways

```
Phagocytosis triggered

[Diagram showing the complement cascade]
```

- **Classical Pathway**
 - Antibody-antigen complexes and some non-specific reacting
 - Initiated by C1q
 - Binds antibodies or pathogen surface
- **Lectin Pathway**
 - Lectin (PRR) molecules (not antibodies) bind pathogen surfaces
 - Initiated by mannose binding lectin or ficolins
 - Bind carbohydrates on pathogen surface
 - Mannose PAMPs on salmonella, fungi
- **Alternative Pathway**
 - Spontaneous reactivity at pathogen surfaces
 - Initiated by C3
 - Blocked on host cells by multiple proteins
 - e.g. CD59

- **Complement functions**
 - Destruction
 - Polymerisation of terminal proteins to form Membrane Attack Complexes
 - MACs form pores in cell membranes
 - Cell lysis
 - Opsonisation
 - C3b and C5a proteins induce phagocytosis
 - Inflammation

```
Immunology Page 11
```
• **Paracrine Action**
 - Act on nearby cells
 - E.g. IFN during a viral infection

• **Endocrine Action**
 - Act on distant cells
 - E.g. IL-1 in systemic inflammatory response

• **Pleiotropic Action**
 - Any given cytokine may have different roles depending on targets
 - E.g. IL-2, 4, 5 and B cell proliferation

• **Redundant Action**
 - 2 or more cytokines with similar functions
 - E.g. IFN-alpha and TNF - increased MHC1

• **Synergistic Action**
 - Combined effect of 2 cytokines is greater than the additive of each alone
 - E.g. IFN-gamma and TNF - increased MHC1

Regulation of Cytokines
- Non-specific function must be prevented
 - Transient function
• Also in heart and lung membranes

• Also impacts memory B cells
 ▪ Products bind and block TNFα
• TNFα inhibitors $22 billion in 2009
 ▪ Crohns
 ▪ Asthma
 ▪ Ankylosing spondylitis
 □ Spinal arthritis

• Anti-IL-2
 ▪ T-cell proliferation
 ▪ Transplant rejection
 ▪ Blocking antibody against IL-2
 ▪ Also used in MS treatment

• IL-2
 ▪ Cancer
 ▪ Ex-vivo application of IL-2 to lymphocytes
 ▪ Stimulated and activated anti-tumour response
- Repeated subpassage mutations accumulate
- Test for paralytic activity
- Clinical trials
- Mutations sequenced

Immune response
- Strong, appropriate response
- Cellular immunity
- Humoral immunity (including secretory IgA)
- Long-lasting memory

Advantages
- Multiple antigens
- Few immunisations
- Easy to produce without genome
- May not require adjuvant (modifier)

Issues
- Reversion to wild type (polio 2 and 3)
- Persistent infection (Varicella-zoster, chickenpox, shingles etc.)
- Severe case if immunocompromised (measles)
- Hypersensitivity to egg antigens (mumps)

2. Killed vaccine
- Killed by heat - can denature too many protein antigens
- Killed by chemical - formaldehyde (Salk polio)
- e.g. yearly flu vaccination, hepatitis A

Immune response
- Weaker response than live vaccines
- Good serum antibody response, little secretory IgA
- Poor cell-mediated immunity
- Booster shots usually required

Advantages
- Multiple antigens
- Stable
- Safer than live vaccine
- No refrigeration (attenuated can need this)

Issues
- Vaccines not always killed (polio)
- Lack of understanding about why it protects
- Contamination with animal viruses (polio)
- Initial preparation requires working with pathogen

3. Subunit and Toxoid Vaccines
- Specific, purified pathogen subunit/molecule
- Toxoid vaccines induce antibodies against the exotoxins
 - Exotoxins cause major symptoms
- e.g. tetanus, diphtheria
- E.g. strep. Pneumoniae, hepatitis B
- Immune response
 - Weak immune response
 - Good serum antibody response
 - No cell-mediated immunity
 - Booster shots usually required
- Advantages
 - Limited antigens - less chance of cross-reactivity
 - Higher levels of specificity and reproducibility
 - Safe than live no chance of accidental infection
 - No need for refrigeration
- Issues
 - Toxoid vaccine
 - Limited to few bacterial diseases
 - Limited number of antigenic targets - evolution
 - Difficult to develop
 - Ajuvant required
Acute Phase Proteins
- Haptoglobin
 - Binds haemoglobin
 - Prevents bacteria gaining iron
- Fibrinogen
 - Potential damage to tissues
 - Generates fibrin threads
 - Clot can block pathogen spread

Resolving Inflammation
- Malnutrition
- Cancer
- Drug treatment
- Organ removal
- Infection
- Stress
- Age

○ Primary = absences, secondary = reduced
 - Low T cell count
 - Lower B cell proliferation

○ Malnutrition
 - Different nutritional deficiencies --> different immunodeficiencies
 - Obesity also associated with cancer, inflammation, autoimmune diseases (rheumatoid arthritis)
 - Zinc - critical in T cell activation
 - Pigs with Zinc deficiency: decreased T, activity, B cell activity, NK activity, phagocytic activity
 - Copper deficiency also has impact
 - Vitamin A

- Deficient Vitamin A
 - Retinoic acid
 - NK cells
 - Reduced activity
 - T cells
 - Reduced proliferation
 - B cells
 - Reduced Ig production

- Infection
 - Select bacterial, protozoal, and helminth pathogens can impact immune responses
 - Major infections are viral
 1. HIV
 - Mainly sexual transmission
 - ~30 million infected
 - Infects CD4 T, cells
 - Also dendritic and macrophages
 - GP120 binds CD4, then CCR5 or CXCR4 (chemotaxis receptor)
Reproduction and the Immune System

- The mammalian immune system will reject non-identical tissues/cells of the same species
- Allograft rejection
- Blood transfusion
- Haemolytic disease of the newborn
- Every foetus is at least 50% maternal derived
 - Up to 50% non-self
- 3 main challenges
 1. Survival of male gametes in the reproductive system
 2. Implantation and development of the foetus
 3. Survival of the newborn after birth

Sperm and the Immune System

- Non-self
- Female reproductive tract is site of infection
- Not all survive
- 2-3% of women develop anti-sperm antibodies associated with subfertility or infertility
 - Hypersensitivity even rarer
- Various mechanisms that reduce the immune response
 - Seminal plasma
 - High TGFβ (T_{reg}), IL7 (immunoregulatory), IL8 (chemotaxis and phagocytosis) - not only regulatory
 - Regulatory prostaglandins
 - Lenicov et al 2012 - DCs cultivated with seminal plasma become tolerised, less inflammatory response
 - Sperm also provide protective mechanism
 - No MHC1 so should be NK target
 - Pang et al 2007
 - Sperm coated with glycans that reduce NK cell cytotoxicity
 - Also present on some cancer
 - Related to interactions of HIV

Foetus and the Immune System

- Implantation and development
- 1/2 chromosomes from father
- Specifically paternal MHC molecule
- Graft experiments show that uterus can reject non-self tissue
- Placental development linked to immune response
- Various mechanisms to reduce response
 - Not known if they’re present in all mammals
 - Likely to be differences
 - Human and mouse studies predominate
 - T_{reg} cells
 - Uterine NK cells
• Passive immunity
 • Haemochorial - humans, rabbits, rats, mice
 ○ 3 layers, embryo derived
 ○ Full antibody transfer
 • Endochorial - cats, dogs
 ○ 4 layers, 1 maternal derived, 3 embryonic
 ○ 6-10% IgG transfer
 • Epitheliochorial - ruminants, horses, whales
 ○ 6 layers, 3 maternal, 3 embryonic
 ○ No antibody transfer
• Different levels in colostrum and milk

![Diagram of antibody distribution in different species](image)

• Chicken passive immunity
 ○ IgY (ancestral E, G), IgM, IgA in serum
 ▪ Hen sera --> egg yolk (IgY)
 ▪ Oviduct --> albumin (IgA, M)
 ○ Protects 10-20 days
• Maternal Abs impact vaccination of early animals - 1/2 life 5-10 days
 ○ Inhibits newborn ability to respond
 ○ No maternal Ab in calves - 1 week to make Abs
 ○ Maternal Ab in calves - 4 weeks to make Abs
 ○ Cats and dog vaccinated after 8 weeks
• Immunology Page 71