We have also learnt in Chapter 1 that if $f: X \rightarrow Y$ such that f(x) = y is one-one and onto, then we can define a unique function $g: Y \rightarrow X$ such that g(y) = x, where $x \in X$ and y = f(x), $y \in Y$. Here, the domain of g = range of f and the range of g = domain of f. The function g is called the inverse of f and is denoted by f^{-1} . Further, g is also one-one and onto and inverse of g is g. Thus, $g^{-1} = (f^{-1})^{-1} = f$. We also have

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x$$

 $(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y$

and

Since the domain of sine function is the set of all real numbers and range is the closed interval [-1, 1]. If we restrict its domain to $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, then it becomes one-one

and onto with range [-1, 1]. Actually, sine function restricted to any of the intervals

$$\left[\frac{-3\pi}{2}, \frac{-\pi}{2}\right], \left[\frac{-\pi}{2}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
 etc., is one-one and its range is $[-1, 1]$. We can,

therefore, define the inverse of sine function in each of these intervals. We denote he inverse of sine function by \sin^{-1} (arc sine function). Thus, \sin^{-1} is a function whose

domain is
$$[-1, 1]$$
 and range could be any of $[-1, 1]$ and $[-1, 1]$ and range could be any of $[-1, 1]$ and $[-$

$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
, and so on Corresponding to each sum interval, we get a *branch* of the

Pulcted sin⁻¹. The branch Pit
$$\left[\frac{6\pi}{2}, \frac{\pi}{2}\right]$$
 is called the *principal value branch*,

whereas other intervals as range give different branches of \sin^{-1} . When we refer to the function \sin^{-1} , we take it as the function whose domain is [-1, 1] and range is

$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
. We write $\sin^{-1}: [-1, 1] \rightarrow \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

From the definition of the inverse functions, it follows that $\sin (\sin^{-1} x) = x$

if
$$-1 \le x \le 1$$
 and $\sin^{-1}(\sin x) = x$ if $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. In other words, if $y = \sin^{-1} x$, then $\sin y = x$.

Remarks

(i) We know from Chapter 1, that if y = f(x) is an invertible function, then $x = f^{-1}(y)$. Thus, the graph of \sin^{-1} function can be obtained from the graph of original function by interchanging x and y axes, i.e., if (a, b) is a point on the graph of sine function, then (b, a) becomes the corresponding point on the graph of inverse

Note

- 1. $\sin^{-1}x$ should not be confused with $(\sin x)^{-1}$. In fact $(\sin x)^{-1} = \frac{1}{\sin x}$ and similarly for other trigonometric functions.
- 2. Whenever no branch of an inverse trigonometric functions is mentioned, we mean the principal value branch of that function.
- 3. The value of an inverse trigonometric functions which lies in the range of principal branch is called the principal value of that inverse trigonometric functions.

We now consider some examples:

Example 1 Find the principal value of $\sin^{-1} \left(\frac{1}{\sqrt{2}} \right)$.

Solution Let $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = y$. Then, $\sin y = \frac{1}{\sqrt{2}}$.

We know that the range of the principal value branch of \sin^{-1} is $\left(\frac{-\pi}{4}, \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$. Therefore, principal value of $\sin^{-1}\left(\frac{1}{4}\right) = \frac{1}{\sqrt{2}}$.

Example 2 Find the principal will end cot

$$\cot y = \frac{-1}{\sqrt{3}} = -\cot\left(\frac{\pi}{3}\right) = \cot\left(\pi - \frac{\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right)$$

We know that the range of principal value branch of \cot^{-1} is $(0, \pi)$ and

$$\cot\left(\frac{2\pi}{3}\right) = \frac{-1}{\sqrt{3}}$$
. Hence, principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$ is $\frac{2\pi}{3}$

EXERCISE 2.1

Find the principal values of the following:

- 1. $\sin^{-1}\left(-\frac{1}{2}\right)$ 2. $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ 3. $\csc^{-1}(2)$

- 4. $\tan^{-1}(-\sqrt{3})$ 5. $\cos^{-1}(-\frac{1}{2})$ 6. $\tan^{-1}(-1)$

Also
$$\cos^{-1} \frac{1-x^2}{1+x^2} = \cos^{-1} \frac{1-\tan^2 y}{1+\tan^2 y} = \cos^{-1} (\cos 2y) = 2y = 2\tan^{-1} x$$

(iii) Can be worked out similarly.

We now consider some examples.

Example 3 Show that

(i)
$$\sin^{-1}\left(2x\sqrt{1-x^2}\right) = 2\sin^{-1}x, \ -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$$

(ii)
$$\sin^{-1}\left(2x\sqrt{1-x^2}\right) = 2\cos^{-1}x, \ \frac{1}{\sqrt{2}} \le x \le 1$$

Solution

Solution

(i) Let
$$x = \sin \theta$$
. Then $\sin^{-1} x = \theta$. We have
$$\sin^{-1} \left(2x\sqrt{1-x^2}\right) = \sin^{-1} \left(2\sin \theta \sqrt{1-\sin^2 \theta}\right)$$

$$= \sin^{-1} (2\sin \theta \cos \theta) = \sin^{-1} (2\cos \theta) = 2\sin^{-1} (2\cos \theta)$$
(ii) Take $x = \cos \theta$, then proceeding at above, we get, $\sin^{-1} \left(2x\sqrt{1-x^2}\right) = 2\cos^{-1} x$

Example (1) Gy that $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{2}{11} = \tan^{-1} \frac{3}{4}$

Solution By property 5 (7), (6 hav)

Example 4 VG what
$$\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{2}{11} = \tan^{-1} \frac{3}{4}$$

L.H.S. =
$$\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{2}{11} = \tan^{-1} \frac{\frac{1}{2} + \frac{2}{11}}{1 - \frac{1}{2} \times \frac{2}{11}} = \tan^{-1} \frac{15}{20} = \tan^{-1} \frac{3}{4} = \text{R.H.S.}$$

Example 5 Express $\tan^{-1} \left(\frac{\cos x}{1 - \sin x} \right), \frac{-3\pi}{2} < x < \frac{\pi}{2}$ in the simplest form.

Solution We write

$$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right) = \tan^{-1}\left[\frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\cos^2\frac{x}{2} + \sin^2\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}\right]$$