Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: X-ray diffraction
Description: 2nd year chemistry degree notes

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


X-­‐Ray  diffraction  
Definition  of  the  crystalline  state  
§
§
§
§
§

Crystals  are  solids  (but  not  all  solids  are  crystals)  
Crystals  are  the  most  ordered  form  of  the  matter  
Crystals  are  3-­‐D  (2-­‐D)  regular  arrays  of  ions,  atoms,  molecules;  they  have  triple  (double)  periodicity  
Crystals  have  long-­‐range  order  
Each  repeating  unit  =  motif  (whatever  it  is  (atom/molecule))  within  a  crystal  has  an  identical  
environment  

X-­‐Ray  diffraction  
This  is  the  essence  of  the  X-­‐ray  crystal  structure  analysis  (XRA)
...
 
Crystal  forming  chemical  entities  =  motifs:  metals,  ions,  atoms  (e
...
 diamond),  organic  compounds,  peptide  
proteins,  lipids,  oligosaccharides,  DNA,  RNA  etc
...
   
X-­‐Ray  analysis  is  the  best  source  of  the  above  data;  they  are  key  components  of  structural  databases  for  
further  chemical  (e
...
 quantum)  and  physical  calculations
...
 
 
 
• Scattering  and  diffraction  
These  techniques  are  used  to  obtain  the  structure  of  the  motif  (compound)  from  its  crystal  structure
...
 
o All  objects  -­‐  irrelevant  of  their  size-­‐  scatter  radiation  that  is  shined  on  them
...
 
 
o We  can  focus  back  the  scattered  /  diffracted  waves  again  
We  can  do  this  because  light  travels  with  different  media  with  
different  speed:  different  media  have  different  refractive  index  (n)
...
 
 
 
 
 
 
 
 
o What  should  be  the  relationship  between  an  effective  scattering  and  the  size  of  the  object?    
The  power  of  scattering/diffraction  by  an  object  is:  
-­‐ Directly  proportional  to  the  similarity  between  the  wavelength  of  the  incident  radiation  
and  the  size  of  the  scattering  object
...
8  -­‐  2Å  =  X-­‐ray  radiation
...
 This  is  elastic  coherent  scattering:  frequencies  and  wavelengths  of  the  incoming  X-­‐rays  and  
scattered/diffracted  X-­‐rays  are  the  same/unchanged
...
 
We  cannot  measure  (yet)  the  X-­‐ray  scattering  produced  by  a  single  chemical  entity  (organic  molecule)  
is  it  is  too  weak,  but  we  can  use  crystals  as  3-­‐D  amplifier  of  scattering  produced  by  single  crystal  motif
...
 There  are  also  other  types  of  interactions  of  X-­‐rays  with  
electrons,  e
...
 excitations
...
 In  the  crystal  there  are  thousands  of  molecules  -­‐  some  of  them  survive  long  
enough  to  give  a  measurable  radiation
...
 
2)
Directions  of  the  diffracted  X-­‐rays  
The  phase  α  must  be  reconstructed  in  rather  complex/difficult  
experimental  and  computing  methods:    
Phase  problem  =  phase  solution  methods  
Lattices,  crystal  planes,  hkl  indices  
 
 
The  3-­‐D  periodicity  of  the  crystal  can  be  
simplified  and  represented  by  an  abstract  crystal  
lattice
...
 They  cannot  be  just  any  
translations,  they  to  reproduce  all  crystal  motives  
(lattice  points)  if  applied  to  any  single  lattice  point  (or  
motif’s  atoms)
...
 
To  get  the  structure  of  the  motive  we  have  to  first  get  the  
information  about  the  unit  cell  size  and  it’s  arrangement
...
e
...
 (hkl)  is  
the  miller  index  of  that  plane  (round  
brackets  no  commas)
...
g
...
 
Distance  between  planes  is  given  by  d(hkl)  
Reciprocal  dependence  between  (hkl)  and  d(hkl):  larger  (hkl)  values  (finely  spaced  planes)  
then  smaller  d(hkl)  



Diffraction  
o On  the  optical  grating  
 
Path  difference  XY  between  
diffracted  beams  1  and  2:  
sin  θ  =  XY/a    -­‐>    XY  =  a  sin  θ  
 
For  1  and  2  to  be  in  phase  and  give  constructive  interference:  
XY  =  λ,  2λ,  3λ,  4λ…nλ  
So,  
 a  sinθ  =  nλ  (n=order  of  diffraction)  
This  is  the  so-­‐called  grating  relationship  where  z  is  the  distance  
between  scattering  centres
...
5  -­‐  2Å,  λ  must  be  in  the  
range  of  0
...
 
(x,  y,  z  )  -­‐>  Coordinates  of  any  point  in  a  unit  cell  
(xj,  yj,  zj)  -­‐>  Coordinates  of  the  J  atom  
(u,  v,  w)  -­‐>  Coordinates  for  the  lattice  parameters  
Principles  of  structure  solution  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Wave  nature  of  diffraction  and  its  relationship  with  electron  density  


Fourier  transform  
Any  waveform  can  be  represented  by  the  
super-­‐positions  of  sine  and  cosine  waves
...
 The  Fourier  transforms  uses  
above  concepts  to  convert  between  two  
different  descriptions  of  the  physical  
system
...
 
 
Intensity  of  the  reflections=  Brightness  
Phase  of  the  reflections=  Colour  
 
 

The  diffractions  pattern  of  a  crystal  lattice  is  another  lattice  -­‐  
reciprocal  lattice
...
 
This  corresponds  to  sampling  of  molecular  transform  at  reciprocal  
lattice  points
...
 
Spatial  distribution  -­‐>  i
...
 directions  =  θ  

 
 
 
 
 
 
 
 



Analytical  description  of  the  structure  factors  
Wave  =  |F|  x  α  
Intensity  of  the  wave:  I  ≈  F2  
√I  =  √F2  =  |F|  
λ  =  wavelength,  |F|  =  amplitude,  α  =  phase  
 

 
 
 
 
If  we  are  trying  to  describe  a  physical  property  (a  wave  in  our  case)  that  has  amplitude  and  phase,  it  
is  convenient  to  represent  it  in  form  of  a  complex  number:  
Description  of  the  wave  F  that  results  from  
superposition  of  many  (j)  other  waves  with  amplitudes  
f  and  phases  ϕ:  
 
 
 
 
 
 
 
 
All  above  rules  f  super-­‐position  of  scattered  
waves  apply  for  the  scattered  waves  apply  for  the  
scattering  of  the  X-­‐rays  by  the  electron  ‘clouds’  of  
the  atoms
...
 
fj  is  the  atomic  scattering  factor,  this  is  already  known  for  a  
particular  atom,  it  is  proportional  to:  
Atomic  number  (Z)  x  amplitude  of  scattering  one  electron  
In  general,  some  (hkl)  planes  will  have  more  atoms,  some  less;  
some  scattering  atoms  will  have  more  electrons  (e
...
 Hg,  Pt,  I,  Br  
etc
...
),  hence,  some  reflections  will  be  
more  intense  -­‐  some  weak  depending  on  how  many  atoms  =  electrons  contributed  to  them
...
 
hkl  are  miller  indices  of  a  particular  reflection  from  a  particular  
(hkl)  plane
...
 
 
 
 
 
 
 



The  only  information  available  after  the  X-­‐ray  experiment:  
-­‐ Unit  cell  dimensions  (from  Bragg  law  -­‐  we  can  measure  θ)  (symmetry)  
-­‐ fj  (from  the  tables)  
-­‐ |Fhkl|  =  √Ihkl  (from  the  measurement  of  intensity  of  the  reflection)  

 
 
 
The  above  approach  was  based  on  the  assumption  that  the  scattering  power  of  the  electron  cloud  
surrounding  each  atom  could  be  equated  to  the  ‘atomic  number’  of  electrons  concentrated  at  the  
atomic  centre
...
 
Electron  density  is  defined  as  the  number  of  electrons  per  unit  volume,  so,  in  any  small  volume  dv  at  
the  point  with  coordinates:  (x,  y,  z)  -­‐  notes  no  j’s    
ρ(x,  y,  z)  dv  
Benefits  are  that  atoms  are  getting  more  real  in  ‘size’  -­‐  we  are  dealing  with  clouds  of  electrons  and  
that  we  are  not  constrained  here  by  atoms  coordinates:  (x,  y,  z)  not  (xj,  yj,  zj)
...
 Maximum  θ  angles  
which  is  experimentally  achievable:  nλ=2dsinθmax  or  the  
smallest  dhkl  =  dmin  we  registered  the  diffraction  from  
 
 
o Solution  of  the  phase  problem  
 
 
 
Ø Direct  methods  (purely  computational):  
Do  not  require  any  extra  information  -­‐  use  
experimental  data  set  |Fhkl|  only
...
 
Ø Heavy  atom  methods  (purely  computational  or  
experimental):  
Our  (in)  organic  compound  already  has  heavy  atom  
(e
...
 Fe,  Pt,  Au,  Hg,  Ru  etc
...
 Good  for  
proteins  crystals  as  well  (lots  of  solvent  content  there  -­‐  50%)  -­‐  heavy  atoms  can  be  
soaked  into  these  crystals
...
 
 
 
 
 
 
 
 
 
 
 
 

o

Model  building  -­‐  refinement  of  the  phases/structure  
 

 
Importance  of  the  difference  electron  density  map:  
 
 
 
 
The  module  (|Fobs|-­‐|Fcalc|)  should  show  only  the  differences  between  the  actual  =  observed  
model:  (measured  I)  =  |Fobs|,  and  the  model  that  has  been  built:  |Fcalc|
...
d
...
 The  difference  e
...
 map  
should  show  minima  (negative  e
...
)  if  the  atom  in  
the  model  was  modelled  in  a  wrong  place  =  is  not  
where  it  should  be
...
d
...
 
Problems  is  refinement:  
In  refinement  we  optimise  following  parameters:  
atomic  coordinates  (xj,  yj,  zj)  (3  parameters);  atomic  
displacement  parameters  -­‐  B/U  factors,  3-­‐isotropic  
(sphere),  6-­‐anisotropic  (ellipsoid);  occupancy  -­‐  
atom’s  movement,  crystal  disorder  (crystal  
mosaicity),  symmetry  -­‐  special  positions
...
)  
-­‐ The  input  from  the  chemist  is  crucial  here:  


Title: X-ray diffraction
Description: 2nd year chemistry degree notes