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3. ABC is a triangle with a right angle at C. If the median on the side
a is the geometric mean of the sides b and ¢, show that ¢ = 3b.

4. (a) Suppose ¢ = a+kb for a right triangle with legs a, b, and hypotenuse
c. Show that 0 < k < 1, and

a:bie=1—k?:2k:1+ K>
(b) Find two right triangles which are not similar, each satisfying ¢ =
%a + %b. !

5. ABC'is a triangle with a right angle at C'. If the median on the side ¢
is the geometric mean of the sides a and b, show that one of the acute
angles is 15°.

6. Let ABC be a right triangle with a right angle at Vertex C.
CXPY be a square with P on the hypotenuse and X, Yg e‘
Show that the length ¢ of a side of this sq ]\

b

1

l/a +1/b = 1/t. a2 + 1/b"2 = Vd2.

la:b:e¢=12:35:37or 12 : 5 : 13. More generally, for h < k, there is, up to
similarity, a unique right triangle satisfying ¢ = ha + kb provided

(i) h<1<Ek, or

(ii) ‘/_<h k<1,or

(111)h k>0, W4k = 1.

There are two such right triangles if

O0<h<k<l1l, R 4+k >1
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Py
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7. Let ABC' be a right triangle with sides a, b and hypotenuse c. If d is

the height of on the hypotenuse, show that

1 1 1
2T @

. (Construction of integer right triangles) It is known that every right

triangle of integer sides (without common divisor) can be obtained by
choosing two relatively prime positive integers m and n, one odd, one
even, and setting

a=m?—n?, b = 2mn, c=m?+n?.

(a) Verify that a? + b = 2.

(b) Complete the following table to find all such right tria@es@“
sides < 100: .
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DO

Exercise

1. AB is a chord of length 2 in a circle O(2). C is the midpoint of the
minor arc AB and M the midpoint of the chord AB. \

6@
0
S

®

Show that (i) CM =2 —/3; (ii) BC = V6 — V2.
Deduce that

1 1
tan15° = 2—v/3,  sin15° = Z(\/8—\/5), cos 15° = Z(\/8+\/§).
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(a) Show that the right triangle ABC has the same area as the square
PXYQ.

(b) Find the inradius of the triangle ABC. °

(c) Show that the incenter of AABC is the intersection of PX and
BY.

cO LK

o o) \e .
otes?
13. A square of s oﬁ 1nto 4 rﬂj ht triangles and
g te r.

a smal ual

14. An equilateral triangle of side 2a is partitioned symmetrically into a
quadrilateral, an isosceles triangle, and two other congruent triangles.
If the inradii of the quadrilateral and the isosceles triangle are equal,

5r=(3—5)a.
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Proof. (1) The midpoint M of the segment I14 is on the circumcircle.
(2) The midpoint M’ of Iplc is also on the circumcircle.
(3) MM’ is indeed a diameter of the circumcircle, so that MM’ = 2R.
(4) If D is the midpoint of BC, then DM’ = (ry, + ).
(5) Since D is the midpoint of X X', QX' =1X =r, and [4Q =1, — .
(6) Since M is the midpoint of 114, M D is parallel to [4Q and is half
in length. Thus, MD = $(r, — ).
(7) It now follows from MM’ = 2R that ro + 7, + 7. —r = 4R.
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3. (a) Let ABC be an isosceles triangle with a = 2 and b = ¢ = 9. Show
that there is a circle with center I tangent to each of the excircles of
triangle ABC.

(b) Suppose there is a circle with center I tangent externally to each
of the excircles. Show that the triangle is equilateral.

(c) Suppose there is a circle with center I tangent internally to each
of the excircles. Show that the triangle is equilateral.

4. Prove that the nine-point circle of a triangle trisects a median if and
only if the side lengths are proportional to its medians lengths in some
order.

3.4 Power of a point with respect to a circle \(
The power of a point P with respect to a circle O(r \d ne@O .
O P2 tesa .
This number is positj m Negatlve cc %@P is outside, on,
or 1n81de the circje % 6 O'E
AO

&
preN\ 508

For any line ¢ thrbugh P intersecting a circle (O) at A and B, the signed
product PA- PB is equal to (O)p, the power of P with respect to the circle
(0).

If P is outside the circle, (O)p is the square of the tangent from P to
(0).
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Q
D c
P
E E
B

3. (The butterfly theorem) Let M be the midpoint of a chord AB of a
circle (O). PY and QX are two chords through M. PX and QY

intersect the chord AB at H and K respectively. u\(
(;O -

(i) Use the sine formula to show that
HX-HP X H P

0

(11) Use the i mrds theor agto d 1 Qat HM = KM.
Sie0 3@

4. P and @ are two points on the diameter AB of a semicircle. K(T) is
the circle tangent to the semicircle and the perpendiculars to AB at P
and @. Show that the distance from K to AB is the geometric mean
of the lengths of AP and BQ.
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Suppose d > |a — b| so that none of the circle contains the other. The
external common tangent XY has length

d? — (a — b)2.

O

Ko

D c D

Exercise
1. In each of the OHN ‘&esﬁd the ?tldxt’l @'
A . - :

2. Two circles A(a) and B(b) are tangent externally at a point P. The

common tangent at P intersects the two external common tangents
XY, X'Y" at K, K' respectively.

(a) Show that ZAK B is a right angle.
(b) What is the length PK?
(c) Find the lengths of the common tangents XY and KK'.

13 : /3 + 2 in the case of 4 circles.
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3. A(a) and B(b) are two circles with their centers at a distance d apart.
AP and AQ are the tangents from A to circle B(b). These tange ¥
intersect the circle A(a) at H and K. Calculate the len hﬁﬂd
terms of d, a, and b. ? &

sa\e:

4. Tangents are drawn from the center of two given circles to the other
circles. Show that the chords HK and H'K' intercepted by the tan-
gents are equal.

5. A(a) and B(b) are two circles with their centers at a distance d apart.
From the extremity A’ of the diameter of A(a) on the line AB, tangents
are constructed to the circle B(b). Calculate the radius of the circle
tangent internally to A(a) and to these tangent lines. 3

2 Answer: 22,

3 Answer: -2t

d+a+b"
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and Y3 respectively, and that in angle C touch the sides BC and AC at 73
and Z» respectively.
C

AS)
Fach of the segments X, X3, Y3Y7, and 212> haak@cq@rg)as mid-

point. It follows that the triangles [ HZ&%@’ re congruent, and
the segment Y375 is parallel to th O ntaini e segment Y171,

and is tangent to the ing IWer fore, the iaﬂ&l—e’s?ﬂg and ABC are
similar, ‘the ratio ol&ig(lﬁt ein O{

\e ZE;% —2r

PV pag®=

with hy = % = 27:5, the altitude of triangle ABC on the side BC. Sim-
plifying this, we obtain }—/3%2 = 2%, From this, the inradius of the triangle
AY3Z5 is given by r, = £=2 . r. Similarly, the inradii of the triangles BZ1 X3
and CXpBY1 are r, = =2 - r and r. = == - r respectively. From this, we
have

| »
S8

Tq+7p+Tc=T.

We summarize this in the following proposition.

Proposition

If tangents to the incircles of a triangle are drawn parallel to the sides,
cutting out three triangles each similar to the given one, the sum of the
inradii of the three triangles is equal to the inradius of the given triangle.



YIU: Euclidean Geometry 65

5.1.5 Construction of incircle of shoemaker’s knife

Locate the point C3 as in §??. Construct circle C3(P) to intersect O1(a)
and O2(b) at X and Y respectively. Let the lines O1X and O,Y intersect
at C. Then C(X) is the incircle of the shoemaker’s knife.

Note that C3(P. ff c1rcle ﬁ’l h " Qme radius as the
Archlmed les
P egrmse P a.g

1. Show that the area of triangle CO103 is

ab(a + b)?
a? + ab + b?’

2. Show that the center C of the incircle of the shoemaker’s knife is at a
distance 2p from the line AB.

3. Show that the area of the shoemaker’s knife to that of the heart
(bounded by semicircles O1(a), O2(b) and the lower semicircle O(a+Db))
is as p to a + b.
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N
: \K@@&&&’OO%‘S\%Z O‘ L

6.5
E‘g non—collinea?o Z2, 23, z4 are concyclic if and only if the cross

ratio
24— 21 24— 22 (23— 22)(24 — 21)

-2 -2 (23— 21)(2a — 22)

(21, 22; 23, 24) =

is a real number.
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and are constructible, since y1 is constructible. Similarly, if we write
23 =w +w® + w0 2 = w0+t F o’ + 0P,

we find that 23 + 24 = 1o, and 2324 = w +w? + - -- + w® = —1, so that 23
and z4 are the roots of the quadratic equation

22—z —1=0

and are also constructible.

Finally, further separating the terms of z1 into two pairs, by putting

t=w+ w, tr = Wt + w?,

we obtain u\(
1+t = 2, O '

tita = (w+w®)(WhB 4wt {ega\@ wg 23.
It follows that ¢1 at-lé %2 ar (%ad&ﬂ?@atlon
50
P Fl&ﬂ construc?a%%nd z3 are constructible.

6.6.2 Explicit construction of a regular 17-gon *
To construct two vertices of the regular 17-gon inscribed in a given circle
O(A).
1. On the radius OB perpendicular to OA, mark a point J such that
0J = 10A.
2. Mark a point F on the segment OA such that ZOJE = %ZOJA.

3. Mark a point F' on the diameter through A such that O is between E
and F' and ZEJF = 45°.

4. With AF as diameter, construct a circle intersecting the radius OB
at K.

4H.S.M.Coxeter, Introduction to Geometry, 2nd ed. p.27.
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For every point P (except the midpoint of AB), let P’ be the point on
AC such that PP’ 1 AB.

The intersection @ of the lines P’M and AB is the harmonic conjugate
of P with respect to AB.

7.2 Apollonius Circle

7.2.1 Angle bisector Theorem

If the internal (repsectively external) bisector of angle BAC intersect the
line BC at X (respectively X'), then

A BX:XC=c:b

7.2.2 Example

The points X and X’ are harmonic conjugates with respect to BC, since

BX:XC=c:b, and BX':X'C=c:—b.

7.2.3

A and B are two fixed points. For a given positive number k # 1, * the
locus of points P satisfying AP : PB = k : 1 is the circle with diameter
XY, where X and Y are points on the line AB such that AX : XB=Fk: 1
and AY : YB=Fk:—1.

If k — 1, the locus is clearly the perpendicular bisector of the segment AB.
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Proof. (=) Let W be the point on AB such that CW//XY. Then,

BX BZ cy Wwz
XC = 7w and VA= 74
It follows that
XC' YA ZB 7ZW ZA ZB ZB ZW ZA
(<=) Suppose the line joining X and Z intersects AC' at Y’. From
above,

BX CY' AZ | DX CY AZ
XC Y'A ZB “XC YA ZB
It follows that
cYy’ oy

YA YA \(
The points Y/ and Y divide the segment C'A in the same ratlcﬁﬁ hhﬁ

be the same point, and X, Y, Z are collinear.

Exercise O‘e
1. Misapointo&]‘g i nADofA i?u,cé_lgM MD =p:q.

The rsects th ind the ratio AN : NB.

prel.

The incircl of @% touches the sides BC, CA, AB at D, E, I

respectively. Suppose AB # AC. The line joining E and F meets BC'
at P. Show that P and D divide BC harmonically.

SAnswer: AN : NB=p:2q.
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3. The incircle of AABC touches the sides BC, CA, AB at D, E, F
respectively. X is a point inside AABC such that the incircle of
AX BC touches BC at D also, and touches CX and XB at Y and Z
respectively. Show that E, F, Z, Y are concyclic. *

4. Given a trian %‘ 01rcle %@cle on BC touch
i
en thel

the side resp, ne AC at Y and Y’
es ! Y/ intersect on the bisector of

P ( e\tse A, atﬁ pHO té %/on this bisector.

7.4 The Ceva Theorem

Let X, Y, Z be points on the lines BC, CA, AB respectively. The lines
AX, BY, CZ are concurrent if and only if

BX CY AZ
XC YA ZB

Proof. (=) Suppose the lines AX, BY, CZ intersect at a point P. Con-
sider the line BPY cutting the sides of ACAX. By Menelaus’ theorem,

CY AP XB _ CcYy PA BX

YA PX BC
4IMO 1996.
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Exercise

1. If X = yB + zC, then the isotomic conjugate is X' = zB + yC.

2. X', Y', 7" are collinear if and only if X,Y, Z are collinear.

8.5.2 Gergonne and Nagel points

Suppose the incircle I(r) of triangle ABC' touches the sides BC, C'A, and
AB at the points X, Y, and Z respectively.

BX : XC = s—b : s—c,
AY YC = s—a : s —c,
AZ . ZB = s—a : s—b

This means the cevians AX, BY, C'Z are concurrent. The intersect'(“
is called the Gergonne point of the triangle, sometimes also 6(@ a\&
.

Gergonne point. a\e .

Let X', Y’ Z' be the isotomic conjugates of X, Y, Z on the respective
sides. The point X’ is indeed the point of contact of the excircle I4(r1)
with the side BC; similarly for Y/ and Z’. The cevians AX’', BY', CZ' are
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7. The Gergonne point of the triangle K 4 Kp K¢ is the symmedian point
K of NABC.

8. Characterize the triangles of which the midpoints of the altitudes are
collinear. 8

9. Show that the mirror image of the orthocenter H in a side of a triangle
lies on the circumcircle.

10. Let P be a point in the plane of AABC, G 4, Gg, G¢ respectively the
centroids of APBC, APCA and APAB. Show that AG4, BGp, and
CG¢ are concurrent. °

11. If the sides of a triangle are in arithmetic progression, then the line
joining the centroid to the incenter is parallel to a side of the trlangy

12. If the squares of a triangle are in arithmetic progressmn
joining the centroid and the symmedian pomﬁ 0 a 81de of

the triangle. te
" 0\’“ NO £ 110

In §7 w hed usm trl(: version of Ceva theorem,
igd cy of the ach vertex of a triangle to the point

ontact of t g Cle Wlth the mixtilinear incircle in that angle.
Suppose the line AA CC’ intersects the sides BC, CA, AB at points
X, Y, Z respectlvely. We have

BX ¢ sinm (s — b)/V?
XC b sinap  (s—c)/c?

BX : XC = el
Ay YO = &£ et
AZ . ZB = ¢ s5h

8More generally, if P is a point with nonzero homogeneous coordinates with respect to
NABC, and AP, BP, CP cut the opposite sides at X, Y and Z respectively, then the
midpoints of AX, BY, CZ are never collinear. It follows that the orthocenter must be a
vertex of the triangle, and the triangle must be right. See M(G1197.844.5854.

9 At the centroid of A, B, C, P; see MGQ781.914.
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This latter equation can be rewritten as

ctxz+ka bt+z+(1-ka

r = =% ) (9.1)
o c+x b4z
TR (9.2)
from which
T +c
T 2rtb+c

Now substitution into (1) gives

Rearranging, we have

222e+ b+ )2 = 2e+b+o)[(x + )b + (x + b)c?] — (x + b)(x + c)a2
(x4 b)(x+c)a® = (2r+b+0)|(z
= (2z+b+)(

(x+5b [‘CFQ
(22 + b+ c) ag’@g

o
it eam%gm

(b+c) 2):Z(b—i-c—i-a)(b—i-c—a):s(s—a).

Py

9.1.2

Lau ! has proved an interesting formula which leads to a simple construction
of the point P. If the angle between the median AD and the angle bisector
AX is 6, then

Mg + Wq - COS O = s(s — a).

1Solution to Crux 1097.
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Exercise

1. Show that

2. Show that the circle with XY as diameter intersects BC at P if and
only if AABC is isosceles. 2
9.1.4 Proof of Lau’s formula

Let 6 be the angle between the median and the bisector of angle A.
Complete the triangle ABC into a parallelogram ABA’C. In triangle
AA'C, we have

AA = 2m,, AC = b, AC = e \(
LACA = 180°—a, LAAC = $+6, LAAC = %~0\)

By the sine formula,

b+c sin(§+0)+sin(§—0) 2singcosd  cosf

2my, sin(180° — «) ~ sina cos g’

From this it follows that

mg - cosf = - COS —.

2

2Hint: AP is tangent to the circle XY P.



YIU: Euclidean Geometry

4. Let ABC be an isosceles triangle, D the midpoint of the base

134

oAl

On the minor arc BC of the circle A(B), mark in h Yhat
é ~ Let P be a

CX =CD. Let Y be the projection of X ta.

point on BC such that AP = Yﬁ&:@% €

ABP is equal to the efﬂu e ACW@ide CP.
£(O \!

inradius of triangle
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spective from their common incenter I. The line joining their circumcenters
passes through I. Note that T is the circumcenter of triangle I1113, the
circumradius being the common radius ¢ of the three circles. This means
that T, O and I are collinear. Since

131 _ D) _ I I3 _ r—t
CA AB BC r '’

wehavet:TT_t'R,or
t_ r
R R+7r’

This means I divides the segment OT in the ratio

TI:IO=—r:R+r.

Equivalently, OT : TI = R : r, and T is the internal center of su@tuw

the circumcircle and the incircle. \e

9.3.2 Construction O‘,e
Let O and I be th 1! e and the 1 1193 ABC.
é rpendlclfi‘ 1ntersect1ng the latter at
P ( QZ\,Constru icular from O to BC, intersecting the circum-
circle at M (so OM are directly parallel).

(3) Join OX and IM. Through their intersection P draw a line par-
allel to I.X, intersecting OI at T, the internal center of similitude of the
circumcircle and incircle.

(4) Construct the circle T'(P) to intersect the segments IA, IB, IC at
11, I, I3 respectively.

(5) The circles I;(T), j = 1,2,3 are three equal circles through T" each
tangent to two sides of the triangle.
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Since [ = 2—1s(a -A+0b-B+c- (), the homongeneous coordinates of I1 with
respect to ABC' are

a(:osg : bcosg—i-stiné : ccosg +2351n1
2 2 2 2 2

= a: b(l—l—QCosg) : c(1+2(:os§).

Here, we have made use of the sine formula:

a b_c_ 2s B 2s

sina  sinf  siny sina+sinf8+siny  4cos $ cos g cos % '

Since I has homogeneous coordinates a : b : ¢, it is easy to see that the line
I1; intersects BC at the point A’ with homogeneous coordinates

O:bcos§ ccosé—() bse(:é csec— O U\(

2

Similarly, B’ and C’ have coordinates Sa\

From these, it is clear that AA’, BB, CC’ intersect at a point with
homogeneous coordinates

asecg : bsecé : csecl.
2 2 2

Exercise

1. Let O1, O2, O3 be the circumcenters of triangles 1 BC, [bLCA, I3AB
respectively. Are the lines O111, O212, O3l3 concurrent?

9.5 Malfatti circles

9.5.1 Construction Problem

Given a triangle, to construct three circles mutually tangent to each other,
each touching two sides of the triangle.
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Beginning with any circle K(A) tangent internally to O(A), a chain f
four circles can be completed to touch (O) at each of the four points &,

C,D. .
a\e-©
Exercise O"es
1. Let A, B,C, l&% mk cﬁcntiv&ﬁnt&n’(agde. Show that
the chow are cqncfrre nd*only if AB-CD-EF =
@ il @ IX—EA A

2. Let A1As...A12 be a regular 12— gon. Show that the diagonals
Aq1As, A3Ag and A4Ag are concurrent.

3. Inside a given circle C is a chain of six circles C;, ¢ = 1, 2, 3, 4, 5, 6,
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2 = @+ d?—2cdcosé.
Eliminating x, we have
a? + b — ® — d? = 2abcos B — 2cd cos 6,

Denote by S the area of the quadrilateral. Clearly,
S _1 bsin 3 —i—l d sin 6
= jabsin 5cdsiné.

Combining these two equations, we have

1652 4 (a? + b% — ® — d?)?
= 4(absin B + cdsin 6)? + 4(abcos 3 — cd cos §)?

= 4(a®b® + Ad?) — 8abed(cos § cos § — sin Bsin §) K
= 4(a®b? 4 2d?) — 8abed cos(6 + 6) CO ‘\)
= 4(a®V? + 2d?) — 8abed|2 cos? ) \B .

= 4(ab+ cd)® —16 (@@
Congequw -‘( O ’L A’( O-‘

\J\E
P ‘6;62 = 4(ab9dagg b —? — d2)2 — 16abed cos? w

= [2(ab + cd) + (a® + b* — ® — d?)][2(ab + cd) — (a? —21- b2 — % — d?)]

—16abed cos? A+

= [(a+b)% = (c—d)?|[(c+d)? - (a — b)?] — 16abcd cos? f+0
= (a+b+c—d)(a+b—c+d)(c+d+a—b)(c+d—a+Db)

1)
—16abed cos® ﬁ%

Writing
2s:=a+b+c+d,

we reorganize this as

5% = (s—a)(s—b)(s —c)(s — d) — abed cos? 8 +5.
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10.1.1 Cyclic quadrilateral

If the quadrilateral is cyclic, then 3+ 6 = 180°, and cos @ = 0. The area
formula becomes

S = /(s — a)(s = )(s — )(s — d),
where s = $(a+ b+ ¢+ d).

Exercise

1. If the lengths of the sides of a quadrilateral are fixed, its area is greatest
when the quadrilateral is cyclic.

2. Show that the Heron formula for the area of a triangle is a special ca\(

of this formula.
coY

10.2 Ptolemy’s Theorem S‘a.\e

Suppose the quadrllateral Am &Q Th?ﬁ ﬁ&ﬁ%@) and cos 8 =

RET e
P(e\, Pa 2cd

and

=0,

5 (ac+bd)(ad + be)
x© = .
ab + cd
Similarly, the other diagonal y is given by

> (ab+ cd)(ac+ bd)
N (ad + bc)

From these, we obtain
xy = ac + bd.

This is Ptolemy’s Theorem. We give a synthetic proof of the theorem and
its converse.
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10.3 Circumscriptible quadrilaterals

A quadrilateral is said to be circumscriptible if it has an incircle.

10.3.1 Theorem

A quadrilateral is circumscriptible if and only if the two pairs of opposite
sides have equal total lengths.
Proof. (Necessity) Clear.

N S (VI

(Suffyc Wup ose AB #S&C -§A, and AB < AD. Then
@e}@D %nt y on ég such that éif( B ég Then
DX = DY. Let be the circumcircle of triangle BXY . AK bisects angle A
since the triangles AKX and AK B are congruent. Similarly, CK and DK
are bisectors of angles B and C respectively. It follows that K is equidistant
from the sides of the quadrilateral. The quadrilateral admits of an incircle

with center K.

10.3.2 8

Let ABCD be a circumscriptible quadrilateral, X, Y, Z, W the points of
contact of the incircle with the sides. The diagonals of the quadrilaterals
ABCD and XY ZW intersect at the same point.

8See Crux 199. This problem has a long history, and usually proved using projective
geometry. Charles Trigg remarks that the Nov.-Dec. issue of Math. Magazine, 1962,
contains nine proofs of this theorem. The proof here was given by Joseph Konhauser.
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10.9.1

(a) If Q is cyclic, then Q(py is circumscriptible.
b) If Q is circumscriptible, then Qo is cyclic. 24
( ©) is ¢y
c¢) If Q is cyclic, then Qyy is a rectangle.
€))
(d) If Q, is cyclic, then the nine-point circles of BCD, CDA, DAB, ABC

have a point in common. 2°.

Exercise

1. Prove that the four triangles of the complete quadrangle formed by
the circumcenters of the four triangles of any complete quadrilateral
are similar to those triangles. 28

2. Let P be a quadrilateral inscribed in a circle (O) and let @ be the
quadrilateral formed by the centers of the four circles 1nternﬁs
the

ing (O) and each of the two diagonals of P. The
four triangles having for sides the Sld%§& i

rectangle inscribed in Q. 27 N O
10.10, \N ﬁ(()m ﬁ 'XjO
\

P The diagonals OP %%teral ABCD intersect at P. The orthocenters of

the triangle PAB, PBC, PCD, PDA form a parallelogram that is similar

to the figure formed by the centroids of these triangles. What is “centroids”

is replaced by circumcenters? 28

of P form a

24E1055.532.8538.(V.Thébault)

B Crux 2276

26E619.444.9451. (W.B.Clarke)

27 Thébault, AMM 3887.38.8837. See editorial comment on 837.p486.
28Crux 1820.



