Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
MODEL PAPER
g‘¶ … ½ K§Q>m
{df¶ … Applied Mathematics
A{YH$V‘ A§H$ … 30
H$moS> g§»¶m … 104
104
ZmoQ>…1
...
2
...
_________________________________
1
...
bter
...
bter
...
3x
Ho$ àgma ‘| x3 H$m JwUm§H$ h¡3
(1) 3
6
(2)
(log 3) 3
3
(3)
log (3) 3
6
(4)
(log 3) 3
6
CÎma (4)
3
...
ii
H$m H$mën{ZH$ ^mJ h¡(1) 0
(2) 1
(3) 2
(4) - 1
CÎma (1) 0
¶h ‘m°S>b nona {dÚm{W©¶m| Ho$ ‘mJ©Xe©Z Ho$ {b¶o Ed§ CZH$s V¡¶mar H$mo ñd¶§ naIZo Ho$ {b¶o {ZewëH$
CnbãY H$adm¶m J¶m h¡& àH$meH$ Bg ‘m°S>b nona go narjm ‘| àíZ AmZo H$s H$moB© ^r g§^mdZm ì¶³V
Zht H$aVm h¡& {dÚm{W©¶m| H$mo gbmh Xr OmVr h¡ {H$ do Q>o³ñQ> ~wH$ go Aܶ¶Z H$a|&
5
...
¶{X sin q = 24 hmo Am¡a q {ÛVr¶ MVwWmªe ‘| h¡, V~
25
sec q + tan q = ?
(1)
(2)
(3)
(4)
-3
-5
-7
-9
CÎma (3) - 7
7
...
bter
...
bter
...
¶{X
(1)
(2)
(3)
(4)
1+a 1
1
1 1 + b 1 = 0 , Vmo a-1 + b-1 + c-1
1
1 1+c
~am~a h¡-
1
-1
abc
BZ‘| go H$moB© Zht
CÎma (2) - 1
¶h ‘m°S>b nona {dÚm{W©¶m| Ho$ ‘mJ©Xe©Z Ho$ {b¶o Ed§ CZH$s V¡¶mar H$mo ñd¶§ naIZo Ho$ {b¶o {ZewëH$
CnbãY H$adm¶m J¶m h¡& àH$meH$ Bg ‘m°S>b nona go narjm ‘| àíZ AmZo H$s H$moB© ^r g§^mdZm ì¶³V
Zht H$aVm h¡& {dÚm{W©¶m| H$mo gbmh Xr OmVr h¡ {H$ do Q>o³ñQ> ~wH$ go Aܶ¶Z H$a|&
9
...
a
Ho$ {H$g ‘mZ Ho$ {bE g‘rH$aU {ZH$m¶
^a + 1h2 x ^a + 2h2 y - ^a + 3h3 = 0
^a + 1h x + ^a + 2h y - ^a + 3h = 0 ,
x + y - 1 = 0 g§JV h¡ (1) 1
(2) 0
(3) - 3
(4) - 2
CÎma (4) - 2
g‘rH$aU x3 - x - 5 = 0 H$m 1 d 2 Ho$ ~rM nhbr nwZamd¥{Îm Ho$
~mX ݶyQ>Z-a¡âgZ {d{Y go ‘yb hmoJm(1) 1
...
904
(3) 1
...
940
CÎma (1) 1
...
{gångZ Ho$ EH$-{VhmB© {Z¶‘ Ho$ Cn¶moJ go {ZåZ Am±H$‹S>m| Ho$ {bE
3
# f^x hdx H$m ‘mZ h¡1
x
:
1
1
...
5
3
¶h ‘m°S>b nona www
...
site na CnbãY h¡& www
...
site {H$gr ^r àH$ma
go Board of Technical Education, Rajasthan go gå~pÝYV Zht h¡ VWm
CgH$s A{YH¥$V do~gmBQ> Zht h¡&
f ^x h
(1)
(2)
(3)
(4)
:
2
...
4
2
...
8
3
55
...
1
5
...
975
CÎma (3) 5
...
¶{X {~ÝXþAm| ^x, 2h VWm ^3, 4h Ho$ ‘ܶ Xÿar 2 BH$mB© hmo, Vmo x
H$m ‘mZ hmoJm
(1) 2
(2) 1
(3) 3
(4) 4
CÎma (3) 3
13
...
erfm] c 2, 32- 1 m , b 1 , - 1 l VWm b2, - 1 l dmbo {Ì^wO H$m
2
2
2
bå~Ho$ÝÐ h¡(1) c 3 , 36- 3 m
2
(2) b2, - 1 l
2
(3) c 5 , 34- 2 m
4
(4) b 1 , - 1 l
2
2
CÎma (2) b 2, - 1 l
2
15
...
bter
...
bter
...
x - 2 = t2 , y = 2t
g‘rH$aU h¡ (1) y2 = 4x
(2) y2 = - 4x
(3) x2 = - 4y
(4) y2 = 4 ^x - 2h
17
...
¶{X A{Vnadb¶ H$s {Z¶Vm x + 2y = 1, Zm{^ ^2, 1h VWm
CËHo$ÝÐVm 2 hmo, Vmo CgH$m g‘rH$aU hmoJm (1) x2 - 16xy - 11y2 + 12x + 6y + 21 = 0
(2) 3x2 + 16xy + 15y2 - 4x - 14y - 1 = 0
(3) x2 + 16xy + 11y2 - 12x - 6y + 21 = 0
(4) BZ‘| go H$moB© Zht
CÎma (1) x2 - 16xy - 11y2 - 12x + 6y + 21 = 0
¶h ‘m°S>b nona {dÚm{W©¶m| Ho$ ‘mJ©Xe©Z Ho$ {b¶o Ed§ CZH$s V¡¶mar H$mo ñd¶§ naIZo Ho$ {b¶o {ZewëH$
CnbãY H$adm¶m J¶m h¡& àH$meH$ Bg ‘m°S>b nona go narjm ‘| àíZ AmZo H$s H$moB© ^r g§^mdZm ì¶³V
Zht H$aVm h¡& {dÚm{W©¶m| H$mo gbmh Xr OmVr h¡ {H$ do Q>o³ñQ> ~wH$ go Aܶ¶Z H$a|&
19
...
3
2
lim x + x - 2
x " 1 sin ^x - 1h
(1)
(2)
(3)
(4)
CÎma (1) ;- p , 7p E
6 6
H$m ‘mZ hmoJm-
2
3
4
5
CÎma (4) 5
21
...
bter
...
bter
...
cot-1 6 cos 2x @
2
(1)
3
1
(2)
3
(3)
(4)
H$m x = p na AdH$bO h¡6
3
6
CÎma (1)
23
...
¶{X EH$ JmobmH$ma Jwã~mao H$m Ma ì¶mg 3x + 9 hmo, Vmo x Ho$ gmnoj
2
CgHo$ Am¶VZ ‘| n[adV©Z H$s Xa hmoJr(1) 27p ^2x + 3h2
(2) 27p ^2x + 3h2
16
(3) 27p ^2x + 3h2
8
(4) BZ‘| go H$moB© Zht
CÎma (3) 27p ^2x + 3h2
8
¶h ‘m°S>b nona {dÚm{W©¶m| Ho$ ‘mJ©Xe©Z Ho$ {b¶o Ed§ CZH$s V¡¶mar H$mo ñd¶§ naIZo Ho$ {b¶o {ZewëH$
CnbãY H$adm¶m J¶m h¡& àH$meH$ Bg ‘m°S>b nona go narjm ‘| àíZ AmZo H$s H$moB© ^r g§^mdZm ì¶³V
Zht H$aVm h¡& {dÚm{W©¶m| H$mo gbmh Xr OmVr h¡ {H$ do Q>o³ñQ> ~wH$ go Aܶ¶Z H$a|&
25
...
#e
(1)
(2)
(3)
(4)
x
cos e x dx =
x
2 sin e x
sin e x
2 cos e x
- 2 sin e x
CÎma (1) 2 sin e
27
...
bter
...
bter
...
dy
AdH$b g‘rH$aU dx = ex - y + x2 e-y H$m hb h¡3
(1) ey = ex + x + c
3
(2) ey = ex + 2x + c
(3) ey = ex + x3 + c
(4) y = ex + c
3
CÎma (1) ey = ex + x + c
3
29
...
a # b 2 + ^a $ b h2 =
(1) ^a # a h $ ^b # bh
(2) ^a $ a h^b $ bh
(3) ^a # bh ^a $ bh
(4) 2 ^a $ bh^a $ bh
CÎma (2) ^a $ a h^b $ b h
*******
¶h ‘m°S>b nona {dÚm{W©¶m| Ho$ ‘mJ©Xe©Z Ho$ {b¶o Ed§ CZH$s V¡¶mar H$mo ñd¶§ naIZo Ho$ {b¶o {ZewëH$
CnbãY H$adm¶m J¶m h¡& àH$meH$ Bg ‘m°S>b nona go narjm ‘| àíZ AmZo H$s H$moB© ^r g§^mdZm ì¶³V
Zht H$aVm h¡& {dÚm{W©¶m| H$mo gbmh Xr OmVr h¡ {H$ do Q>o³ñQ> ~wH$ go Aܶ¶Z H$a|&