
YIU: Euclidean Geometry 3

3. ABC is a triangle with a right angle at C. If the median on the side
a is the geometric mean of the sides b and c, show that c = 3b.

4. (a) Suppose c = a+kb for a right triangle with legs a, b, and hypotenuse
c. Show that 0 < k < 1, and

a : b : c = 1− k2 : 2k : 1 + k2.

(b) Find two right triangles which are not similar, each satisfying c =
3
4a+

4
5b.

1

5. ABC is a triangle with a right angle at C. If the median on the side c
is the geometric mean of the sides a and b, show that one of the acute
angles is 15◦.

6. Let ABC be a right triangle with a right angle at vertex C. Let
CXPY be a square with P on the hypotenuse, and X , Y on the sides.
Show that the length t of a side of this square is given by

1

t
=
1

a
+
1

b
.

t

t

a

b
da b

1/a + 1/b = 1/t. 1/a 2̂ + 1/b 2̂ = 1/d 2̂.

1a : b : c = 12 : 35 : 37 or 12 : 5 : 13. More generally, for h ≤ k, there is, up to
similarity, a unique right triangle satisfying c = ha+ kb provided
(i) h < 1 ≤ k, or
(ii)

√
2

2 ≤ h = k < 1, or
(iii) h, k > 0, h2 + k2 = 1.
There are two such right triangles if

0 < h < k < 1, h2 + k2 > 1.
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YIU: Euclidean Geometry 4

7. Let ABC be a right triangle with sides a, b and hypotenuse c. If d is
the height of on the hypotenuse, show that

1

a2
+
1

b2
=
1

d2
.

8. (Construction of integer right triangles) It is known that every right
triangle of integer sides (without common divisor) can be obtained by
choosing two relatively prime positive integers m and n, one odd, one
even, and setting

a = m2 − n2, b = 2mn, c = m2 + n2.

(a) Verify that a2 + b2 = c2.

(b) Complete the following table to find all such right triangles with
sides < 100:

m n a = m2 − n2 b = 2mn c = m2 + n2

(i) 2 1 3 4 5
(ii) 3 2
(iii) 4 1
(iv) 4 3
(v) 5 2
(vi) 5 4
(vii) 6 1
(viii) 6 5
(ix) 7 2
(x) 7 4
(xi) 7 6
(xii) 8 1
(xiii) 8 3
(xiv) 8 5
(xv) 9 2
(xvi) 9 4 65 72 97
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YIU: Euclidean Geometry 9

Exercise

1. AB is a chord of length 2 in a circle O(2). C is the midpoint of the
minor arc AB and M the midpoint of the chord AB.

M

C

O

A B

Show that (i) CM = 2−√3; (ii) BC = √6−√2.
Deduce that

tan 15◦ = 2−
√
3, sin 15◦ =

1

4
(
√
6−
√
2), cos 15◦ =

1

4
(
√
6+
√
2).
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YIU: Euclidean Geometry 25

(a) Show that the right triangle ABC has the same area as the square
PXY Q.

(b) Find the inradius of the triangle ABC. 5

(c) Show that the incenter of 4ABC is the intersection of PX and
BY .

C

I

Y

Q P

X

BOA

13. A square of side a is partitioned into 4 congruent right triangles and
a small square, all with equal inradii r. Calculate r.

14. An equilateral triangle of side 2a is partitioned symmetrically into a
quadrilateral, an isosceles triangle, and two other congruent triangles.
If the inradii of the quadrilateral and the isosceles triangle are equal,

5r = (3−√5)a.
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YIU: Euclidean Geometry 33

Proof. (1) The midpoint M of the segment IIA is on the circumcircle.
(2) The midpoint M 0 of IBIC is also on the circumcircle.
(3) MM 0 is indeed a diameter of the circumcircle, so that MM 0 = 2R.
(4) If D is the midpoint of BC, then DM 0 = 1

2(rb + rc).
(5) Since D is the midpoint of XX 0, QX 0 = IX = r, and IAQ = ra − r.
(6) Since M is the midpoint of IIA, MD is parallel to IAQ and is half

in length. Thus, MD = 1
2(ra − r).

(7) It now follows from MM 0 = 2R that ra + rb + rc − r = 4R.
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YIU: Euclidean Geometry 40

3. (a) Let ABC be an isosceles triangle with a = 2 and b = c = 9. Show
that there is a circle with center I tangent to each of the excircles of
triangle ABC.

(b) Suppose there is a circle with center I tangent externally to each
of the excircles. Show that the triangle is equilateral.

(c) Suppose there is a circle with center I tangent internally to each
of the excircles. Show that the triangle is equilateral.

4. Prove that the nine-point circle of a triangle trisects a median if and
only if the side lengths are proportional to its medians lengths in some
order.

3.4 Power of a point with respect to a circle

The power of a point P with respect to a circle O(r) is defined as

O(r)P := OP
2 − r2.

This number is positive, zero, or negative according as P is outside, on,
or inside the circle.

3.4.1

For any line ` through P intersecting a circle (O) at A and B, the signed
product PA ·PB is equal to (O)P , the power of P with respect to the circle
(O).

T

P

O

M PBA

O

M PA B

O

If P is outside the circle, (O)P is the square of the tangent from P to
(O).
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YIU: Euclidean Geometry 42

P

Q

EF

CD

BA

3. (The butterfly theorem) Let M be the midpoint of a chord AB of a
circle (O). PY and QX are two chords through M . PX and QY
intersect the chord AB at H and K respectively.

(i) Use the sine formula to show that

HX ·HP
HM2

=
KY ·KQ
KM2

.

(ii) Use the intersecting chords theorem to deduce that HM = KM .

a-yyxa-x
KH

X

Y

M B

QP

A

O

4. P and Q are two points on the diameter AB of a semicircle. K(T ) is
the circle tangent to the semicircle and the perpendiculars to AB at P
and Q. Show that the distance from K to AB is the geometric mean
of the lengths of AP and BQ.
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YIU: Euclidean Geometry 47

Q

X

P

A B

Y

A B

Suppose d > |a − b| so that none of the circle contains the other. The
external common tangent XY has lengthq

d2 − (a− b)2.

Exercise

1. In each of the following cases, find the ratio AB : BC. 1

A

D

B

CC

BA

D

2. Two circles A(a) and B(b) are tangent externally at a point P . The
common tangent at P intersects the two external common tangents
XY , X 0Y 0 at K, K 0 respectively.

(a) Show that 6 AKB is a right angle.

(b) What is the length PK?

(c) Find the lengths of the common tangents XY and KK0.

1
√
3 :
√
3 + 2 in the case of 4 circles.

Preview from Notesale.co.uk

Page 47 of 170



YIU: Euclidean Geometry 48

Y

X

Y'

X'

K

K'

BA P

3. A(a) and B(b) are two circles with their centers at a distance d apart.
AP and AQ are the tangents from A to circle B(b). These tangents
intersect the circle A(a) at H and K. Calculate the length of HK in
terms of d, a, and b. 2

K '

H '

K

H

BA

h

e

Q

P

BA

4. Tangents are drawn from the center of two given circles to the other
circles. Show that the chords HK and H 0K 0 intercepted by the tan-
gents are equal.

5. A(a) and B(b) are two circles with their centers at a distance d apart.
From the extremity A0 of the diameter of A(a) on the line AB, tangents
are constructed to the circle B(b). Calculate the radius of the circle
tangent internally to A(a) and to these tangent lines. 3

2Answer: 2ab
d
.

3Answer: 2ab
d+a+b

.
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YIU: Euclidean Geometry 59

and Y3 respectively, and that in angle C touch the sides BC and AC at Z1

and Z2 respectively.

Y 1

Z2

I

C'

Z2 B'

Y 3

X2

Z1 Y 1

Y 3

X3

Z1

I

A

CB

A

B C

Each of the segments X2X3, Y3Y1, and Z1Z2 has the incenter I as mid-
point. It follows that the triangles IY1Z1 and IY3Z2 are congruent, and
the segment Y3Z2 is parallel to the side BC containing the segment Y1Z1,
and is tangent to the incircle. Therefore, the triangles AY3Z2 and ABC are
similar, the ratio of similarity being

Y3Z2

a
=
ha − 2r
ha

,

with ha =
24
a = 2rs

a , the altitude of triangle ABC on the side BC. Sim-

plifying this, we obtain Y3Z2
a = s−a

s . From this, the inradius of the triangle
AY3Z2 is given by ra =

s−a
s · r. Similarly, the inradii of the triangles BZ1X3

and CX2BY1 are rb =
s−b
s · r and rc = s−c

s · r respectively. From this, we
have

ra + rb + rc = r.

We summarize this in the following proposition.

Proposition

If tangents to the incircles of a triangle are drawn parallel to the sides,
cutting out three triangles each similar to the given one, the sum of the
inradii of the three triangles is equal to the inradius of the given triangle.
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YIU: Euclidean Geometry 65

5.1.5 Construction of incircle of shoemaker’s knife

Locate the point C3 as in §??. Construct circle C3(P ) to intersect O1(a)
and O2(b) at X and Y respectively. Let the lines O1X and O2Y intersect
at C. Then C(X) is the incircle of the shoemaker’s knife.

C

X

Y
C3

O1 O2PO BA

Note that C3(P ) is the Bankoff circle, which has the same radius as the
Archimedean circles.

Exercise

1. Show that the area of triangle CO1O2 is

ab(a+ b)2

a2 + ab+ b2
.

2. Show that the center C of the incircle of the shoemaker’s knife is at a
distance 2ρ from the line AB.

3. Show that the area of the shoemaker’s knife to that of the heart
(bounded by semicircles O1(a), O2(b) and the lower semicircleO(a+b))
is as ρ to a+ b.
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c e n tro id

Z3

Y '3

X3

Z '3

Y3
X '3

Z1

X2

Y1Z2

X1

Y2

C

B

A

6.5 Concyclic points

Four non-collinear points z1, z2, z3, z4 are concyclic if and only if the cross
ratio

(z1, z2; z3, z4) :=
z4 − z1

z3 − z1
/
z4 − z2

z3 − z2
=
(z3 − z2)(z4 − z1)

(z3 − z1)(z4 − z2)

is a real number.

z4

z3

z1

z2

z4

z3

z1 z2
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YIU: Euclidean Geometry 85

and are constructible, since y1 is constructible. Similarly, if we write

z3 = ω
3 + ω5 + ω14 + ω12, z4 = ω

10 + ω11 + ω7 + ω6,

we find that z3 + z4 = y2, and z3z4 = ω + ω
2 + · · · + ω16 = −1, so that z3

and z4 are the roots of the quadratic equation

z2 − y2z − 1 = 0

and are also constructible.

Finally, further separating the terms of z1 into two pairs, by putting

t1 = ω + ω
16, t2 = ω

13 + ω4,

we obtain

t1 + t2 = z1,
t1t2 = (ω + ω16)(ω13 + ω4) = ω14 + ω5 + ω12 + ω3 = z3.

It follows that t1 and t2 are the roots of the quadratic equation

t2 − z1t+ z3 = 0,

and are constructible, since z1 and z3 are constructible.

6.6.2 Explicit construction of a regular 17-gon 4

To construct two vertices of the regular 17-gon inscribed in a given circle
O(A).

1. On the radius OB perpendicular to OA, mark a point J such that
OJ = 1

4OA.

2. Mark a point E on the segment OA such that 6 OJE = 1
4
6 OJA.

3. Mark a point F on the diameter through A such that O is between E
and F and 6 EJF = 45◦.

4. With AF as diameter, construct a circle intersecting the radius OB
at K.

4H.S.M.Coxeter, Introduction to Geometry, 2nd ed. p.27.
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YIU: Euclidean Geometry 89

For every point P (except the midpoint of AB), let P 0 be the point on
AC such that PP 0 ⊥ AB.
The intersection Q of the lines P 0M and AB is the harmonic conjugate
of P with respect to AB.

7.2 Apollonius Circle

7.2.1 Angle bisector Theorem

If the internal (repsectively external) bisector of angle BAC intersect the
line BC at X (respectively X 0), then

BX : XC = c : b; BX 0 : X 0C = c : −b.

b
cc b

X'CB

A

X C

A

B

BX : XC =  c : -b.BX : XC = c : b.

7.2.2 Example

The points X and X 0 are harmonic conjugates with respect to BC, since

BX : XC = c : b, and BX 0 : X 0C = c : −b.

7.2.3

A and B are two fixed points. For a given positive number k 6= 1, 1 the
locus of points P satisfying AP : PB = k : 1 is the circle with diameter
XY , where X and Y are points on the line AB such that AX : XB = k : 1
and AY : Y B = k : −1.

1If k − 1, the locus is clearly the perpendicular bisector of the segment AB.
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YIU: Euclidean Geometry 92

Proof. (=⇒) Let W be the point on AB such that CW//XY . Then,

BX

XC
=
BZ

ZW
, and

CY

Y A
=
WZ

ZA
.

It follows that

BX

XC
·CY
Y A

· AZ
ZB

=
BZ

ZW
·WZ
ZA

· AZ
ZB

=
BZ

ZB
·WZ
ZW

·AZ
ZA

= (−1)(−1)(−1) = −1.

(⇐=) Suppose the line joining X and Z intersects AC at Y 0. From
above,

BX

XC
· CY

0

Y 0A
· AZ
ZB

= −1 = BX

XC
· CY
Y A

· AZ
ZB

.

It follows that
CY 0

Y 0A
=
CY

Y A
.

The points Y 0 and Y divide the segment CA in the same ratio. These must
be the same point, and X, Y , Z are collinear.

Exercise

1. M is a point on the medianAD of4ABC such thatAM :MD = p : q.
The line CM intersects the side AB at N . Find the ratio AN : NB.
3

2. The incircle of 4ABC touches the sides BC, CA, AB at D, E, F
respectively. Suppose AB 6= AC. The line joining E and F meets BC
at P . Show that P and D divide BC harmonically.

X

D

Z Y

F
E

CB

A

PD

E

F

CB

A

3Answer: AN : NB = p : 2q.
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YIU: Euclidean Geometry 93

3. The incircle of 4ABC touches the sides BC, CA, AB at D, E, F
respectively. X is a point inside 4ABC such that the incircle of
4XBC touches BC at D also, and touches CX and XB at Y and Z
respectively. Show that E, F , Z, Y are concyclic. 4

Y

X

I

Y '

X '

IA

CA

B

4. Given a triangle ABC, let the incircle and the ex-circle on BC touch
the side BC at X and X 0 respectively, and the line AC at Y and Y 0

respectively. Then the lines XY and X 0Y 0 intersect on the bisector of
angle A, at the projection of B on this bisector.

7.4 The Ceva Theorem

Let X , Y , Z be points on the lines BC, CA, AB respectively. The lines
AX, BY , CZ are concurrent if and only if

BX

XC
· CY
Y A

· AZ
ZB

= +1.

Proof. (=⇒) Suppose the lines AX , BY , CZ intersect at a point P . Con-
sider the line BPY cutting the sides of 4CAX . By Menelaus’ theorem,

CY

Y A
· AP
PX

· XB
BC

= −1, or
CY

Y A
· PA
XP

· BX
BC

= +1.

4IMO 1996.
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YIU: Euclidean Geometry 113

Exercise

1. If X = yB + zC, then the isotomic conjugate is X 0 = zB + yC.

2. X 0, Y 0, Z 0 are collinear if and only if X,Y,Z are collinear.

8.5.2 Gergonne and Nagel points

Suppose the incircle I(r) of triangle ABC touches the sides BC, CA, and
AB at the points X , Y , and Z respectively.

BX : XC = s− b : s− c,
AY : Y C = s− a : s− c,
AZ : ZB = s− a : s− b .

This means the cevians AX, BY , CZ are concurrent. The intersection
is called the Gergonne point of the triangle, sometimes also known as the
Gergonne point.

X

Y

Z

N

Y'
Z'

X'

A

B C

L
Z

Y

X

I

A

B C

Let X 0, Y 0, Z 0 be the isotomic conjugates of X, Y , Z on the respective
sides. The point X 0 is indeed the point of contact of the excircle IA(r1)
with the side BC; similarly for Y 0 and Z 0. The cevians AX 0, BY 0, CZ 0 are
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YIU: Euclidean Geometry 120

7. The Gergonne point of the triangle KAKBKC is the symmedian point
K of 4ABC.

8. Characterize the triangles of which the midpoints of the altitudes are
collinear. 8

9. Show that the mirror image of the orthocenter H in a side of a triangle
lies on the circumcircle.

10. Let P be a point in the plane of 4ABC, GA, GB, GC respectively the
centroids of 4PBC, 4PCA and 4PAB. Show that AGA, BGB, and
CGC are concurrent.

9

11. If the sides of a triangle are in arithmetic progression, then the line
joining the centroid to the incenter is parallel to a side of the triangle.

12. If the squares of a triangle are in arithmetic progression, then the line
joining the centroid and the symmedian point is parallel to a side of
the triangle.

8.6.8

In §? we have established, using the trigonometric version of Ceva theorem,
the concurrency of the lines joining each vertex of a triangle to the point
of contact of the circumcircle with the mixtilinear incircle in that angle.
Suppose the line AA0, BB0, CC 0 intersects the sides BC, CA, AB at points
X , Y , Z respectively. We have

BX

XC
=
c

b
· sinα1

sinα2
=
(s− b)/b2
(s− c)/c2 .

BX : XC = s−b
b2 : s−c

c2 ,
AY : Y C = s−c

a2 : s−c
c2 ,

AZ : ZB = s−c
a2

s−b
b2 .

8More generally, if P is a point with nonzero homogeneous coordinates with respect to
4ABC, and AP , BP , CP cut the opposite sides at X, Y and Z respectively, then the
midpoints of AX, BY , CZ are never collinear. It follows that the orthocenter must be a
vertex of the triangle, and the triangle must be right. See MG1197.844.S854.

9At the centroid of A,B, C, P ; see MGQ781.914.
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This latter equation can be rewritten as

c+ x+ ka

k
=
b+ x+ (1− k)a

1− k , (9.1)

or
c+ x

k
=
b+ x

1− k , (9.2)

from which

k =
x+ c

2x+ b+ c
.

Now substitution into (1) gives

x2(2x+ b+ c)2 = (2x+ b+ c)[(x+ c)b2 + (x+ b)c2]− (x+ b)(x+ c)a2.

Rearranging, we have

(x+ b)(x+ c)a2 = (2x+ b+ c)[(x+ c)b2 + (x+ b)c2 − x2[(x+ b) + (x+ c)]]
= (2x+ b+ c)[(x+ b)(c2 − x2) + (x+ c)(b2 − x2)]
= (2x+ b+ c)(x+ b)(x+ c)[(c− x) + (b− x)]
= (2x+ b+ c)(x+ b)(x+ c)[(b+ c)− 2x]
= (x+ b)(x+ c)[(b+ c)2 − 4x2].

From this,

x2 =
1

4
((b+ c)2 − a2) =

1

4
(b+ c+ a)(b+ c− a) = s(s− a).

9.1.2

Lau 1 has proved an interesting formula which leads to a simple construction
of the point P . If the angle between the median AD and the angle bisector
AX is θ, then

ma · wa · cos θ = s(s− a).

1Solution to Crux 1097.
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Exercise

1. Show that

r0 =
s−ps(s− a)

a
· r.

2. Show that the circle with XY as diameter intersects BC at P if and
only if 4ABC is isosceles. 2

9.1.4 Proof of Lau’s formula

Let θ be the angle between the median and the bisector of angle A.
Complete the triangle ABC into a parallelogram ABA0C. In triangle

AA0C, we have

AA0 = 2ma, AC = b, A0C = c;
6 ACA0 = 180◦ − α, 6 AA0C = α

2 + θ,
6 A0AC = α

2 − θ.

é

p

A '

D CB

A

By the sine formula,

b+ c

2ma
=
sin(α2 + θ) + sin(

α
2 − θ)

sin(180◦ − α) =
2 sin α2 cos θ

sinα
=
cos θ

cos α2
.

From this it follows that

ma · cos θ = b+ c

2
· cos α

2
.

2Hint: AP is tangent to the circle XY P .
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P

A

B C

4. Let ABC be an isosceles triangle, D the midpoint of the base BC.
On the minor arc BC of the circle A(B), mark a point X such that
CX = CD. Let Y be the projection of X on the side AC. Let P be a
point on BC such that AP = AY . Show that the inradius of triangle
ABP is equal to the exradius of triangle ACP on the side CP .

P 'P

Y

X

DB

C

A
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spective from their common incenter I. The line joining their circumcenters
passes through I. Note that T is the circumcenter of triangle I1I2I3, the
circumradius being the common radius t of the three circles. This means
that T , O and I are collinear. Since

I3I1
CA

=
I1I2
AB

=
I2I3
BC

=
r − t
r
,

we have t = r−t
r ·R, or

t

R
=

r

R+ r
.

This means I divides the segment OT in the ratio

TI : IO = −r : R+ r.

Equivalently, OT : TI = R : r, and T is the internal center of similitude of
the circumcircle and the incircle.

9.3.2 Construction

Let O and I be the circumcenter and the incenter of triangle ABC.
(1) Construct the perpendicular from I to BC, intersecting the latter at

X .
(2) Construct the perpendicular from O to BC, intersecting the circum-

circle at M (so that IX and OM are directly parallel).
(3) Join OX and IM . Through their intersection P draw a line par-

allel to IX , intersecting OI at T , the internal center of similitude of the
circumcircle and incircle.

(4) Construct the circle T (P ) to intersect the segments IA, IB, IC at
I1, I2, I3 respectively.

(5) The circles Ij(T ), j = 1, 2, 3 are three equal circles through T each
tangent to two sides of the triangle.
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Since I = 1
2s(a ·A+ b ·B + c ·C), the homongeneous coordinates of I1 with

respect to ABC are

a cos
α

2
: b cos

α

2
+ 2s sin

β

2
: c cos

α

2
+ 2s sin

γ

2

= a : b(1 + 2 cos
γ

2
) : c(1 + 2 cos

β

2
).

Here, we have made use of the sine formula:

a

sinα
=

b

sinβ
=

c

sin γ
=

2s

sinα+ sinβ + sin γ
=

2s

4 cos α2 cos
β
2 cos

γ
2

.

Since I has homogeneous coordinates a : b : c, it is easy to see that the line
II1 intersects BC at the point A

0 with homogeneous coordinates

0 : b cos
γ

2
: c cos

β

2
= 0 : b sec

β

2
: c sec

γ

2
.

Similarly, B0 and C 0 have coordinates

A0 0 : b sec
β

2
: c sec

γ

2
,

B0 a sec
α

2
: 0 : c sec

γ

2
,

C 0 a sec
α

2
: b sec

β

2
: 0.

From these, it is clear that AA0, BB0, CC 0 intersect at a point with
homogeneous coordinates

a sec
α

2
: b sec

β

2
: c sec

γ

2
.

Exercise

1. Let O1, O2, O3 be the circumcenters of triangles I1BC, I2CA, I3AB
respectively. Are the lines O1I1, O2I2, O3I3 concurrent?

9.5 Malfatti circles

9.5.1 Construction Problem

Given a triangle, to construct three circles mutually tangent to each other,
each touching two sides of the triangle.
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D

A

C

B

D

Y

E

X

A

C

B

Beginning with any circle K(A) tangent internally to O(A), a chain of
four circles can be completed to touch (O) at each of the four points A, B,
C, D.

Exercise

1. Let A,B,C,D,E,F be six consecutive points on a circle. Show that
the chords AD, BE, CF are concurrent if and only if AB ·CD ·EF =
BC ·DE · FA.

F

C

E

B

D

A

A 8

A 6

A 10

A 12

A 4

A 2

A 9
A 11

A 1A 7

A 5 A 3

2. Let A1A2 . . . A12 be a regular 12− gon. Show that the diagonals
A1A5, A3A6 and A4A8 are concurrent.

3. Inside a given circle C is a chain of six circles Ci, i = 1, 2, 3, 4, 5, 6,
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x2 = c2 + d2 − 2cd cos δ.

Eliminating x, we have

a2 + b2 − c2 − d2 = 2ab cosβ − 2cd cos δ,

Denote by S the area of the quadrilateral. Clearly,

S =
1

2
ab sinβ +

1

2
cd sin δ.

Combining these two equations, we have

16S2 + (a2 + b2 − c2 − d2)2

= 4(ab sinβ + cd sin δ)2 + 4(ab cosβ − cd cos δ)2
= 4(a2b2 + c2d2)− 8abcd(cosβ cos δ − sinβ sin δ)
= 4(a2b2 + c2d2)− 8abcd cos(β + δ)
= 4(a2b2 + c2d2)− 8abcd[2 cos2 β + δ

2
− 1]

= 4(ab+ cd)2 − 16abcd cos2 β + δ
2

.

Consequently,

16S2 = 4(ab+ cd)2 − (a2 + b2 − c2 − d2)2 − 16abcd cos2 β + δ
2

= [2(ab+ cd) + (a2 + b2 − c2 − d2)][2(ab+ cd)− (a2 + b2 − c2 − d2)]

−16abcd cos2 β + δ
2

= [(a+ b)2 − (c− d)2][(c+ d)2 − (a− b)2]− 16abcd cos2 β + δ
2

= (a+ b+ c− d)(a+ b− c+ d)(c+ d+ a− b)(c+ d− a+ b)
−16abcd cos2 β + δ

2
.

Writing
2s := a+ b+ c+ d,

we reorganize this as

S2 = (s− a)(s− b)(s− c)(s− d)− abcd cos2 β + δ
2

.
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10.1.1 Cyclic quadrilateral

If the quadrilateral is cyclic, then β + δ = 180◦, and cos β+δ
2 = 0. The area

formula becomes

S =
q
(s− a)(s− b)(s− c)(s− d),

where s = 1
2(a+ b+ c+ d).

Exercise

1. If the lengths of the sides of a quadrilateral are fixed, its area is greatest
when the quadrilateral is cyclic.

2. Show that the Heron formula for the area of a triangle is a special case
of this formula.

10.2 Ptolemy’s Theorem

Suppose the quadrilateral ABCD is cyclic. Then, β+δ = 180◦, and cosβ =
− cos δ. It follows that

a2 + b2 − x2

2ab
+
c2 + d2 − x2

2cd
= 0,

and

x2 =
(ac+ bd)(ad+ bc)

ab+ cd
.

Similarly, the other diagonal y is given by

y2 =
(ab+ cd)(ac+ bd)

(ad+ bc)
.

From these, we obtain
xy = ac+ bd.

This is Ptolemy’s Theorem. We give a synthetic proof of the theorem and
its converse.
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10.3 Circumscriptible quadrilaterals

A quadrilateral is said to be circumscriptible if it has an incircle.

10.3.1 Theorem

A quadrilateral is circumscriptible if and only if the two pairs of opposite
sides have equal total lengths.
Proof. (Necessity) Clear.

B Q

S

R
P

D

C

K Y

X

A

D

CB

A

(Sufficiency) Suppose AB + CD = BC + DA, and AB < AD. Then

BC < CD, and there are points
X
Y
on

AD
CD

such that
AX = AB
CY = CD

. Then

DX = DY . LetK be the circumcircle of triangle BXY . AK bisects angle A
since the triangles AKX and AKB are congruent. Similarly, CK and DK
are bisectors of angles B and C respectively. It follows that K is equidistant
from the sides of the quadrilateral. The quadrilateral admits of an incircle
with center K.

10.3.2 8

Let ABCD be a circumscriptible quadrilateral, X , Y , Z, W the points of
contact of the incircle with the sides. The diagonals of the quadrilaterals
ABCD and XY ZW intersect at the same point.

8See Crux 199. This problem has a long history, and usually proved using projective
geometry. Charles Trigg remarks that the Nov.-Dec. issue of Math. Magazine, 1962,
contains nine proofs of this theorem. The proof here was given by Joseph Konhauser.
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10.9.1

(a) If Q is cyclic, then Q(O) is circumscriptible.
(b) If Q is circumscriptible, then Q(O) is cyclic.

24

(c) If Q is cyclic, then Q(I) is a rectangle.
(d) If Q, is cyclic, then the nine-point circles of BCD, CDA, DAB, ABC

have a point in common. 25.

Exercise

1. Prove that the four triangles of the complete quadrangle formed by
the circumcenters of the four triangles of any complete quadrilateral
are similar to those triangles. 26

2. Let P be a quadrilateral inscribed in a circle (O) and let Q be the
quadrilateral formed by the centers of the four circles internally touch-
ing (O) and each of the two diagonals of P . Then the incenters of the
four triangles having for sides the sides and diagonals of P form a
rectangle inscribed in Q. 27

10.10

10.10.1

The diagonals of a quadrilateral ABCD intersect at P . The orthocenters of
the triangle PAB, PBC, PCD, PDA form a parallelogram that is similar
to the figure formed by the centroids of these triangles. What is “centroids”
is replaced by circumcenters? 28

24E1055.532.S538.(V.Thébault)
25Crux 2276
26E619.444.S451. (W.B.Clarke)
27Thébault, AMM 3887.38.S837. See editorial comment on 837.p486.
28Crux 1820.

Preview from Notesale.co.uk

Page 168 of 170


