Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Integral Calculus
Description: Basics of Integral Calculus w/ Sample Problems Basic Integration Indefinite and Definite Integral Trigonometric and Inverse Trigonometric Integration Exponential Function Trigonometric Transformation U-Substitution Improper Integrals etc. Was used in Electronics Engineering Really helpful
Description: Basics of Integral Calculus w/ Sample Problems Basic Integration Indefinite and Definite Integral Trigonometric and Inverse Trigonometric Integration Exponential Function Trigonometric Transformation U-Substitution Improper Integrals etc. Was used in Electronics Engineering Really helpful
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Math 109 Reviewer – A
...
2014-2015
∫ (x4 ▪ x-1/3 – x2 ▪ x-1/3 – 6 ▪ x-1/3 ) dx
∫ x11/3dx – ∫ x5/3dx – 6 ∫ x-1/3dx
Integration – process of a function whose derivative or
differential is given
11
5
1
n= 3
n=3
n =─ 3
3x14/3 3x8/3
2/3
14 – 8 – 9x + c
Integrand – the given function
Integral – the required function
THEOREM: Two functions having the same derivatives differ
at most by a constant
∫
3
...
CONSTANT INTEGRATION
PROPERTIES:
1
...
2
...
dy = (2x-5)dx
POWER FORMULAS:
xn+1
∫ x dx = n + 1 + c if n ≠ –1
n
∫ x–1dx = lnx + c if n = –1
EXAMPLES:
1
...
If dy = (2X – 5)dx and y = 2 when x = –1, find y when
x = 4
...
Y
...
c1 = -2
*substitute c1to the other equations to get the
other 2 constants
Find the equation of the curve if the slope at pt (2,3)
2x + 1
is given by 2y - 3
...
*substitute pt (2,3)
32 – 3(3) = 22 + 2 + c
c = -6
Equation: y2 – 3y = x2 + x – 6 (hyperbola)
3
...
*complete the square
x2 + 2x + __ = 8 – y + __
x2 + 2x + 1 = 9 – y
(x + 1)2 = –(y – 9)
d3y
If at any point (x,y) on a curve dx3 = 2 and (1,3) is the
*it is a parabola the opens
downward
V (-1,9)
pt
...
d3y
dx3 = 2
d
dx = 2
d = 2dx
dA = (yA – yB)dx
*dx = xLEFT – xRIGHT
dA = (8 – x2 – 2x)dx
∫dA = ∫ (8 – x2 – 2x)dx
x3
A = 8x – 3 – x2 + c
∫ d= ∫2dx
d2y
dx2 = 2x + c1
On the x-axis, y = 0
...
x3
*Substitute these values to A = 8x – 3 – x2 + c
dy 2
dx = x + c1x + c2
(-4)3
0 = 8(-4) – 3 – (-4)2 + c
80
c= 3
dy = (x2 + c1x + c2)dx
∫dy = ∫ (x2 + c1x + c2)dx
x3 c1x2
y = 3 + 2 + c2x + c3
SYSTEM OF EQUATIONS:
a
...
So we substitute it
to the last equation
...
slope = dx = -2 at x = 1
...
-2 = 12 + c1(1) + c2
c1 + c2 = -3
d2y
dx2 = 2x + c1
0 = 2 + c1`
NECES Academics Committee
Stephanie Grace de Guzman
80
When x = 2, and c = 3
x3
*Substitute these values to A = 8x – 3 – x2 + c
...
23
80
A = 8(2) – 3 – 22 + 3 = 36 sq
...
An art collector purchased for $1000 a painting by an
artist whose works are currently increasing with
respect to the time according to the formula
du
2/3
dt = 5t + 10t + 50
Math 109 Reviewer – A
...
2014-2015
*Substitute c1 and c2 to s = -16t2 + c1t + c2
where u dollars is the anticipated value of the
painting in t years after its purchase
...
Negative yung s
kasi opposite siya ng initial direction
-150 = -16t2 + 10t
16t2 – 10t – 150 = 0
+ 10t + 50)dt
*get t by using the quadratic formula
2
+ 5t + 50t + c
u = 3t5/3 + 5t2 + 50t + c
u
1000
0
t
t = 3
...
‘yung isa negative
...
*Substitute to u = 3t5/3 + 5t2 + 50t + c
ds
dt = -32t + 10
c = 1000
When t = 4 and c = 1000
When t = 3
...
v = -32(3
...
8 ft/s
*Substitute to u = 3t5/3 + 5t2 + 50t + c
u = $1,286
...
A woman in a hot air balloon dropped her binoculars
150ft above the ground and is rising at the rate of
10ft/s
...
b
∫
a
2
...
c
∫
a
b
c
f(x)dx + ∫ f(x)dx
b
∫
a
f(x)dx =
c
∫
a
b
c
f(t)dt + ∫ f(z)dz
EXAMPLES:
1
...
Subtract the lower
number from the upper number
...
5
1
1
28
3 (8 + 1) + 6 (4 – 1) - 2 (2+1) = 2 = 14
1 x3 + 1
∫ x + 1 dx
0
Math 109 Reviewer – A
...
2014-2015
(x + 1)(x2 - 2x + 1)
x+1
1
∫
0
1
∫
0
du = 8tdt
du
8 = tdt
1
n = -2
(x2 – 2x + 1)dx
1
x3
─ x2 + x
2
0
1 3
5
(1 – 0) – (12 – 0) + (1 – 0) = 6
3
]
* diba sa orig na formula it’s (4t2 + 9)-1/2tdt so diba u = (4t2 + 9)-1/2
tapos after that yung tdt
...
Diba nakuha nating du nung una is
8tdt
...
Pero gagawin siyang constant or “preparation” sa integration
...
∫ (x + 1)2dx
4
...
𝑡 𝑑𝑡
∫ (4t
2
3
-2
4 ∫ u du
3 u-1
4 ▪ -1 + c
3
─ 4(y4/3 + 9) + c
6
...
Pero yung 2 na trinanspose aka yung
1
1
2 , gagawin mong constant
...
So it
still follows the original formula na ∫und
...
=)))
3
...
∫
∫
∫ (1 + 2e3x)e3xdx
u = 1 + 2e3x
du = 6e3xdx
Math 109 Reviewer – A
...
2014-2015
du 3x
6 = e dx
2
─ u2 =
1
1
6 ∫ u du
1 u2
6▪ 2 +c
(1 + 2e3x)2
+c
12
7
...
∫
dx
𝑥4
4
1/2
3 ∫ u du
4 2 2/3
3▪3u +c
8 3/4
2/3
9 (x + 9) + c
𝑑𝑥
𝑥+√𝑥
𝑑𝑥
2√𝑥
𝑑𝑥
√𝑥
du
2 u = 2lnu + c
2ln( x + 1) + c
∫
3
...
2
1
( (10)−1)
4
1
...
1
4
EXAMPLES :
3
√ 4
𝑥 +9
(
2
2
─
10
]
𝑥−1)
2
4
...
To do that, substitute sa limits sa mga x sa
equation ng u which is 1 + 3ex
...
So 1 + 3(2) =
7
...
So 1 + 3(1) = 4
...
Y
...
6
...
1 du
3 u
1
x
3 ln(1 + 3e )
1
3 [ln7 – ln4]
1 7
3 ln4
∫
]
5
...
7
9
...
EXAMPLES:
∫ sin4xdx
1
...
26
∫ (x2 + 3x + 7 + x - 3 )dx
x3 3x2
-1
3 + 2 + 7x + 26∫ (x – 3) dx
x3 3x2
3 + 2 + 7x + 26ln(x – 3)
6
...
y+2
y2 + 4y dy
u = + 4y
du = (2y + 4)dy
du
2 = (y + 2)dy
2√𝑥
𝑑𝑥
2du =
u
1 -2 du 1
2 ∫ u = 2 ln |u|
-3
1
2 [ ln|-4| - ln|-3|]
1 4
2 ln3
√𝑥
2∫ tan u du = 2lnsec u + c
2ln(sec x ) + c
*change limits
-3
-3
dx
√𝑥
u= x
1
du =
dx
y2
x
𝑡𝑎𝑛√𝑥
-2
-4
]
∫ e2xcos e2x dx
3
...
∫ sinmx cosnx dx
∫ eudu = eu + c
where m or n is a positive odd integer
tools: change the one w/ odd powers
sin2x = 1 – cos2x
cos2x = 1 – sin2x
TRIGONOMETRIC FUNCTIONS
1
...
3
...
∫ cot u du = ln sin u + c
= – ln csc u + c
NECES Academics Committee
Stephanie Grace de Guzman
Ex:
∫ sin52x cos42x dx
y = 2x
dy = 2dx
dy
2 = dx
Math 109 Reviewer – A
...
2014-2015
1
5
4
2 ∫ sin y cos y dy
1
4
4
2 ∫ sin y cos y siny dy
1
2 2
4
2 ∫ (sin ) cos y siny dy
1
2 2
4
2 ∫ (1 – cos y) cos y siny dy
1
2
4
4
2 ∫ (1 – 2cos y + cos y) cos y siny dy
1
4
6
8
2 ∫ (cos y – 2cos y + cos y) siny dy
*integrate each term
...
u = cosy
du = -siny dy
un+1
So we’ll be using the form ∫un = n + 1 for each term
...
1
4
6
8
2 ∫ (u – 2u + u ) siny dy
1
–2 + c
1
–2 cos52x+ c
II
...
Where m is positive even integer
tools: sec2x = 1 + tan2x
csc2x = 1 + cot2x
Ex:
1
1
∫ tan42 x sec42 x dx
1
y=2x
2dy = dx
2∫ tan4y sec4y dy
2∫ tan4y sec2y sec2y dy
2∫ (tan4y + tan6y) sec2y dy
u = tany
du = sec2y
1
tan5 2 𝑥
𝟓
1
+
tan7 2 𝑥
7
)+c
b
...
∫ tannx dx or cotnx dx
where n is an integer
tools: tan2x = sec2x – 1
cot2x = csc2x – 1
a
...
Y
...
Use ∫undu
...
tan3x
– 3
tan3x
– 3
tan3x
– 3
tan3x
– 3
+ ∫ tan2x dx
+ ∫ (sec2x – 1) dx
+ ∫ sec2x dx – ∫dx
+ tan x – x
*combine na the two parts
...
n is a positive odd integer
EX:
∫ sin2x cos4x dx
∫ sin2x cos2x cos2x dx
∫ (sinx cosx)2 cos2x dx
1
∫ (2 sin2x)2cos2x dx
∫ tan5x dx
∫ tan3x ▪ tan2x dx
∫ tan3x(sec2x – 1) dx
∫ tan3x sec2x dx – ∫ tan3x dx
undu
*pwede na ma-integrate yung first term using
we’ll focus on the second term which is tan3xdx
tan4x
2
4 – ∫ tan x ▪ tanx dx
tan4x
2
4 – ∫ tanx(sec x – 1) dx
tan4x
2
4 – ∫ (tanx sec x – tanx) dx
tan4x
2
4 – ∫ (tanx sec x) dx – ∫ tanx dx
tan4x tan2x
4 – 2 – ln(secx) + c
IV
...
∫ sin ax sin bx dx
Math 109 Reviewer – A
...
2014-2015
1
2 ∫ (sinx cosx – sinx cos5x) dx
∫ sinmx cosnx dx
∫ sinmx cosnx dx
tools:
*for sinx cosx, u = sinx, du = cosxdx
...
1
sinα sinβ = 2 [cos(α ─ β) – cos(α + β)]
1
cosα cosβ = 2 [cos(α ─ β) + cos(α + β)]
1
sinα cosβ = 2 [sin(α ─ β) + sin(α + β)]
EX:
1
...
∫ sin4x sin7x dx
1
2 ∫ [cos(4x – 7x) – cos(4x + 7x)] dx
1
2 ∫ [cos(–3x) – cos(11x)] dx
1
2 ∫ (cos3x – cos11x) dx
1 1
1
2 [ 3 sin3x – 11 sin11x] + c
∫ cos7x sin4x dx
1 sin2x 1 1
2 ▪ 2 – 2 ∫ 2 [sin(x – 5x) + sin(x + 5x)] dx
sin2x 1
4 – 4 ∫ (-sin4x + sin6x) dx
sin2x 1
1
4 + 4 ∫ sin4x dx – 4 ∫ sin6x dx
sin2x
1
1
4 + 16 cos4x – 24 cos6x
1
2 ∫ [sin(4x – 7x) + sin(4x + 7x)] dx
1
2 ∫ [sin(–3x) + sin(11x)] dx
1
2 ∫ (–sin3x + sin11x) dx
1 1
1
2 [3 cos3x – 11 cos11x] + c
1
...
3
...
1
2 ∫ [cos(x – 3x) + cos(x + 3x)] dx
1
2 ∫ (cos2x + cos4x) dx
4
...
π
4
∫
∫
∫
a=5
u = 8x
du
8 = dx
a=3
u =2x
du
2 = dx
𝑑𝑥
√9−4𝑥 2
𝑑𝑥
1
2
du
a2 ─ u 2
1 -12x
2 Sin 3 + c
sinx sin2x sin3x dx
NECES Academics Committee
Stephanie Grace de Guzman
dx
25 + 64x2
√((3)2 −(2𝑥)2
]
1
2 ∫ sinx[cos(2x – 3x) – cos(2x + 3x)] dx
1
2 ∫ sinx[cosx – cos5x] dx
∫
∫
∫
1
du
8 a2 + u 2
1 1
8x
-1
8 ▪ 5 Tan 5 + c
1
8x
-1
40 Tan 5 + c
1 1
1
2 2 sin2x + 4 sin4x 0
1
2 –
1 1
1
1
2 2 (1) + 4 (0) – 0 = 4
]
∫
∫
∫
dx
(5)2 + (8x)2
cosx cos3x dx
[
[ ]
[
9
= 32
INVERSE TRIGONOMETRIC FUNCTIONS
π
∫4
0
0
Examples:
*let α = 4x and β = 7x
3
...
∫
∫
sec2 𝑥 𝑑𝑥
√50−sec2 𝑥
sec2 𝑥 𝑑𝑥
√50−(1+tan2 𝑥)
Math 109 Reviewer – A
...
2014-2015
∫
∫
1
sec2 𝑥 𝑑𝑥
sec2 𝑥 𝑑𝑥
a=7
√72 −(tan 𝑥)2
-1 𝒕𝒂𝒏 𝒙
u =tanx
du = sec2x dx
7
...
4
...
du = dx
Sin-1+ c
5
...
(x + 1)dx
x2 + 1
√5−2𝑥−3𝑥 2
22 1
formula c = 4(3) = 3
∫
u = 3x
x
*For x2 + 1 :
𝑑𝑥
b2
*to get c in ax2 + bx + c, get the value of 4a
...
𝑑𝑥
4
5
4
5
(5𝑥 2 −4𝑥+ )+(2− )
𝑑𝑥
(√5𝑥−
2 2
6 2
) +( )
√5
√5
du
a2 + u 2
1 √5
▪
Tan
√5 √6
a=
𝑑𝑢
= dx
√3
(
-1
5𝑥−2
√5
√6
√5
)+ c
NECES Academics Committee
Stephanie Grace de Guzman
2
√5
u=
5x─
2
√5
∫
1
∫
∫
dy
y(1 + ln2y)
dy
y(1 + (lny)2)
2
a=1
du
a2 + u 2
]
e
Tan-1(lny)
1
Tan-1(lne) – Tan-1(ln1)
Tan-11 – Tan-10
π
4
u = lny
dy
du = y
du
3 = dx
Math 109 Reviewer – A
...
2014-2015
4
10
...
So yung y sa labas, ihiwalay mo para
du
maging
...
∫
1
1
∫
𝑑𝑥
(𝑥+1)(√2)√𝑥(𝑥+2)
∫
∫
∫
√2
(2x - 4)dx
dx
x2 - 4x + 200 + 8 x2 - 4x + 200
1
2
u = x – 4x + 200
du = 2x – 4
√2
∫
1
∫
5
dx
2
2 ln(x – 4x + 20) + 8 (x - 2)2 + (4)2
a=4
u = x – 2 du = dx
2
u = 3 + 2x – x
√2
1
√2
]
6
2
𝑑𝑥
(𝑥+1)√(𝑥+1)2 −12
u=x+1
du = dx
a=1
]
2
1
[Sec-13 – Sec-12]
π
[Sec-13 – 3 ]
ADDITIONAL FORMULAS:
1
1
...
∫
3
...
du = (2 – 2x)dx
*divide the numerator by du
...
∫
1 √3+2𝑥−𝑥 2
𝑑𝑥
(𝑥+1)√2𝑥(𝑥+2)
∫
5
(2𝑥−4)+8
2
𝑥 2 −4𝑥+20
∫
2
2
2
*let u = x – 4x + 2z and
du = (2x – 4)dx
*divide the numerator by the derivative of the
denominator
...
u-1/2du + 4
3 2u1/2
─2 ▪ 1 + 4
∫
2
du = (2 – 2x)dx
∫
3
─2
du
2
u u2 ─ a 2
2 Sec-1 y
−2𝑥+2
∫√3+2𝑥−𝑥
3
─2
𝑑𝑦
5
...
Y
...
√(3𝑥 2 )2 −12
u = 3x2
du
6 = xdx
∫
∫
1−√2
4
5
...
So let’s represent
du = dx
a=
√3
2
Sin-1(
∫
∫(𝑥 −3𝑥+𝑑𝑥)−(10+ )
dx
x2 - 3x - 10
2
∫
3
u=x-2
3 2 49
(𝑥− ) −
2
4
4
du = dx
∫
0
3 7
2 2
3 7
(𝑥− )+
2 2
(𝑥− )−
7
a=2
ln
2√ 2
*note that we’re only getting (θ – β)
7
25
∫
π
4
cos 2𝑥
1
16
π
12
1
2
sin2 2𝑥−
u=x
du = dx
|]
𝑥+√2
1
𝑥−√2
0
NECES Academics Committee
Stephanie Grace de Guzman
a=
2
dx
1
a=4
u = sin2x
du
2 = cos2xdx
∫
du
u 2 - a2
4
|
5
(θ – β) = Sin-1( )
1 1
2 ▪ 2(1)ln
du
a2 - u 2
1
3
5
7
sin(θ – β) = 25
6
...
4
5
∫
1
5
sin(θ – β) = ( ) ( ) –( ) ( )
du
u 2 - a2
1
7 ln
3
)= θ and Sin-1( ) = β
...
Draw
4
ka ng triangle of each angle
...
So
the triangles would look like
this:
2
9
4
4
25
2 (θ – β)
1
ln|(x + 2 + x2 + x + 1 | + c
3
...
1−√2
1−√2
𝑥𝑑𝑥
2
0+√2
1+√2
√9𝑥 4 −1
1
6
1+√2
[ ln
ln
ln
|
|
|
1
4
1
sin 2𝑥+
4
sin 2𝑥−
𝜋 1
4
4
𝜋 1
sin 2( )+
4
4
𝜋 1
sin( )−
2
4
𝜋 1
sin( )+
2
4
|]
| |
| |
sin 2( )−
─ ln
─ ln
π
4
π
12
𝜋
1
12 4
𝜋
1
sin 2( )+
12 4
𝜋 1
sin( )−
6
4
𝜋 1
sin( )+
6
4
sin 2( )−
|
|
Math 109 Reviewer – A
...
2014-2015
3
1
ln ( 5 ) ─ ( 3 )
4
4
4
4
3
5
10
...
𝑥+1
1
∫
6y + 1
9y2 - 6y - 3 dy
∫
∫
∫
1
(18𝑦−6)+3
3
9𝑦 2 −6𝑦−3
u=
9y2
– 6y – 3
√𝑥
du = (18y – 6)dy
∫
1
3
du
du
u + 3 u 2 - a2
∫
du
u = 3y + 1 3 = dy
1
3
2
3 ln(9y – 6y – 3) + 4 ln
a=2
2
...
3y
| 3y +- 31 | + c
4
...
7
...
dx u = x2 + x + 2
du = (2x + 1)dx
*divide the numerator by du
...
∫
e^2
1
2
u=
1
1
√(𝑥 2 +𝑥+ )+(2− )
4
4
1-t
𝑑𝑡
─2du =
√1−𝑡
∫
─2 sech u ▪ tanh u ▪ du
√𝑢2 −𝑎2
1
– 4 ln|(x + 2 ) + x2 + x + 2 |} + c
1
(x + 2 ) +
lnx
x(ln4x - 1) dx
dx
√1−𝑡
𝑑𝑥
𝑑𝑢
2 x2 + x + 2 ─ 4 ln|
𝑑𝑥
2du =
a=1
√𝑥
sech(√1−𝑡) tanh(√1−𝑡)
dx
2
x
EXAMPLE:
∫
∫(2𝑥−1)−4
√𝑥 +𝑥+2
∫√𝑥2𝑥−1 ∫
+𝑥+2
u=
∫ sinh u du = cosh u + c
∫ cosh u du = sinh u + c
∫ tanh u du = ln |cosh u | +c
∫ coth u du = ln |sinh u | +c
∫ sech2 u du = tanh u + c
∫ csch2u du = –coth u + c
∫ sech u tanh u du = –sech u + c
∫ csch u coth u du = –csch u + c
1
...
∫√𝑥2𝑥−3
+𝑥+2
2
√(√ 𝑥) + 12 dx
HYPERBOLIC FUNCTIONS
(18y - 6)dy
dy
9y2 - 6y - 3 + 3 (9y2 - 6y + 1) - (3 + 1)
u
2 dx
2 ∫ u2 ± a2 du
1
2 { x ▪ x + 1 + ln | x + x + 1 |} + c
dy
1
3
∫
1
dx
𝑥
(√ 𝑥)
*divide the numerator by du
...
∫√1 +
∫√
∫
─2(–sech u) + c
2sech 1 - t + c
x2 + x + 2 |} + c
du lnx
u = ln2x 2 = x dx
a=1
IMPROPER INTEGRALS
I
...
∫
du
u 2 - a2
1 1
2 ▪ 2 ln
1
4
∞
ln
| ln xx +- 11 |]
|
2
2
e^3
𝑒^2
∫
a
b
f(x)dx = limb∞
b
∫
a
f(x)dx
b
∫ f(x)dx = lima -∞ ∫
-∞
a
f(x)dx
∞
| | 22 +- 11 |]
1
33 - 1
[ ln 33 + 1 ─ ln
4
1
4
3 1 4
4 [ ln5 ─ ln5 ] = 4 ln3
2
∫ f(x)dx = lima -∞ and b
-∞
2
NECES Academics Committee
Stephanie Grace de Guzman
NOTE:
b
∞ ∫ f(x)dx
a
Math 109 Reviewer – A
...
2014-2015
∞ 0
∞ & 0 = ‘pag ganyan yung situation, dun sa
equation/s kung sa’n naka substitute yung “b” or
“a”, derive both the numerator and the
denominator
...
b
limb∞
1
...
Integrals with infinite discontinuities in the integrand
*in other words, isa or both a and b sa formula
b
na ∫a f(x)dx, pag sinubstitute sa f(x)dx,
UNDEFINED yung lalabas
...
Babalik
tayo sa equation before this
...
Derive that
...
∫
0
∫
]
NECES Academics Committee
Stephanie Grace de Guzman
f(x)dx
b
f(x)dx + limmc+
∫
m
f(x)dx
𝑑𝑥
√𝑥(2−𝑥)
*pag sinubstite both 0 & 2, magiging undefined yung
sagot so ii-integrate both limits
𝑑𝑥
b
1 b u
─2
e du
1
b
1
─2
0
1
─2
1
─2
1
1
─2 ▪ ─1 = 2
b
EXAMPLES:
lima0 and b2
xe-x^2dx
∫
c
n
xe-x^2dx
∫
1
f(x)dx
c
f(x)dx =
= limnc-
1
1
─ 8 [–ln17] = 8 [ln17]
limb∞
∫
m
a) If f(x) increases numerically without limit as x c,
a < c < b , (kumbaga yung point of discontinuity,
hindi given pero nasa gitna siya ng a and b) then,
∫
a
1
─ 8 [ln1 – ln17]
∞
f(x)dx
b
f(x)dx = limbn-
a
*recall that lnb = lna - lnb
∫
0
∫
a
a) If f(x) increases numerically without limit as x b, then
1 1
─ 8 ln 17
2
...
Y
...
Evaluate:
8
...
∫ 3xex^2sin2ex^2 dx
1
...
∫
0
dx
(x - 1)2/3
2
...
But if you substitute 1, it will be undefined
...
1
∫
0
dx
(x - 1)2/3 +
b
limb1-
∫
0
2
∫
1
dx
(x - 1)2/3
(x – 2)-2/3dx + lima1+
]
3(x – 1)1/3
1/3
b
0
]
2
+ 3(x – 1)1/3
2
∫
a
3
...
(x – 2)-2/3dx
5
...
7
...
1
...
The curvature at any point (x,) on the curve: y’’= ______
b
...
The general equation of the curve: y = _______
If the curve has a critical point at (0,1) and the curve also
passes through (1,3):
d
...
At x = 1, y = _____
y’ = _____
2
...
Determine the
equations of the motion of the stone as functions of time
(Show the evaluation of the constants of integration):
a
...
velocity: v(t) = __________
c
...
time the stone takes before it hits the ground: t = ____s
e
...
Determine the area bounded by the curve y = x2 – 3x + 2
and the x-axis, from x = 0 to x = 2:
a
...
the intersections of the curve with the x-axis:
x1 = ____
x2 = ____
c
...
from x = x1 to x = 2 : c = ____
A = ____
e
...
Find the equation of the curve for which dx = x if the
curve passes through (1,2)
...
∫
∫
∫
∫
∫
17
...
11
...
13
...
15
...
19
...
∫
∫
∫
2
1 −
( 𝑥 3+
𝑥
3
)
√ 𝑥2 −1
−2
1
(𝑥 3 +√𝑥 2 −1)
dx
csc2(x2 – tanx) dx
sinh2(x2 - cosx)(2x + sinx)
dx
sech(x2 - cosx)
𝑥 3 +𝑥 2 −3√ 𝑥 2 +5
𝑥+1
dx
2x
(3x + 2)2 dx
e(2x + 1)
e(-5x - 2) dx
dx
x(1 + x2)
x+6
(x + 2)2 dx
Math 109 Reviewer – A
...
2014-2015
21
...
∫
1
7 - lnx
x(3 + lnx) dx
3
23
...
25
...
27
...
29
...
∫
∫
32
...
e2t
1 + 6e2t + 9e4t dx
cos(tanx3)
x-2 cos2x3 dx
34
...
∫ (sinx + tanx)2 dx
36
...
∫ [ sin 2
38
...
39
...
41
...
(1 + 6x2/3)
3 x + 6x5/3 dx
(4−tan 𝑥)
cos2 𝑥√4−tan2 𝑥
1
√(𝑥+1)(𝑥+10)
3y
∫
∫
dx
dx
y
y
+ cos2 ] cos2 dx
5 )(p3 + 5 )2
...
Y
...
1
...
36x2 + 6x + c1
b
...
3x4 + x3 + 2 + c2x + c3
d
...
y = 3
y’ = 11
2
...
-32
b
...
-16t2 + 16t
d
...
-80ft/s
x3 3x2
3
...
3 ─ 2 + 2x + c
b
...
c = 0
5
A=6
5
d
...
AT = 1 s
...
(lnx3)
4
...
1
...
3
...
5
...
7
...
9
...
11
...
13
...
2x2 + 4x + lnx + c
2x5/2 – 6x3/2 – 4x1/2 + c
2x5/2 2x3/2
5 + 3 +c
x3 + 3x2 + 15x + 25ln(x – 2) + c
1
2
-2x
2 ln(x + e ) + c
(x + x2)27
27 + c
ln(3 + lnx – x2) + c
1 (3π)-4x^2
─8 ln3π + c
3
─4 cos2ex^2 + c
1
2
x^2
2 ln(x + e ) + c
1 1/3
2
3
3 (x + x - 1 ) + c
tan(sinx + lnx) + x
─cot(x2 – tanx) + c
sinh3(x2 - cosx)
+c
3
NECES Academics Committee
Stephanie Grace de Guzman
x3
15
...
9 [ ln(3x + 2) + 3x + 2 ] + c
4 9x5 1
4
17
...
7 e7x + 3 + c
1
19
...
ln(x + 2) ─ x + 2
21
...
6
1
23
...
─ 6 ▪ cos23x + c
25
...
2 ln(1 + csc2y) + c
1
27
...
√4−cos 2𝑡
+
3
c
1
29
...
ln(1 + 3e2t) + c
1
31
...
2ln4 + c
33
...
4 Sin-1 4 ─ 4 - tan2x + c
1
1
35
...
3 Tan-1
+c
3
1
2
37
...
(𝑝3 +√5)
1
y 1
cos2y + 2 + 2 siny + c
4
4
...
9+3 ln 4
+c
1
2
2 ln(2 + tan x) + c
1 (Arccos2x)5
40
...
3 ─ 5 +c
1 3 5
1
sin32x
42
...
Title: Integral Calculus
Description: Basics of Integral Calculus w/ Sample Problems Basic Integration Indefinite and Definite Integral Trigonometric and Inverse Trigonometric Integration Exponential Function Trigonometric Transformation U-Substitution Improper Integrals etc. Was used in Electronics Engineering Really helpful
Description: Basics of Integral Calculus w/ Sample Problems Basic Integration Indefinite and Definite Integral Trigonometric and Inverse Trigonometric Integration Exponential Function Trigonometric Transformation U-Substitution Improper Integrals etc. Was used in Electronics Engineering Really helpful