Rules of Integration

(i)
$$\frac{d}{dx} \{ \int f(x) dx \} = f(x)$$

(ii)
$$\int k \cdot f(x) dx = k \int f(x) dx$$

(iv)
$$\int f'\{g(x)\} \cdot g'(x) dx = f\{g(x)\} + C$$

Method of Substitution

(i)
$$\frac{d}{dx} \{ \int f(x) dx \} = f(x)$$

(ii)
$$\int k \cdot f(x) dx = k \int f(x) dx$$

(iii)
$$\int \{ f_1(x) \pm f_2(x) \pm f_3(x) \pm \dots \pm f_n(x) \} dx$$
$$= \int f_1(x) dx \pm \int f_2(x) dx \pm \int f_3(x) dx \pm \dots \pm \int f_n(x) dx$$

(iv)
$$\int f'\{g(x)\} \cdot g'(x) dx = f\{g(x)\} + C$$

Preview from Notesale.co.uk

Preview page 4 of 17

Here, all the constant cannot be calculated by using the method in Case I. However, B_1 , B_2 , B_3 , ..., B_n can be found using the same method i.e., shortcut can be applied only in the case of non-repeated linear factor.

Integration of Irrational Algebraic Function

Irrational function of the form of $(ax + b)^{1/n}$ and x can be evaluated by substitution $(ax + b) = t^n$, thus

Preview from Notesale.co.uk
Preview from 14 of 17
Page 14 of 17