
1.9. EXPONENTIATION 25

Solution:

(a4b−2)−2· a6b

a−2b5
= (a4)−2·(b−2)−2·a6−(−2)b1−5 = a−8·b4·a8b−4 = a−8+8·b4+(−4) = a0b0 = 1.

Exercise 1.3. Simplify the following expression containing exponentiations:

a) 26 · 27 b)
26

24
c) 106 ·

(
1

5

)6

d) (24)3 e)
84

44
f)

a7 · a−4

a3

g) 36 · 33 : 37 h) 32
5

i) (32)5

j)
(25 · 34 · 53) · (24 · 33 · 52 · 73)

26 · 35 · 55 · 7
k) 24

2

: (24)3 l) (−3a2b4c3)2

m) 4a2b3c7 · (−3ab2c5) n)
−27a8b9c7

−3a4b8c7
o)

2−3a4b−5c−2

3−2a−2b−3c−1

p)
2

3
(a3)2b−3c4

[
−1

2
a4b7c−3

]
q)

5a0b−3(c−2)0

2−1a−3b−5d3
r)

a3b−5c3

a−2b−7c

s) (−2x2y−3z−1)−3 · (−1x−1y4z5)2 t) 3x2(y3)2z4 · 2(x3y2z)3 u)
a4

2
(b3)2

a23b22

1.9.2 Radicals

Definition 1.19. Let a, b be real numbers, n a natural number. Suppose that if

n is even, then a and b are positive. Then the nth root of a is denoted by n
√
a

and is defined by

n
√
a = b if and only if a = bn.

For 2
√
a we use the notation

√
a.

Example.

√
4 = 2,

3
√
125 = 5, 5

√
−32 = −2, 4

√
−16 has no sense (it is not a real number)

Theorem 1.20. (Properties of radicals) If n, k are positive integers and a, b

are positive real numbers, then we have
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2.2. POLYNOMIALS 33

Exercise 2.1. Let P (x, y), Q(x, y) and H(x, y) be polynomials defined by

P (x, y) := x2 − 3xy + y2,

Q(x, y) := 2x3 − x2y + 3xy2 + 5y3,

H(x, y) := x2 + 5xy + 3x− 2xy3 + y.

Compute the following expressions:

a) P (x, y) +H(x, y) b) xP (x, y) +Q(x, y)

c) P (x, y) ·Q(x, y) d) P (x, y)− 2H(x, y)

e) P (x, y) ·H(x, y) f) (P (x, y)−H(x, y))P (x, y)

Exercise 2.2. Let P (x), Q(x) and H(x) be univariate polynomials defined by

P (x) := x2 − 3x+ 2,

Q(x, y) := x3 − 2x2 + 3x+ 5,

H(x, y) := x2 + 2.

Compute the following expressions:

a) P (x) +Q(x) b) xP (x) +Q(x)

c) P (x) ·Q(x) d) P (x) + 2H(x)

e) P (x) ·H(x) f) (P (x) +Q(x)) ·H(x)

g) (x · P (x) + 3 ·Q(x)) ·H(x) h) P (x) +Q(x) +H(x)

i) P (x) · (Q(x) +H(x)) j) P (x) ·Q(x) ·H(x)

Preview from Notesale.co.uk

Page 33 of 204



38 CHAPTER 2. ALGEBRAIC EXPRESSIONS

j) f(x) := x5 − 2x4 − 5x3 + 2x2 − 3x+ 2, g(x) := x4 − 3x3 + x2 − 4x+ 3

k) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x− 1

l) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x+ 1

m) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x− 2

n) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x+ 2

o) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x+ 3

p) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x2 − 1

q) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x− 1

r) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x+ 1

s) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x− 2

t) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x+ 2

u) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x− 3

v) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x+ 3

w) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x2 − x− 1

x) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x2 − 1

y) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x2 + x− 1

z) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x2 + 2x− 1

2.2.4 Horner’s scheme

In this section we consider that case of the polynomial division, when the divisor

takes the form x− c. Let us consider a concrete example:
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42 CHAPTER 2. ALGEBRAIC EXPRESSIONS

using Horner’s scheme:

a) f(x) = x5 − 2x4 + x3 − 3x2 + 2x− 5, g(x) = x+ 1

b) f(x) = x5 − 5x4 + 3x3 − 2x2 + 2x− 3, g(x) = x− 2

c) f(x) = x5 − 5x4 + 3x3 − 2x2 + 2x− 3, g(x) = x+ 2

d) f(x) = x7 − 5x6 + 2x5 − 4x4 − x3 + 3x− 2, g(x) = x− 1

e) f(x) = x7 − 5x6 + 2x5 − 4x4 − x3 + 3x− 2, g(x) = x+ 1

f) f(x) = x7 − 5x6 + 2x5 − 4x4 − x3 + 3x− 2, g(x) = x− 2

g) f(x) = x7 − 5x6 + 2x5 − 4x4 − x3 + 3x− 2, g(x) = x+ 2

h) f(x) = x6 − 2, g(x) = x− 1

i) f(x) = x6 − 2, g(x) = x− 2

j) f(x) = x6 − 2, g(x) = x+ 2

k) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x− 1

l) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x+ 1

m) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x− 2

n) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x+ 2

o) f(x) := x6 + 3x5 − 2x4 − 5x3 + 2x2 − 3x+ 10, g(x) := x+ 3

p) f(x) := x7 − x5 + x3 − x, g(x) := x+ 1

q) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x− 1

r) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x+ 1

s) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x− 2

t) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x+ 2

u) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x− 3

v) f(x) := x6 − 4x4 − x3 + 3x− 2, g(x) := x+ 3,

w) f(x) = x7 + 3x6 + 2x5 − 3x4 + x3 − 5x2 − 3x+ 4, g(x) = x+ 1

x) f(x) = x7 + 3x6 + 2x5 − 3x4 + x3 − 5x2 − 3x+ 4, g(x) = x− 1

y) f(x) = x7 + 3x6 + 2x5 − 3x4 + x3 − 5x2 − 3x+ 4, g(x) = x+ 2

z) f(x) = x7 + 3x6 + 2x5 − 3x4 + x3 − 5x2 − 3x+ 6, g(x) = x+ 1
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2.2. POLYNOMIALS 43

Exercise 2.6. Decide using Horner’s scheme if the below polynomial f(x) is di-

visible by the polynomial g(x) or not, and if the answer is yes, then compute the

quotient f(x)
g(x)

, and if the answer is no, then compute the quotient and the remainder
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2.3. FACTORIZATION OF POLYNOMIALS 51

ficients:

a) 3x+ 18x3y3 + 27x5y6 b) x3y2 − 100x− x2y3 + 100y + x2y2z − 100z

c) 9a4 + 41a2 − 20 d) (a2b2 + 1)2 − (a2 + b2)2

e) (x+ 2y)3 + (3x− y)3 f) x8 + x4 + 1

g) (x+ y)4 + x4 + y4 h) x4 − 2(a2 + b2)x2 + a4 + b4 − 2a2b2

i) x2 + 3x− x4 − 3x j) x5 − 5x4 + 4x3 − x2 + 5x− 4

k) x2 + 2xy + y2 − xz − yz l) (abc+ abd+ acd+ bcd)2 − abcd(a+ b+ c+ d)2

m) 3x4y4 − x8 − y8 n) (ac+ pbd)2 + p(ad− bc)2

o) ac2 − ab2 + b2c− c3 p) (x2 + 4x+ 8)2 + 3x(x2 + 4x+ 8) + 2x2

q) a2b4c2 − a2b2c4 + a4b2c2 − a4b4 r) a2b2 + c2d2 − a2c2 − b2d2 − 4abcd

s) x5 + 2x4 + 3x2 + 2x+ 1 t) 9x6 + 18x5 + 26x4 + 16x3 + 6x2 − 2x− 1

u) (x+ y)3 + 3(x+ y)(x2 − y2) + 3(x− y)(x2 − y2) + (x− y)3 − 27y3

v) (cx+ by)(ax+ cy)(bx+ ay)− (bx+ cy)(cx+ ay)(ax+ by)

w) (x2 + x+ 1)(x2 + x+ 2)− 12

x) abc(a+ b+ c)− ab− ac− bc− a2b2c2 + 1

y) (x2 + x+ 1)(x3 + x2 + 1)− 1

z) (x− a)3(b− c) + (x− b)3(c− a) + (x− c)3(a− b) + 3x(b− c)(c− a)(a− b)

2.3.5 Divisibility of polynomials

Definition 2.4. Let T be any of the sets Q,R. Let P (x), Q(x) ∈ T[x] be two

polynomials. We say that Q divides P if there exists a polynomial R(x) ∈ T[x]

such that P (x) = Q(x)R(x). Further, if Q divides P we also say that P is

divisible by Q, or Q is a factor of P .

Notation. For Q divides P we use the notation Q | P or Q(x) | P (x).
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54 CHAPTER 2. ALGEBRAIC EXPRESSIONS

Exercise 2.10. Simplify the following expressions

a)
30x2y

6xy2
b)

5x2y7z3

10x4yw2

c)
−12x4

24x6
d)

3(−x)5

12(−x)6

e)
x− 3

2(x− 3)2
f)

5(x− 1)2

x2 − 1

g)
9x2 + 3xy

3xy + 9y2
h)

x2 − 8x

x3 − 8x2

i)
5x− 20

x2 − 16
j)

7x4 − 7y4

9x2y2 + 9y4

We may multiply both the numerator and the denominator of an al-

gebraic fraction by a non-zero expression, and we get a fraction which is

equivalent to the original fraction.

Example. Here we amplify the fraction x+1
x−1

by x2 + x+ 1:

x+ 1

x− 1
=

(x+ 1)(x2 + x+ 1)

(x− 1)(x2 + x+ 1)
=

(x+ 1)(x2 + x+ 1)

x3 − 1
.

Exercise 2.11. Amplify the following expressions so that they have the same

denominator

a)
3

5a2b7
and

1

a3b

b)
1

a3(x+ 1)
and

1

a2(x+ 1)2

c)
x+ 3

2x− 1
and

x− 1

3x+ 2

d)
1

x+ 1
,

1

a3
and

1

3a
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56 CHAPTER 2. ALGEBRAIC EXPRESSIONS

2.4.3 Addition and subtraction of rational algebraic ex-

pressions

1. If we have to add (subtract) two or more rational algebraic ex-

pressions, whose denominators are the same, then the result is a

fraction whose denominator is the same like the common denominator of

the summands, and the numerator is the sum (difference) of the original

numerators.

2. If we have to add (subtract) two or more rational algebraic expres-

sions, whose denominators are different then we first amplify the

fractions so that all denominators become the same expression, and we

use the rule described in 1.

3. When choosing the common denominator, we have to try to find the

most simple such expression, i.e the least common multiple of all the de-

nominators.

The above rules can be summarized by the above formulas. If the denominators

are the same, then
a

d
+

c

d
=

a+ c

d
,

a

d
− c

d
=

a− c

d
.

In the case when the denominators are different, then

a

b
+

c

d
=

ad

bd
+

bc

bd
=

ad+ bc

bd
,

a

be
+

c

de
=

ad

bde
+

bc

bde
=

ad+ bc

bde
.

Remark. The product of the denominators is always a theoretically possible

choice for the common denominator, however we strongly discourage the student

to choose this way, since it may make the solution much more complicated. It is
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60 CHAPTER 2. ALGEBRAIC EXPRESSIONS

i)

[(
2a

b
− b

2a

)2

+ 2

]
2ab

16a4 + b4

j)

(
5a

a+ x
+

5x

a− x
+

10ax

a2 − x2

)
:

(
a

a+ x
+

x

a− x
+

2ax

a2 − x2

)
k)

(
b2

a3 − ab2
+

1

a+ b

)
:

(
a− b

a2 + ab
− a

b2 + ab

)
l)

(
x− 4xy

x+ y
+ y

)
:

(
x

x+ y
− y

y − x
− 2xy

x2 − y2

)
m)

(
(a+ b)2 + 2b2

a3 − b3
− 1

a− b
+

a+ b

a2 + ab+ b2

)
·
(
1

b
− 1

a

)
n)

x2 − 1

xy
:

[(
x2 − xy

x2y + y3
− 2x2

y3 − xy2 + x2y − x3

)
·
(
1− y − 1

x− y
x2

)]

o)
x3 −

(
1

1+ 1
x

+ 1
1
x
+ 1

x2

)
:
(

1
1
x
−1

− 1
1
x2

− 1
x

)
x3 − 1

p)

(
x+y2

a+b
− x4−y4

a3+b3
: x2−y2

a2−ab+b2

)
· (2a+ 2b− ax− bx)

x2 − 3x+ 3

q)
a2+ab+b2

a3−b3
− a2+2ab+b2

a3+b3
: a2−b2

a2−ab+b2

(7a3 + ab+ b5)(2a− 3b)− b3 + a3

2.5 Algebraic expressions containing roots

When working with expressions containing roots the main difference to the case

of rational expressions is that it is harder to find a suitable but simple common

denominator. Thus in many cases it is useful to rationalize the denominator

of such fractions (i.e. to get rid of the roots appearing in the denominator using

equivalent transformations of the expression). This is done generally by using

formulas for special products.

Here we present the most frequently used methods for rationalizing the denom-

inator of a fraction:
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62 CHAPTER 2. ALGEBRAIC EXPRESSIONS

Indeed, if we wish to rationalize the denominator of 1
3√a− 3√

b
(a, b > 0) then

we amplify the fraction by ( 3
√
a)

2
+ 3

√
a 3
√
b+

(
3
√
b
)2

as follows:

1
3
√
a− 3

√
b
=

( 3
√
a)

2
+ 3

√
a 3
√
b+

(
3
√
b
)2

(
3
√
a− 3

√
b
)(

( 3
√
a)

2
+ 3

√
a 3
√
b+

(
3
√
b
)2)

=
( 3
√
a)

2
+ 3

√
a 3
√
b+

(
3
√
b
)2

a− b

Similarly, we have

1
3
√
a+ 3

√
b
=

( 3
√
a)

2 − 3
√
a 3
√
b+

(
3
√
b
)2

(
3
√
a+ 3

√
b
)(

( 3
√
a)

2 − 3
√
a 3
√
b+

(
3
√
b
)2)

=
( 3
√
a)

2 − 3
√
a 3
√
b+

(
3
√
b
)2

a+ b

Example. Rationalize the denominator of the following fractions

1). 3
2
√
5

3

2
√
5
=

3
√
5

2
√
5 ·

√
5
=

3
√
5

10

2). 1

2 5√3

1

2 5
√
3
=

(
5
√
3
)4

2 5
√
3 ·
(

5
√
3
)4 =

5
√
81

6

3).
√
6√

2+
√
3

√
6√

2 +
√
3
=

√
6(
√
2−

√
3)

(
√
2 +

√
3)(

√
2−

√
3)

=

√
6(
√
2−

√
3)

2− 3
=

√
6(
√
3−

√
2) = 3

√
2− 2

√
3
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3.2. LINEAR EQUATIONS 73

• Solve the following linear equation over the real numbers

x− 2

3
+

x

4
=

7x− 8

12
.

Solution. We follow the general strategy described above:

x− 2

3
+

x

4
=

7x− 8

12
/ · 12

4(x− 2) + 3x = 7x− 8

4x− 8 + 3x = 7x− 8

7x− 8 = 7x− 8 / + 8− 7x

0 = 0 identity

We have used equivalent transformations, and our equation reduces to an

identity, which means that every real number for which the original equation

is defined (i.e. the expressions in the equation have sense) is a solution to

this equation. In our case every expression in the original equation has sense

for every real number.

This means the solutionset is the whole set of real numbers: S = R.

• Solve the following linear equation over the real numbers

x− 2

3x
+

1

4
=

7x− 8

12x
.

Solution. First we have to put conditions:

3x ̸= 0 and 12x ̸= 0

which leads to x ∈ R \ {0}.
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4.3. TABLE OF SIGNS 93

which means that x = −5. So we have to write −5 in the first row of our table,

and then below the −5 we put 0 in the second row. We fill by + (the sign opposite

to the sign of −5) the left half of the second row, and by − (the sign of −5) the

right half of the second row.

−∞ −5 ∞

−2x− 10 + + + + + + + + + + + + 0 - - - - - - - - - - - - - - - - - - - -

Now it is easy to read the result from the above table.

4.3.2 The sign of quadratic expressions

In this section we consider the expression ax2+bx+c with a, b, c ∈ R and a ̸= 0, and

we prove a theorem which summarizes all possible cases for determining the sign

of this expression, depending on the values of x. We have to split the discussion

in three cases depending on the sign of the discriminant.

Theorem 4.8. Let ∆ := b2−4ac be the discriminant of the polynomial ax2+bx+c.

The below three simple tables of signs describe the sign of the expression ax2+bx+c

where a, b, c ∈ R and a ̸= 0.

1). If the discriminant is negative, i.e. ∆ < 0, then the equation ax2+bx+c = 0

has no real zeros, and we have

−∞ ∞

ax2 + bx+ c sign of a sign of a sign of a

2). If the discriminant is zero, i.e. ∆ = 0, then the equation ax2 + bx + c = 0

has two coinciding zeros, x1 = x2, and we have
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4.3. TABLE OF SIGNS 95

Example. Using a table of signs describe the sign of the expression −2x2+6x−4.

Solution. Clearly −2x2 + 6x− 4 takes zero if and only if

−2x2 + 6x− 4 = 0

which means that x1 = 1 or x2 = 2. So we have to write 1 and 2 in the first row of

our table, and then below them we put 0 in the second row. We fill by + (the sign

opposite to the sign of the leading coefficient a = −2) the the second row between

the two zeros, and by − (the sign of a = −2) the two sides of the second row.

−∞ 1 2 ∞

−2x2 + 6x− 4 - - - - - - - - - - - - - - - - 0 + + + + + + + 0 - - - - - - - - - - - - - -

Now it is easy to read the result from the above table.

Example. Using a table of signs describe the sign of the expression 2x2 +8x+8.

Solution. Clearly 2x2 + 8x+ 8 takes zero if and only if

2x2 + 8x+ 8 = 0

which means that x1 = x2 = −2. So we have to write −2 in the first row of our

table, and then below the −2 we put 0 in the second row. Finally, we fill by +

(the sign of the leading coefficient a = 2) the the second row around the 0.

−∞ −2 ∞

2x2 + 8x+ 8 + + + + + + + + + + + + 0 + + + + + + + + + + + +

Now it is easy to read the result from the above table.
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110 CHAPTER 5. EQUATIONS II

− (x+ 1)− (x− 2) + (3− x) = 6

− x− 1− x+ 2 + 3− x = 6

− 3x = 2

x = −2

3
̸∈ I1

Since the solution we got is not in the interval defining Case 1, thus the

solution set of the first case is

S1 = ∅.

Case 2. If x ∈ [−1, 2[ := I2 then

(x+ 1)− (x− 2) + (3− x) = 6

x+ 1− x+ 2 + 3− x = 6

− x = 0

x = 0 ∈ I2

So the solution set of the second case is

S2 = {0}.

Case 3. If x ∈ [2, 3[ := I3 then

(x+ 1) + (x− 2) + (3− x) = 6

x = 4 ̸∈ I3

So the solution set of the third case is

S3 = ∅.
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5.1. EQUATIONS CONTAINING ABSOLUTE VALUES 111

Case 4. If x ∈ [3,∞[ := I4 then

(x+ 1) + (x− 2)− (3− x) = 6

x+ 1 + x− 2− 3 + x = 6

3x = 10

x =
10

3
∈ I4

So the solution set of the third case is

S4 =

{
10

3

}
.

To get the complete solution set of the equation we have to join the sets of

solutions of the above subcases, i.e.

S = S1 ∪ S2 ∪ S3 ∪ S4 =

{
0,

10

3

}
.

For the graph of |x+ 1|+ |x− 2|+ |3− x| − 6 see Figure 5.1.

Example. Solve the following equation in x ∈ R

|x− 1|+ |x+ 1| = 2.

Solution. We shall do equivalent transformations. We have to get rid of the

absolute values by the formulas

|x− 1| =

(x− 1) if x− 1 ≥ 0

−(x− 1) if x− 1 ≤ 0.

|x+ 1| =

(x+ 1) if x+ 1 ≥ 0

−(x+ 1) if x+ 1 ≤ 0.

We build a table of signs containing all expressions appearing in absolute value:

x− 1 = 0 x+ 1 = 0

x1 = 1 x2 = −1
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Figure 5.2: Graph of the function |x− 1|+ |x+ 1| − 2.
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Figure 5.7: The graph of 1+x4

(1+x)4
− 3

4
with x ∈ [3, 15]
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Figure 5.8: The graph of x2 + 6 + 1
x2 − 4x− 4

x
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that is

y2 + y − 12 = 0

which gives y1 = −4, y2 = 3. The negative value is impossible, the positive value

gives

x2 + x− 2 = 0

and we get

x1 = 1, x2 = −2.

Now, we need to check these candidates for the solution. If x = 1, then we have

12 + 1 +
√
12 + 1 + 7 = 5,

this is a solution of our initial equation. If x = −2, then we obtain

(−2)2 − 2 +
√
(−2)2 − 2 + 7 = 5,

so x = 2 is also a root of the original equation.

5.4 Exponential equations

Definition 5.7. An equation is called exponential equation if the unknown (or

unknowns) appears in the exponents of algebraic expressions.

The following theorem is our basic tool for solving exponential equation.

Theorem 5.8. Let b be a positive real number with b ̸= 1. Then

bx = by implies x = y
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Figure 5.12: The graph of xx1/2
.

Example. Solve the equation

xx1/2

= 1/2.

Solution. We will introduce a new variable, let y = x2. Rewriting our equation we

have

y2y =
1

2

One can prove that the function f(y) = y2y is strictly decreasing on the interval

0 < y ≤ 1
e
and strictly increasing if y ≥ 1

e
. This fact gives that we have at most

two solutions and after substitution we obtain exactly two solutions for y, 1
2
and

1
4
and 1

4
s 1

16
for x. See Figure 5.12!
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we have

log2(4x
2) = 2.

Exponentiating both sides (with base 2), we obtain

2log2(4x
2) = 22 = 4.

Using the fact that

aloga x = x,

we can simplify the left-hand side to get

4x2 = 4.

Dividing both sides by 4, we obtain

x2 = 1.

Solving for x, we see that x = ±1. We check both of our candidate solutions. If

x = 1, we have

log2(4 · 1)− log2 1 = log2 4− 0 = 2,

so x = 1 is a solution. If x = −1, we have

log2(4 · (−1))− log2(−1) = log2(−4)− log2(−1).

However, neither expression is defined, since the domain of the logarithm function

does not contain negative numbers. Thus, the only solution to the above equation

is x = 1.

Example. Solve the equation

lg(x+ 2) + lg(x− 1) = 1
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Figure 5.13: The graph of lg(x+ 2) + lg(x− 1)− 1
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Figure 6.3: The graph of 5x2 + 4−
(

x2−16
5x

)2
with −3 ≤ x ≤ −0.5.
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Exercise 6.1. Solve the following systems of equations in the set of real numbers:

a) x+ y = 7, xy = −18

b) 3x+ 4y = −18, xy = 6

c) x2 + y2 = 25, xy = 12

d) x2 + y2 = 25, x+ y = 5

e) x2 − y2 = 20, x+ y = 10

f) x2 − y2 = 40, xy = 21

g) x2 + y2 = 20, xy = 8

h) y − x2 = 3, y − x = 3

i) 4x2 + 4y2 = 17xy, x+ y = 10

j)
1

x
+

1

y
= 1, x+ y = 4

k)
4

x
+

6

y
= 0,

3

x
− 4

y
− 17

6

l) x− xy + y = 1, xy = 20

m) x+ y + xy = 49, (x+ y)xy = 468

n) log7 x+ 2 log 1
7
x = log49 x− 3

o) 4y = x− 12, x+ y = 2

p) y − 3x = 5, y + x = 3
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Chapter 8

Exercises for the interested reader

8.1 Identities of algebraic expressions

1). Let a, b, c ∈ R be real numbers. Prove that

(1) (a+ b+ c)3 − (a3 + b3 + c3) = 3(b+ c)(c+ a)(a+ b),

(2) a3 + b3 + c3 − 3abc = 1
2
(a+ b+ c) [(a− b)2 + (b− c)2 + (c− a)2].

2). Let a, b, c ∈ R be pairwise distinct non-zero real numbers. Prove that

(1) a
(a−b)(a−c)

+ b
(b−c)(b−a)

+ c
(c−a)(c−b)

= 0

(2) a2

(a−b)(a−c)
+ b2

(b−c)(b−a)
+ c2

(c−a)(c−b)
= 1

(3) a3

(a−b)(a−c)
+ b3

(b−c)(b−a)
+ c3

(c−a)(c−b)
= a+ b+ c

(4) a4

(a−b)(a−c)
+ b4

(b−c)(b−a)
+ c4

(c−a)(c−b)
= a2 + b2 + c2 + ab+ bc+ ac

(5) a−1

(a−b)(a−c)
+ b−1

(b−c)(b−a)
+ c−1

(c−a)(c−b)
= 1

abc

(6) a−2

(a−b)(a−c)
+ b−2

(b−c)(b−a)
+ c−2

(c−a)(c−b)
= ab+bc+ac

a2b2c2

3). Let a, b, c, d ∈ R be pairwise distinct non-zero real numbers. Prove that

171
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8.2. INEQUALITIES OF ALGEBRAIC EXPRESSIONS 173

6). Compute the value of the expression(
a− b

c
+

b− c

a
+

c− a

b

)
·
(

c

a− b
+

a

b− c
+

b

c− a

)
provided that

(1) a+ b+ c = 0,

(2) |c| = |a− b|.

7). Let a, b, c ∈ R be real numbers. Prove that if (a + b + c)3 = (a3 + b3 + c3)

then for every n ∈ N we have

(a+ b+ c)2n+1 = a2n+1 + b2n+1 + c2n+1.

8). Let a, b, c ∈ R be real numbers, such that the expressions below have sense.

Prove that if
1

a
+

1

b
+

1

c
=

1

a+ b+ c

then for every n ∈ N we have

1

a2n+1
+

1

b2n+1
+

1

c2n+1
=

1

a2n+1 + b2n+1 + c2n+1
.

9). Let a, b, c ∈ R be real numbers. Prove that if a3 + b3 + c3 = 3abc then either

a+ b+ c = 0 or a = b = c.

8.2 Inequalities of algebraic expressions

1). Let a, b, c ∈ R be positive real numbers. Prove that

(1) (a+ b)(a+ c)(c+ a) ≥ 8abc,

(2) (a2 + b2)c+ (b2 + c2)a+ (c2 + a2)b ≥ 6abc,
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174 CHAPTER 8. EXERCISES FOR THE INTERESTED READER

(3) 2(a3 + b3 + c3) ≥ (a+ b)ab+ (b+ c)bc+ (c+ a)ca.

2). Let a, b, c ∈ R be positive real numbers with a+ b+ c = 1. Prove that

1

a
+

1

b
+

1

c
≥ 9.

Under what conditions do we have equality above?

3). Let a, b ∈ R be positive real numbers with a+ b = 2. Prove that

a4 + b4 ≥ 2.

4). Let a, b ∈ R be positive real numbers, and m,n ∈ N be natural numbers of

the same type of parity. Prove that

(1)
am + bm

2
· a

n + bn

2
≤ am+n + bm+n

2

(2)
a+ b

2
· a

2 + b2

2
· a

3 + b3

2
≤ a6 + b6

2

5). Let a, b, c ∈ R be positive real numbers. Prove that

a+ b+ c ≤ a4 + b4 + c4

abc

6). Let a, b, c, d ∈ R be positive real numbers. Prove that√
(a+ c)(b+ d) ≤

√
ab+

√
cd.

7). Let a, b, c ∈ R be positive real numbers. Prove that

ab

a+ c
+

bc

b+ c
+

ca

c+ a
=

a+ b+ c

2
.

Under what conditions do we have equality above?

8). Prove that

Preview from Notesale.co.uk

Page 174 of 204



180 CHAPTER 9. RESULTS OF THE EXERCISES

Results of Exercise 2.4 Denoting the quotient by q(x) and the remainder by
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9.2. CHAPTER 2 181

r(x) the results of the divisions are:

a) q(x) = x+ 3, r(x) := −2x− 1

b) q(x) = x3 − 2x2 + x+ 5, r(x) = −3

c) q(x) = x3 − 2x− 4, r(x) = −12x+ 10

d) q(x) = x3 − x− 1, r(x) = −5x+ 3

e) q(x) = x3 + 2x+ 1, r(x) = 0

f) q(x) = x4 + 2x3 − 8x− 16, r(x) = 0

g) q(x) = x3 + x2 − x− 7, r(x) = −20x+ 30

h) q(x) = x3 + 7x2 + 28x+ 126, r(x) = 574x− 250

i q(x) = x3 + 2x2 − 4, r(x) = −19x+ 14

j) q(x) = x+ 1, r(x) = −3x3 + 5x2 − 2x− 1

k) q(x) = x5 + 4x4 + 2x3 − 3x2 − x− 4, r(x) = 6

l) q(x) = x5 + 2x4 − 4x3 − x2 + 3x− 6, r(x) = 16

m) q(x) = x5 + 5x4 + 8x3 + 11x2 + 24x+ 45, r(x) = 100

n) q(x) = x5 + x4 − 4x3 + 3x2 − 4x+ 5, r(x) = 0

o) q(x) = x5 − 2x3 + x2 − x, r(x) = 10

p) q(x) = x4 + 3x3 − x2 − 2x+ 1, r(x) = −5x+ 11

q) q(x) = x5 + x4 − 3x3 − 4x2 − 4x− 1, r(x) = −3

r) q(x) = x5 − x4 − 3x3 + 2x2 − 2x+ 5, r(x) = −7

s) q(x) = x5 + 2x4 − x2 − 2x− 1, r(x) = −4

t) q(x) = x5 − 2x4 − x2 + 2x− 1, r(x) = 0

u) q(x) = x5 + 3x4 + 5x3 + 14x2 + 42x+ 129, r(x) = 385

v) q(x) = x5 − 3x4 + 5x3 − 16x2 + 48x− 141, r(x) = 421

w) q(x) = x4 + x3 − 2x2 − 2x− 4, r(x) = −3x− 6

x) q(x) = x4 − 3x2 − x− 3, r(x) = 2x− 5

y) q(x) = x4 − x3 − 2x2 − 2, r(x) = 5x− 4

z) q(x) = x4 − 2x3 + x2 − 5x+ 11, r(x) = −24x+ 9
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9.5 Chapter 5

Results of Exercise 5.1:

a) x1 = −2, x2 = −1, x3 = 3

b) x1 = −2, x2 = 1, x3 = 2, x4 = 3

c) x1 = −4, x2 = −2, x3 = 1, x4 = 2, x5 = 3

d) x1 = 2, x2 = 2, x3 = −1, x4 = −5

e) x1 = −5, x2 = −3, x3 = −2, x4 = −2, x5 = 4

f) x1 = −5, x2 = −2, x3 = 2, x4 = 3

g) x1 = −4, x2 = −2, x3 = 3, x4 = 5

h) x1 = −3, x2 = 2, x3 = 4, x4 = 5, x5 = −1−
√
3, x6 = −1 +

√
3

i) x1 = −4, x2 = −3, x3 = −1, x4 = 2, x5 = 5

j) x1 = −5, x2 = 1, x3 = 2, x4 = 3, x5 =
−1 +

√
5

2
, x6 =

−1−
√
5

2

k) x1 = −1, x2 = −2, x3 = −4, x4 = −8

l) x1 = −1, x2 = 2, x3 = −4, x4 = 8, x5 =
−3−

√
5

2
, x6 =

−3 +
√
5

2

m) x1 = −4, x2 = −3, x3 = 1, x4 = 1, x5 = 2, x6 = 5

n) x1 = −4, x2 = −3, x3 = −2, x4 = 2, x5 = 3

o) x1 = −5, x2 = −2, x3 = −2, x4 = −1, x5 = 1, x6 = 5

p) x1 = −2, x2 = 2, x3 = 3, x4 = 3

q) x1 = −3, x2 = −3, x3 = −2, x4 = −1, x5 = 2, x6 = −
√
2, x7 =

√
2

r) x1 = −2, x2 = 1, x3 = 3, x4 = 9, x5 = −
√
3, x6 =

√
3

s) x1 = −25, x2 = −5, x3 = −1, x4 = 2

t) x1 = −3, x2 = −2, x3 = −2, x4 = 1, x5 = 1, x6 = 3

u) x1 = −4, x2 = −3, x3 = 3, x4 = 4

v) x1 = −5, x2 = −2, x3 = 2, x4 = 5

w) x1 = −5, x2 = 5

x) x1 = −6, x2 = 6

y) x1 = −6, x2 = 5, x3 = 7

z) x1 = −7, x2 = 4, x3 = 6
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