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Fig. 10.2 Forward-backward versus Beck-Teboulle : As in Example10.12, let C andD be two
closed convex sets and consider the problem (10.30) of finding a pointx∞ in C at minimum distance
from D. Let us setf1 = ιC and f2 = d2

D/2. Top: The forward–backward algorithm withγn ≡ 1.9
andλn ≡ 1. As seen in Example10.12, it reduces to the alternating projection method (10.31).
Bottom: The Beck-Teboulle algorithm.
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Fig. 10.3 Forward-backward versus Douglas–Rachford: As in Example10.12, letC andD be two
closed convex sets and consider the problem (10.30) of finding a pointx∞ in C at minimum distance
from D. Let us setf1 = ιC and f2 = d2

D/2. Top: The forward–backward algorithm withγn ≡ 1 and
λn ≡ 1. As seen in Example10.12, it assumes the form of the alternating projection method (10.31).
Bottom: The Douglas–Rachford algorithm withγ = 1 andλn ≡ 1. Table10.1.xii yields proxf1 =PC

and Table10.1.vi yields proxf2 : x 7→ (x+PDx)/2. Therefore the updating rule in Algorithm10.15
reduces toxn = (yn+PDyn)/2 andyn+1 = PC(2xn−yn)+yn−xn = PC(PDyn)+yn−xn.
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(such techniques were introduced in [110,111] and have been used in the context of
convex feasibility problems in [10,43,45]). To this end, observe that (10.53) can be
rewritten inH as

minimize
(x1,...,xm)∈H

x1=···=xm

f1(x1)+ · · ·+ fm(xm). (10.55)

If we denote byx= (x1, . . . ,xm) a generic element inH , (10.55) is equivalent to

minimize
x∈H

ιD(x)+ f (x), (10.56)

where {
D =

{
(x, . . . ,x) ∈ H |x∈ R

N
}

f : x 7→ f1(x1)+ · · ·+ fm(xm).
(10.57)

We are thus back to a problem involving two functions in the larger spaceH . In
some cases, this observation makes it possible to obtain convergent methods from
the algorithms discussed in the preceding sections. For instance, the following par-
allel algorithm was derived from the Douglas–Rachford algorithm in [54] (see also
[49] for further analysis and connections with Spingarn’s splitting method [120]).

Algorithm 10.27 (Parallel proximal algorithm (PPXA))
Fix ε ∈ ]0,1[, γ > 0, (ωi)1≤i≤m ∈ ]0,1]m such that

∑m
i=1 ωi = 1, y1,0 ∈R

N, . . . ,ym,0 ∈ R
N

Setx0 = ∑m
i=1 ωiyi,0

Forn= 0,1, . . .

For i = 1, . . . ,m⌊
pi,n = proxγ fi/ωi

yi,n

pn =
m

∑
i=1

ωi pi,n

ε ≤ λn ≤ 2− ε
For i = 1, . . . ,m⌊

yi,n+1 = yi,n+λn
(
2pn− xn− pi,n

)

xn+1 = xn+λn(pn− xn).

Proposition 10.28 [54] Every sequence(xn)n∈N generated by Algorithm10.27
converges to a solution to Problem10.26.

Example 10.29 (image recovery)In many imaging problems, we record an obser-
vationy∈R

M of an imagez∈R
K degraded by a matrixL ∈R

M×K and corrupted by
noise. In the spirit of a number of recent investigations (see [37] and the references
therein), a tight frame representation of the images under consideration can be used.
This representation is defined through a synthesis matrixF⊤ ∈R

K×N (with K ≤ N)
such thatF⊤F = νI , for someν ∈ ]0,+∞[. Thus, the original image can be written
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32. Chaâri, L., Pesquet, J.C., Ciuciu, P., Benazza-Benyahia, A.: An iterative method for parallel
MRI SENSE-based reconstruction in the wavelet domain. Med.Image Anal.15, 185–201
(2011)

33. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math.
Imaging Vision20, 89–97 (2004)

34. Chambolle, A.: Total variation minimization and a classof binary MRF model. Lecture
Notes in Comput. Sci.3757, 136–152 (2005)

35. Chambolle, A., DeVore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image processing:
Variational problems, compression, and noise removal through wavelet shrinkage. IEEE
Trans. Image Process.7, 319–335 (1998)

36. Chan, R.H., Setzer, S., Steidl, G.: Inpainting by flexible Haar-wavelet shrinkage. SIAM J.
Imaging Sci.1, 273–293 (2008)

37. Chaux, C., Combettes, P.L., Pesquet, J.C., Wajs, V.R.: Avariational formulation for frame-
based inverse problems. Inverse Problems23, 1495–1518 (2007)

38. Chaux, C., Pesquet, J.C., Pustelnik, N.: Nested iterative algorithms for convex constrained
image recovery problems. SIAM J. Imaging Sci.2, 730–762 (2009)

39. Chen, G., Teboulle, M.: A proximal-based decompositionmethod for convex minimization
problems. Math. Programming64, 81–101 (1994)

Preview from Notesale.co.uk

Page 24 of 28


