


Electrical engineering education has unde ol\&ﬁn@i 1 changes durin
ple of decades and continues tw molle undergraduate@gr ctrical

engineering includes the follb%i

introductory co se
& Sign zxy@s, hich provides a alg @Qtegrated treatment of contin-
uous-tme arld discrete-time forms of sigyals alid sy8t€ms. The Fourier transform (in

its different forms), Laplace transform, and z-transform are treated in detail. Typi-
cally, the course also includes an elementary treatment of communication systems.

¥ Probability and Random Processes, which develops an intuitive grasp of discrete and
continuous random variables and then introduces the notion of a random process
and its characteristics.

Typically, these two introductory courses lead to a senior-level course on communication
systems.

The fourth edition of this book has been written with this background and primary
objective in mind. Simply put, the book provides a modern treatment of communication
systems at a level suitable for a one- or two-semester senior undergraduate course. The
emphasis is on the statistical underpinnings of communication theory with applications.

The material is presented in a logical manner, and it is illustrated with examples,
with the overall aim being that of helping the student develop an intuitive grasp of the
theory under discussion. Except for the Background and Preview chapter, each chapter
ends with numerous problems designed not only to help the students test their understand-
ing of the material covered in the chapter but also to challenge them to extend this material.
Every chapter includes notes and references that provide suggestions for further reading.
Sections or subsections that can be bypassed without loss of continuity are identified with
a footnote. )

A distinctive feature of the book is the inclusion of eight computer experiments using
MATLAB. This set of experiments provides the basis of a “Software Laboratory”, with
each experiment being designed to extend the material covered in the pertinent chapter.
Most important, the experiments exploit the unique capabilities of MATLAB in an instruc-
tive manner. The MATLAB codes for all these experiments are available on the Wiley Web
site: http://www.wiley.com/college/haykin/.

The Background and Preview chapter presents introductory and motivational ma-
terial, paving the way for detailed treatment of the many facets of communication systems
in the subsequent 10 chapters. The material in these chapters is organized as follows:

# Chapter 1 develops a detailed treatment of random, or stochastic, processes, with
particular emphasis on their partial characterization (i.e., second-order statistics). In
effect, the discussion is restricted to wide-sense stationary processes. The correlation
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PREFACE

properties and power spectra of random processes are described in detail. Gaussian
processes and narrowband noise feature prominently in the study of communication
systems, hence their treatment in the latter part of the chapter. This treatment nat-
urally leads to the consideration of the Rayleigh and Rician distributions that arise
In a communications environment.

Chapter 2 presents an integrated treatment of continuous-wave (CW) modulation
(i.e., analog communications) and their different types, as outlined here:

(i) Amplitude modulation, which itself can assume one of the followin, %ﬁ
pending on how the spectral characteristics of the modulaﬂ

# Full amplitude modulation

& Double sideband- suppressed carri L@lm %
» Quadrature amphtude jon! T O

S Smgle sideband ﬁ l
Iﬁ lation
(ii) T ton, which itself c@x@ ftwo interrelated forms:
a

se modulation

LS Frequency modulation
The time-domain and spectral characteristics of these modulated waves, methods for
their generation and detection, and the effects of channel noise on their performances
are discussed.
Chapter 3 covers pulse modulation and discusses the processes of sampling, quan-
tization, and coding that are fundamental to the digital transmission of analog sig-
nals. This chapter may be viewed as the transition from analog to digital commu-
nications. Specifically, the following types of pulse modulation are discussed:

(i) Analog pulse modulation, where only time is represented in discrete form; it

embodies the following special forms:

# Pulse amplitude modulation

& Pulse width (duration) modulation

# Pule position modulation
The characteristics of pulse amplitude modulation are discussed in detail, as it is
basic to all forms of pulse modulation, be they of the analog or digital type.
(ii) Digstal pulse modulation, in which both time and signal amplitude are repre-

sented in discrete form; it embodies the following special forms:

# Pulse-code modulation

& Delta modulation

# Differential pulse-code modulation
In delra modulation, the sampling rate is increased far in excess of that used in pulse-
code modulation so as to simplify implementation of the system. In contrast, in
differential pulse-code modulation, the sampling rate is reduced through the use of
a predictor that exploits the correlation properties of the information-bearing signal.
(iii) MPEG/audio coding standard, which includes a psychoacoustic model as a key

element in the design of the encoder.

Chapter 4 covers baseband pulse transmission, which deals with the transmission of
pulse-amplitude modulated signals in their baseband form. Two important issues are
discussed: the effects of channel noise and limited channel bandwidth on the perfor-

mance of a digital communication system. Assuming that the channel noise is additive -
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- Communication Networks 11

thus represents an efficient use of resources only to the extent that the allocated bandwidth
is properly used. Although the telephone network is used to transmit data, voice constitutes
the bulk of the network’s traffic. Indeed, circuit switching is well suited to the transmission
of voice signals, since voice gives £ise to a stream traffic and voice conversations tend to
be of long duration (about 2 minutes on the average) compared to the time required for
setting up the circuit {about 0.1 to 0.5 seconds). Moreover, in most voice conversations,
there is information flow for a relatively large percentage of the connection time, Wthh
makes circuit switching all the more suitable for voice conversations.

In circuit switching, a communication link is shared between the dlffer
using that link on a fixed allocation basis. In packet switching, @t
sharing is done on a demand basis, so it has an advanta; i hlng in t

when a link has traffic to send, the link may i
The network principle of packet s g e n forwar > Spe: ,In
packet-switched network, a ger.. a specified sife divi or to
:&

(2}

_transmission mto se ts cpeding the spec1ﬁed izg~Lhe s¢ are commonly
referred t nal messa el 1@ datghe destination on a packet-
by packet e etwork may be vie

(i.e., chann bandw1dth buffers, and switdhing processors) whose capacity is shared dy-
namu:ally by a community of competing hosts wishing to communicate. In contrast, in a
circuit-switched network, resources are dedicated t6 a pair of hosts for the entire period
they are in session. Accordingly, packet switching is far better suited to a computer-
communication environment in which bursts of data are exchanged between hosts on an
occasional basis. The use of packet switching, however, requires that careful control be
exercised on user demands; otherwise, the network may be seriously abused.

The design of a data network (i.e., a network in which the hosts are all made up of
computers and terminals) may proceed in an orderly way by looking at the network in
terms of a layered architecture, regarded as a hierarchy of nested layers. Layer refers to a
process or device inside a computer system, designed to perform a specific function. Nat-
urally, the designers of a layer will be intimately familiar with its internal details and
operation. At the system level, however, a user views the layer merely as a “black box™
that is described in terms of inputs, outputs, and the functional relation between outputs
and inputs. In a layered architecture, each layer regards the next lower layer as one or
more black boxes with some given functional specification to be used by the given higher
layer. Thus, the highly complex communication problem in data networks is resolved as
a manageable set of well-defined interlocking functions. It is this line of reasoning that has
led to the development of the open systems intercomnection (OSI)” reference model by a
subcommittee of the International Organization for Standardization. The term open refers
to the ability of any two systems conforming to the reference model and its associated
standards to interconnect.

In the OSI reference model, the communications and related-connection functions
are organized as a series of layers, or levels, with well-defined interfaces, and with each
layer built on its predecessor. In particular, each layer performs a related subset of primitive
functions, and it relies on the next lower layer to perform additional primitive functions.
Moreover, each layer offers certain services to the next higher layer and shields the latter
from the implementation details of those services. Between each pair of layers, there is an
interface. It is the interface that defines the services offered by the lower layer to the upper
layer.

The OSI model is composed of seven layers, as illustrated in Figure 3; this figure also
includes a description of the functions of the individual layers of the model. Layer k on
system A, say, communicates with layer k on some other system B in accordance with a

\1



24 BACKGROUND AND PREVIEW

Unfortunately, Shannon’s information capacity theorem does not tell us how to de-
sign the system. Nevertheless, from a design point of view, the theorem is very valuable
for the following reasons:

1. The information capacity theorem provides a bourd on what rate of data transmis-
sion is theoretically attainable for prescribed values of channel bandwidth B and
received SNR., On this basis, we may use the ratio

_t e\
e \{&
as a measure of the efficiency of the digital communi, S}N study. T% S

closer 7 is to unity, the more efficient tl%

2. Equation (1) provides a basis fo ween channel andﬂ%
received SNR. In parti ﬁ@iesc bed signaling rate %\ uce the
required SNR by cHannel bandwidgh %‘ ation for usmg

i ation) for improved noise

a wi E) scheme
perfo B?J

3. Equation (1) prov1des an idealized frafhework for comparing the noise performance
of one modulation scheme against another.

¢ A Digital Communication Problem

When we speak of a digital communication system having a low bit error rate, say, the
implication is that only a small fraction in a long stream of binary symbols is decoded in
error by the receiver. The issue of the receiver determining whether a binary symbol sent
over a noisy channel is decoded in error or not is of fundamental importance to the design
of digital communication systems. It is therefore appropriate briefly to discuss this basic
issue so as to motivate the study of communication systems.

Suppose we have a random binary signal, m(t), consisting of symbols 1 and 0, that
are equally likely. Symbol 1 is represented by a constant level +1, and symbol 0 is rep-
resented by a constant level —1, each of which lasts for a duration T. Such a signal may
represent the output of a digital computer or the digitized version of a speech signal. To
facilitate the transmission of this signal over a communication channel, we employ a simple
modulation scheme known as phase-shift keying. Specifically, the information bearing
signal #1(t) is multiplied by a sinusoidal carrier wave A, cos(2rf£), where A, is the carrier
amplitude, £, is the carrier frequency, and ¢ is time. Figure 104 shows a block diagram of
the transmitter, the output of which is defined by

o) = {Ac cos2mfr)  for symbol 1

2
—A, cos(27f.t) for symbol 0 )

where 0 = ¢ = T. The carrier frequency f;, is a multiple of 1/T.
The channel is assumed to be distortionless but noisy, as depicted in Figure 105. The
received signal x(¢) is thus defined by

x(t) = s(t) + wl(t) (3)

where w(t) is the additive channel noise.
The receiver consists of a correlator followed by a decision-making device, as de-
picted in Figure 10c. The correlator multiplies the received signal x(¢) by a locally generated
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that emboldened Shannon to amend the title of his paper to *“The Mathematical Theory
of Communication” when it was reprinted a year later in a book co-authored with Warren
Weaver. It is noteworthy that prior to the publication of Shannon’s 1948 classic paper, it
was believed that increasing the rate of information transmission over a channel would
increase the probability of error; the communication theory community was taken by
surprise when Shannon proved that this was not true, provided that the transmission rate
was below the channel capacity. Shannon’s 1948 paper was followed by some significant

and Richard W. Hamming in 1950.

advances in coding theory, which include the following:
» Development of the first nontrivial error-correcting codes by ﬁ@&eﬁ

a\

= Development of turbo codes by C. Ber, iegx, Thmma]s %
1993; turbo codes provide near-opti UJE récting codm% pe

formance in the Shannoh
@ Sg 1948 @in, John Bardeen, and Wil-
liam Shock aXel aboratorles The ﬁ?v ated circuit (IC) was produced
by Robert Nbyce in 1958. These landmark i§novations Il solid-state devices and integrated
circuits led to the development of very-large-scale integrated (VLSI) circuits and single-
chip microprocessors, and with them the nature of signal processing and the telecommu-
nications industry changed forever.

The invention of the transistor in 1948 spurred the application of electronics to
switching and digital communications. The motivation was to improve reliability, increase
capacity, and reduce cost. The first call through a stored-program system was placed in
March 1958 at Bell Laboratories, and the first commercial telephone service with digital
switching began in Morris, Illinois, in June 1960. The first T-1 carrier system transmission
was installed in 1962 by Bell Laboratories.

During the period 1943 to 1946, the first electronic digital computer, called the
ENIAC, was built at the Moore School of Electrical Engineering of the University of Penn-
sylvania under the technical direction of J. Presper Eckert, Jr., and John W. Mauchly.
However, John von Neumann’s contributions were among the earliest and most funda-
mental to the theory, design, and application of digital computers, which go back to the
first draft of a report written in 1945. Computers and terminals started communicating
with each other over long distances in the early 1950s. The links used were initially voice-
grade telephone channels operating at low speeds {300 to 1200 brs). Various factors have
contributed to a dramatic increase in data transmission rates; notable among them are the
idea of adaptive equalization, pioneered by Robert Lucky in 1965, and efficient modula-
tion techniques, pioneered by G. Ungerboeck in 1982. Another idea widely employed in
computer communications is that of automatic repeat-request (ARQ). The ARQ method
was originally devised by H. C. A. van Duuren during World War II and published in
1946. It was used to improve radio-telephony for telex transmission over long distances.

From 1950 to 1970, various studies were made on computer networks. However,
the most significant of them in terms of impact on computer communications was the
Advanced Research Project Agency Network (ARPANET), first put into service in 1971.
The development of ARPANET was sponsored by the Advanced Research Projects Agency
of the U.S. Department of Defense. The pioneering work in packet switching was done on
ARPANET. In 1985, ARPANET was renamed the Internet. The turning point in the evo-
lution of ‘the Internet occurred in 1990 when Tim Berners-Lee proposed a hypermedia
software interface to the Internet, which he named the World Wide Web.'? Thereupon, in
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1.2 Mathematical Definition

CHAPTER 1 RANDOM PROCESSES

radio receiver. A major source of channel noise is thermal noise, which is caused by the
random motion of the electrons in conductors and devices at the front end of the receiver.
We thus find that the received signal is random in nature. Although it is not possible to
predict the exact value of the signal in advance, it is possible to describe the signal in terms
of statistical parameters such as average power and power spectral density, as discussed
in this chapter.

of a Random Process N

properties, First, they are f'unctlons of ti are rando
before conducting an experi 08 to exactly de! that
g P p y

In light of these introductory remarks, it is % ﬂ: om processes ha m%gs
th

space. Speciff€ally Jeach outcome of the ex; et A3 ;._{ iated with a sample point. The
totality of sample points corresponding to the aggregate of all possible outcomes of the
experiment is called the sample space. Each sample point of the sample space is a function
of time. The sample space or ensemble composed of functions of time is called a random
or stochastic process.* As an integral part of this notion, we assume the existence of a
probability distribution defined over an appropriate class of sets in the sample space, so
that we may speak with confidence of the probability of various events.

Consider, then, a random experiment specified by the outcomes s from some sample
space S, by the events defined on the sample space 8, and by the probabilities of these

will be observed in t lﬂ
In de n{a dh experiment ?‘c aﬂ.{lk in terms of a sample

Sampie
space

x3{)

0 Outcome of the
@A,% first trial of
the experiment

x(2)

xolt)
Outcome of the
AWAW%A-@A%&—L second irial of

0] : the experiment
i
H |
{
x,(2) !
" EX ) I
! Outcome of the
AT N T nth trial of
-T 0 ey +T  the experiment

FIGURE 1.1 An ensemble of sample functions.
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events. Suppose that we assign to each sample point s a function of time in accordance
with the rule:

Xz, s), ~-T=t=T (1.1)

where 2T is the total observation interval. For a fixed sample point s;, the graph of the
function X{(t, s;) versus time ¢ is called a realization or sample function of the random
process. To simplify the notation, we denote this sample function as

we note that for a fixed time #, inside the observation interv:

x;(t) = X{(z, s3)
Figure 1.1 illustrates a set of sample functions {x;(z}|j = 1, 2, . @@& s
tk:

{xa(te), x2(te)y - . ., 2(8)} = {X

constitutes a random uarzablf Th m d ense 11y agdom

variables {X (t, s }, which is a process To simp at n, custom-
ary practice g simply use X(z) tg

m process We may
now forma m process X(z
a probability rule hat assigns a probabilifgto a srlingful event associated with an
observation of one of the sample functions of the random process. Moreover, we may
distinguish between a random variable and a random process as follows:

S 77

» For a random variable, the outcome of a random experiment is mapped into a
number.

# For a random process, the outcome of a random experiment is mapped into a wave-
form that is a function of time.

I 1.3 Stationary Processes

In dealing with random processes encountered in the real world, we often find that the
statistical characterization of a process is independent of the time at which observation of
the process is initiated. That is, if such a process is divided into a number of time intervals,
the various sections of the process exhibit essentially the same statistical properties. Such
a process is said to be stationary. Otherwise, it is said to be nonstationary. Generally
speaking, a stationary process arises from a stable physical phenomenon that has evolved
into a steady-state mode of behavior, whereas a nonstationary process arises from an
unstable phenomenon.

To be more precise, consider a random process X(z) that is initiated at = —. Let
X{t:1), X{t2), . . ., X(t;) denote the random variables obtained by observing the random
process X(t) at times 4, B, . . . , t;, respectively. The joint distribution function of this set
of random variables is Fx,), ... x@(%1, - - -, %2). Suppose next we shift all the observation
times by a fixed amount 7, thereby obtaining a new set of random variables X(z; + ),
X{t, + 7),..., X(t, + 7). The joint distribution function of this latter set of random
variables is Fx, +r), ..., x(t+n{®1, - « + » %¢). The random process X(#) is said to be stationary
in the strict sense or strictly stationary if the following condition holds:

FX(t1+7),..., X(t,{—lur)(xl) ey Xg) = Fx(m,.,., X(tk)(xls <oy Xg) (1.3)

for all time shifts 7, all k, and all possible choices of observation times #,, . . . , ;. In other
words, a random process X(t), initiated at time t = —«, is strictly stationary if the joint
distribution of any set of random variables obtained by observing the random process X(t)
is invariant with respect to the location of the origin t = 0. Note that the finite-dimensional
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This, in turn, implies that the autocorrelation function of a strictly stationary process
depends only on the time difference t, — t, as shown by

Rx(ty, ) = Rylt: — ty) for all ¢, and %, (1.9)

Similarly, the autocovariance function of a strictly stationary process X(¢) is written as

= Rxlt, = t1) = vk

Cx(ts, &) = E[(X(t1) — px)(X{&2) — px)] (1. 10) \‘
Equation (1.10) shows that, like the autocorrelation function, the autocgva
:the proce

of a strictly stationary process X(#} depends only on the time d
equation also shows that if we know the mean and autoco S S
we can uniquely determine the autocovana ean and autocor 1%

function are therefore sufﬁCLent to des oments of t roc@
However, two 1mp0rta ld b carefully noted:

1. The n function o: pamidl description of the
disui@n f dom process X
2. The colditions of Equations (1.7) a nvol¥ing the mean and autocorrelation

function, respectively, are not sufﬁcnent to guarantee that the random process X(z)
is strictly stationary.

Nevertheless, practical considerations often dictate that we simply limit ourselves to a
partial description of the process given by the mean and autocorrelation function. The
class of random processes that satisfy Equations (1.7) and (1.9) has been given various
names, such as second-order stationary, wide-sense stationary, or weakly stationary pro-
cesses. Henceforth, we shall simply refer to them as stationary processes.”

A stationary process is not necessarily strictly stationary because Equations (1.7)and
(1.9) obviously do not imply the invariance of the joint (k-dimensional) distribution of
Equation (1.3) with respect to the time shift 7 for all k. On the other hand, a strictly
stationary process does not necessarily satisfy Equations (1.7) and (1.9} as the first- and
second-order moments may not exist. Clearly, however, the class of strictly stationary
processes with finite second-order moments forms a subclass of the class of all stationary
processes.

PROPERTIES OF THE AUTOCORRELATION FUNCTION

For convenience of notation, we redefine the autocorrelation function of a stationary pro-
cess X{t) as

Ry(r) = E[X(t + DX(#)] forallt (1.11)
This autocorrelation function has several important properties:

1. The mean-square value of the process may be obtained from Rx(7) simply by putting
7= 0 in Equation {(1.11), as shown by

Rx(0) = E[X*(#)] (1.12)
2. The autocorrelation function Rx(7)is an even function of =, that is,
Rx{r) = Rx(~7) (1.13)

This property follows directly from the defining equation (1.11). Accordingly, we
may also define the autocorrelation function Rx(7) as

Rx{r) = E[X{5)X{z — 7]
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Ry(m)

AZ

AT
]

FIGURE 1.5 Autocorrelation function of a sine wave with random phase. 51 a\‘

mjle
X@).

The process X(t) deﬁn 1.16) gen-
erated carrier in the recej nication system, v c i emoulanon of
the recej e random variabl ‘ th se difference between
this lo Kl carrier and the sin! @ a sed to modulate the message
signal i the smitter.

The autocorrelation function of X(¢)%is
Rx(1) = E[X( + DX(t)]
= E[A? cos(2wft + 2mfr + ©) cos(2mft + B)]
A? A2
=5 E[cos{4nft + 2uf.r + 20)] + 5 E[cos(2#f,7)]

A2 (71 A?
= — = cos{4mf.t + 2afr + 260) dO + — cos(2af.7)
2 Jonlm 2

The first term integrates to zero, and so we get

Ryl = ézi cos(2mf,7) (1.17)

which is plotted in Figure 1.5. We see therefore that the autocorrelation function of a sinu-
soidal wave with random phase is another sinusoid at the same frequency in the “r domain”
rather than the original time domain. <

# ExaMPLE 1.3 Random Binary Wave

Figure 1.6 shows the sample function x(t) of a process X(t) consisting of a random sequence
of binary symbols 1 and 0. The following assumptions are made:

1. The symbols 1 and 0 are represented by pulses of amplitude +A and —A volts, respec-
tively, and duration T seconds.

2. The pulses are not synchronized, so the starting time #; of the first complete pulse for
positive time is equally likely to lie anywhere between zero and T seconds. That is, ¢,
is the sample value of a uniformly distributed random variable T, with its probability
density function defined by

1
— -
frfeg =i 0=@=T
0, elsewhere
3. During any time interval (n — 1)T < t — #; < nT, where 7 is an integer, the presence
of a 1 or a 0 is determined by tossing a fair coin; specifically, if the outcome is heads,

This means that the random variable ® is equally likely ¢ anw the interv;
[, 7]. Each value of @ corresponds to a s pm acof the rando
‘ ) and

o
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{2)
r —| |—' .
J I, 0 J
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ke il o\
FIGURE 1.6 Sample funcnji of rﬁm N
we have alandif tl ﬁ we have a 0. These two s thQuaIly
. . %“, or 0 in any one ge ndent of all other

Sihice the amplitude levels —A andeoccur with equal probability, it follows imme-
diately that E[X(t}] = O for all ¢, and the mean of the process is therefore zero.
To find the autocorrelation function Rx{z;, £;), we have to evaluate E[X(2,)X(2,)], where
X(t,) and X(¢,) are random variables obtained by observing the random process X{t) at times
t, and t;, respectively.
Consider first the case when |t, — t;| > T. Under this condition the random variables
X(z,) and X(t,) occur in different pulse intervals and are therefore independent. We thus have

sl
£ 23

EX(t)X(t)] = EX@JIEX(E] =0, [t —#[>T

Consider next the case when | £, — #;| < T, with £, = 0 and ¢; < £,. In such a situation
we observe from Figure 1.6 that the random variables X(t,) and X(#;) occur in the same pulse
interval if and only if the delay 2, satisfies the condition ¢, < T — |#, — #;|. We thus obtain
the conditional expectation:

A% < T— |t =t

0, elsewhere

E[X{t) Xl = {
Averaging this result over all possible values of z,, we get

T— |t~} .
E[X(t)X(e)] = j Afrfts) dta

T- [~k A2
=j —dt,,
o

=A2<1 —M), lte =8| < T

By similar reasoning for any other value of ¢, we conclude that the autocorrelation function
of a random binary wave, represented by the sample function shown in Figure 1.6, is only a
function of the time difference 7 = ; — #;, as shown by

{1l

Rxlr) = A2<1 - T) lrl<T (1.18)
0, f=T

This result is plotted in Figure 1.7. <
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In the last integral on the right-hand side of Equation (1.35), define a new variable
T=1 -7 ’

Then we may rewrite Equation (1.35) in the form

E[Y2()] = f dfH(f) f dnb(,) exp(j2afr) f Rx(7) exp(—f27f7) dr (1.36)
1
However, the middle integral on the right-hand side in Equation (1.36) is simply %a\
the complex conjugate of the frequency response of the filter, and so W
equation as S
E[Y*s)] = mﬂ'f'r dr %3
f

where |H(f)| is the magnit z‘ dle ﬁlter We L@:@ph quanon

(1.37) by mtegral is simply; storm of the auto-
correlano m of the input ran! @ is prompts us to introduce
the definitiod of a new parameter

Sx{f) = f_m Rx(7) exp(~j2nfr) dr (1.38)

The function Sx{f) is called the power spectral density, or power spectrum, of the station-
ary process X(t). Thus substituting Equation (1.38) into (1.37), we obtain the desired
relation:

E1vie] = [ HO)PSp) df (1.39)

Equation (1.39) states that the mean-square value of the output of a stable linear time-
invariant filter in response to a stationary process is equal to the integral over all frequen-
cies of the power spectral density of the input process multiplied by the squared magnitude
response of the filter. This is the desired frequency-domain equivalent to the time-domain
relation of Equation (1.33).

To investigate the physical significance of the power spectral density, suppose that
the random process X{¢) is passed through an ideal narrowband filter with a magnitude
response centered about the frequency f., as shown in Figure 1.9; that is,

1, |f=xf]<3Af
H = 1.40
[H(7)] {o, If £l > 1A 1.49)
=)
1.0

x I
L-ﬁ- 0 L 7 4
Af Af

FiGURE 1.9 Magnitude response of ideal narrowband filter.
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Property 4

If the random variables X(t,), X(t,), . . . , X{t,), obtained by sampling a Gaussian process
X(t) at times ty, ta, . . . , t,, are uncorrelated, that is,

E[(X(te) — pxup)X(t) — pxe)] =0, i#k

then these random variables are statistically independent.

\1
The uncorrelatedness of X(t,), . .., X(t,) means that the covariance e%a
diagonal matrix as shown by N
o

where P ( e\, \
o7 = E[(X(t) — E[X(tM)*, i=1,2,...

Under this condition, the multivariate Gaussian distribution of Equation (1.85) simplifies
to

where X; = X(t;) and

fxfx) = L exp| — i — I'in)z)
Xari mﬂ'i P 20_{2

In words, if the Gaussian random variables X(t,), . . . , X(z,) are uncorrelated, then they
are statistically independent, which, in turn, means that the joint probability density func-
tion of this set of random variables can be expressed as the product of the probability
density functions of the individual random variables in the set.

g 1.9 Noise

The term noise is used customarily to designate unwanted signals that tend to disturb the
transmission and processing of signals in communication systems and over which we have
incomplete control. In practice, we find that there are many potential sources of noise in
a communication system. The sources of noise may be external to the system (e.g., at-
mospheric noise, galactic noise, man-made noise), or internal to the system. The second
category includes an important type of noise that arises from spontaneous fluctuations of
current or voltage in electrical circuits.® This type of noise represents a basic limitation on
the transmission or detection of signals in communication systems involving the use of
electronic devices. The two most common examples of spontaneous fluctuations in elec-
trical circuits are shot noise and thermal noise, which are described in the sequel.

g2 SHOT NOISE

Shot noise arises in electronic devices such as diodes and transistors because of the discrete
nature of current flow in these devices. For example, in a photodetector circuit a current
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pulse is generated every time an electron is emitted by the cathode due to incident light
from a source of constant intensity. The electrons are naturally emitted at random times
denoted by 7, where —% < k < o, It is assumed that the random emissions of electrons
have been going on for a long time. Thus, the total current flowing through the photo-
detector may be modeled as an infinite sum of current pulses, as shown by

@

k=

Xey= > hit— ) (1. 86) \‘

where h(t — 7) is the current pulse generated at time 7;. The process X{¢)
Equation (1.86) is a stationary process called shot noise.
es a dlscr

The number of electrons, N(¢), emitted in the time ing

stochastic process, the value of whlch mcrea c titie an electron is ﬁt 8 )

Figure 1.14 shows a sample ﬁmctlon ofs el the mean e of
of electrons, v, emitted betw 1y be deﬁned by
E[v] =

@ At (1.87)
The param?/\xa nstant called the mP The total number of electrons

emitted in the interval [z, £ + t;], that is,
= N(t + t) — N(z)

follows a Poisson distribution with a mean value equal to Afy. In particular, the probability
that k electrons are emitted in the interval [#, ¢ + £,] is defined by

= ————(AI:?)k e~ Mo k

Unfortunately, a detailed statistical characterization of the shot-noise process X(t)
defined in Equation (1.86) is a difficult mathematical task. Here we simply quote the results
pertaining to the first two moments of the process:

» The mean of X(t) is

Plv=k) =0,1,... (1.88)

x = A f—: hit) dt (1.89)

where A is the rate of the process and 4(t) is the waveform of a current pulse.
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Ficure 1.14 Sample function of a Poisson counting process.
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That is, the autocorrelation function of white noise consists of a delta function weighted
by the factor No/2 and occurring at T = 0, as in Figure 1.165. We note that Ry(7) is zero
for 7 # 0. Accordingly, any two different samples of white noise, no matter how closely
together in time they are taken, are uncorrelated. If the white noise w(t) is also Gaussian,
then the two samples are statistically independent. In a sense, white Gaussian noise rep-
resents the ultimate in “randomness.”
Strictly speaking, white noise has infinite average power and, as such, it is not phys-
ically realizable. Nevertheless, white noise has simple mathematical properties exemph a\‘
by Equations (1.93) and (1.95), which make it useful in statistical system an %
The utility of a white noise process is parallel to that of an i e 2
function in the analysis of linear systems. Just as we may et an impu
only after it has been passed through a syste m h, so 1t is witl %
noise whose effect is observed only after ‘¥‘ similar sys stati
i

therefore, that as long as the b se process at @ inpplt o m is
appreciably larger th, \' 1tself then w m feltifamoise process as
white nois é

& ExamPLE 1.10 Ideal Low-Pass F 1ltered White Nmse

Suppose that a white Gaussian noise w{f) of zero mean and power spectral density No/2 is
applied to an ideal low-pass filter of bandwidth B and passband magnitude response of one.
The power spectral density-of the noise 7(¢) appearing at the filter output is therefore (see

Figure 1.17)
No
Swfy=12> “B<f<B (1.96)
0, |f|>B

The autocorrelation function of #(z) is the inverse Fourier transform of the power spectral
density shown in Figure 1.17a:

B
Ny .
Ryl = — exp(j2@f7) df
J 52 (1.97)
= NyB sinc(2B7)

This autocorrelation function is plotted in Figure 1.17b. We see that Ry(7) has its maximum
value of NyB at the origin, and it passes through zero at 7 = *k/2B, where k = 1,2, 3, - -

Sy(f) Ryl7)
Ny
2 NgB
P N v NL_ -
-B 0 B 73 1 /1 0 1) 1 3
2B B\/ZB 23\/8 2B
(@ )

FIGURE 1.17 Characteristics of low-pass filtered white noise. (@) Power spectral density. (b) Auto-
correlation function.
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Since the input noise w(t) is Gaussian (by hypothesis), it follows that the band-limited
noise n(z) at the filter output is also Gaussian. Suppose now that #{2) is sampled at the rate of
2B times per second. From Figure 1.17b, we see that the resulting noise samples are uncor-
related and, being Gaussian, they are statistically independent. Accordingly, the joint proba-
bility den51ty function of a set of noise samples obtained in this way is equal to the product
of the individual probability density functions. Note that each such noise sample has a mean

of zero and variance of NyB. \‘
= ExampLE 1.11 Correlation of White Noise with a Sinu 16’{@5 E
- &L o3 Oﬁw%?)

Wthh is the out ut o with white Gaussja ise sinusoidal wave

e ¢ scaling fa % her€to make the sinusoidal
wave Ph ve energy over the in g is problem was encountered in
the Background and Preview chapter but as novelabB¥ated on at that time.) With the noise

() having zero mean, it immediately follows that the correlator output 1 (2) has zero mean,
too. The variance of the correlator output is defined by

Consider the sample function

2 T T
o =E [fjo jo w(t;) cos(2mfot wl(t,) cos(2mfity) di, dtz]
= T-fo L Elw(t )w(t:)] cos(2nft,) cos(2mf.t,) dt, dt,

2 T T
= TL L Ruydty, t3) cos(2mf.ty) cos(2mfty) diy dt,

where Rylt;, t,) is the autocorrelation function of the white noise w(t). But from Equation
(1.95):

N,
Rulty, t2) = —29 8t — 1)

where Ny/2 is the power spectral density of the white noise w/(#). Accordingly, we may simplify
the expression for the variance ¢? as

= -& —j j 8(ty — 1) cos(2aft;) cos(2mwft,) dt, dt,

We now invoke the sifting property of the delta function, namely,

[ ety ey ar =

where g(#) is a continnous function of time, assuming the value g(0) at time ¢ = 0. Hence, we
may further simplify o? as
Ny, 2
o =—=—-= | cos*(2nft) dt
2T H2mf) (1.99)
- No

2
where it is assumed that the frequency f, of the sinusoidal wave input is an integer multiple
of the reciprocal of T.
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7y(t) or the quadracure noise component 74 (2) is as shown in Figure 1.21¢. The autocorrelation
function of n{t} or ng(?) is therefore (see Example 1.10):

Ru(7) = Ru,(7) = 2NoB sinc(2B7) (1.104)
<

1.12 Representation of Narrowband Noise \‘
i in Terms of Envelope and Phase Components Sa

In Section 1.11 we considered the representation of a narrowban erms of
its in-phase and quadrature components. We may also r 0! e n(t) in t

its envelope and phase cornponents as follow;
+ ¢’

’l 105
e P(e \e— [n;@ @@e % (1.106)

w(t) = tan_l[n;?%:l (1.107)

and

The function 7(¢) is called the envelope of n(t), and the function () is called the phase of
n(t).

The envelope (t) and phase y(#) are both sample functions of low-pass random
processes. As illustrated in Figure 1.18b, the time interval between two successive peaks
of the envelope 7(2) is approximately 1/B, where 2B is the bandwidth of the narrowband
noise #(t).

The probability distributions of 7(z) and ¥(z) may be obtained from those of #,(z)
and ng(t) as follows. Let N; and N, denote the random variables obtained by observing
{at some fixed time) the random processes represented by the sample functions #,(z) and
ng(t), respectively. We note that Ny and N, are independent Gaussian random variables
of zero mean and variance ¢, and so we may express their joint probability density func-
tion by

1 nr + n2
Tronplnss ng) = exp| ————2 (1.108)
270 207

Accordingly, the probability of the joint event that N; lies between #; and », + dn; and
that N lies between ng and g, + dng (i-e., the palr of random variables N; and Ny, lies
jointly inside the shaded area of Figure 1 21a) is given by

Fung(nn no) dny dng = 277(72 exp( n;z-tl;zn ) dny dng (1.109)

Define the transformation (see Figure 1.214)
n; = rcosy (1.110)
Hg = rsiny i (1.111)

In a limiting sense, we may equate the two incremental areas shown shaded in Figures
1.214 and 1.215b and thus write

dny dng = rdr dyr (1.112)
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observing the output of the filter at some fixed time has a Gaussian distribution. The
narrowband nature of the noise means that it may be represented in terms of an in-phase
and a quadrature component. These two components are both low-pass, Gaussian pro-
cesses, each with zero mean and a variance equal to that of the original narrowband noise.
Alternatively, a Gaussian narrowband noise may be represented in terms of a Rayleigh-
distributed envelope and a uniformly distributed phase. Each of these representations has
its own specific area of application, as shown in subsequent chapters of the book.

{ Nores axD Rerenescss 0’(.956'\

1.

2.

For a rigorous treatment of random process mks of Doob (1953
(1963), and Cramér and Leadbetter (1967)"
There is another import Ia( om processes commonl y %tere practice,
the mean and au xl 10n of which ex (57 vdict
Pre c
x{ty + T =R

Xt B2)

for all ¢, and #,. A random process X(z) satlsfymg this pair of conditions is said to be
cyclostationary (in the wide sense). Modeling the process X{z) as cyclostationary adds a
new dimension, namely, period T to the partial description of the process. Examples of
cyclostationary processes include a television signal obtained by raster-scanning a random
video field, and a modulated process obtained by varying the amplitude, phase, or fre-
quency of a sinusoidal carrier. For detailed discussion of cyclostationary processes, see
Franks (1969), pp. 204214, and the paper by Gardner and Franks (1975).

. Traditionally, Equations (1.42) and (1.43) have been referred to in the literature as the

Wiener-Khintchine relations in recognition of pioneering work done by Norbert Wiener
and A. L Khintchine; for their original papers, see Wiener {1930) and Khintchine (1934).
A discovery of a forgotten paper by Albert Einstein on time-series analysis (delivered at the
Swiss Physical Society’s February 1914 meeting in Basel) reveals that Einstein had discussed
the autocorrelation function and its relationship to the spectral content of a time series
many years before Wiener and Khintchine. An English translation of Einstein’s paper is
reproduced in the IEEE ASSP Magazine, vol. 4, October 1987. This particular issue also
contains articles by W. A. Gardner and A. M. Yaglom, which elaborate on Einstein’s
original work.

. For further details of power specttum estimation, see Blackman and Tukey (1958), Box

and Jenkins (1976), Marple (1987), and Kay (1988).

. The Gaussian distribution and associated Gaussian process are named after the great math-

ematician C. F. Gauss. At age 18, Gauss invented the method of least squares for finding
the best value of a sequence of measurements of some quantity. Gauss later used the method
of least squares in fitting orbits of planets to data measurements, a procedure that was
published in 1809 in his book entitled Theory of Motion of the Heavenly Bodies. In con-
nection with the error of observation, he developed the Gaussian distribution. This distri-
bution is also known as the normal distribution. Partly for historical reasons, mathemati-
cians commonly use the term normal, while engineers and physicists commonly use the
term Gaussian.

. For a detailed treatment of electrical noise, see Van der Ziel (1970) and the collection of

papers edited by Gupta (1977).

An introductory treatment of shot noise is presented in Helstrom (1990). For a more de-
tailed treatment, see the paper by Yue, Luganani, and Rice {1978).

2
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Thermal noise was first studied experimentally by J. B. Johnson in 1928, and for this reason
it is sometimes referred to as the Johnson noise. Johnson’s experiments were confirmed
theoretically by Nyquist (1928).

7. The noisiness of a receiver may also be measured in terms of the so-called noise figure. The
relationship between the noise figure and the equivalent noise temperature is developed in
Chapter 8.

8. The Rayleigh distribution is named after the English physicist J. W. Strutt, Lord Rayleigh. |

9. The Rician distribution is named in honor of Stephen O. Rice for the original contrjhutg a
reported in a pair of papers published in 1944 and 1945, which @ﬂ“

are gep.
(1954). ﬁ!
10. The statistical characterization of communication eyfS\pr&entdd itPthis book js co S
fined to the first two moments, mean and 1) @ og fnction (equivalently, oc%
variance function) of the pertineng r. m prolesseFowever, when ndc@* €sS 1
transmitted through Fe aludble information is§orka in er-order
ocess. The paramegegs fEd to ¥al

ano
moments gf th X& ize higher-order
mome Qg ain are calle 12 e d
transfor¥fis arebcalled polyspectra. For a?:@ h
Niki

heir multidimensional Fourier
pectra and their estimation, sec the paper¥by Nikias and aghuveer (1987).

X

cher-order cumulants and polys-

E PROBLEMS

Stationarity and Ergodicity
1.1 Consider a random process X(#) defined by
X(t) = sin(27f.t)
in which the frequency . is a random variable uniformly distributed over the interval
[0, W]. Show that X(t) is nonstationary. Hint: Examine specific sample functions of the
random process X{#) for the frequency f = W/4, W/2, and W, say.
1.2 Consider the sinusoidal process
X(#) = A cos(27f.t)
where the frequency f, is constant and the amplitude A is uniformly distributed:
1, o0sa=1
fala) = {0, otherwise
Determine whether or not this process is strictly stationary.
1.3 A random process X(#) is defined by
X(t) = A cos(27f.t)
where A is a Gaussian-distributed random variable of zero mean and variance ¢7. This
random process is applied to an ideal integrator, producing the output

Y(t) = J’;X('r) dr

(a) Determine the probability density function of the output ¥{¢) at a particular time 2.
{b) Determine whether or not Y{(#) is stationary.
{c) Determine whether or not Y(¢) is ergodic.

1.4 Let X and Y be statistically independent Gaussian-distributed random variables, each with
zero mean and unit variance. Define the Gaussian process

Z(t) = X cos(2mt) + Y sin(271)
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where vis a constant, is applied to the low-pass RC filter of Figure P1.14. Determine the
power spectral density and autocorrelation function of the random process at the filter
output.

R

Input fo} I Output |
e No’ﬁesa\

FIGURE%I‘I' O‘ 8Q
1.15 A running integrator is \l\l
e e 107

where x(t) is the input, ${2) is the output, and T is the integration period. Both x{t) and
y(t) are sample functions of stationary processes X(t) and Y(z), respectively. Show that
the power spectral density of the integrator output is related to that of the integrator input
as

SAf) = T2 sinc*(fT)Sx{f)

1.16 A zero-mean stationary process X(¢) is applied to a linear filter whose impulse response
is defined by a truncated exponential:

ae™*, 0=t=T
0, otherwise

Show that the power spectral density of the filter output Y{(#) is defined by

aZ

Sy(f) = m (1 — 2 exp(—aT) cos(2wfT) + exp(—2aT))Sx(f)

where Sx{f) is the power spectral density of the filter input.
1.17 The output of an oscillator is described by
X(#) = A cos(2mft —

where A is a constant, and f and © are independent random variables. The probability
density function of ® is defined by

1
MO =1z 0E0=2T
0, otherwise

Find the power spectral density of X(#) in terms of the probability density function of the
frequency f. What happens to this power spectral density when the frequency f assumes
a constant value?
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1.31 Consider a Gaussian noise #(¢) with zero mean and the power spectral density Sx{f)
shown in Figure P1.31.
(a) Find the probability density function of the envelope of n(t).
(b) What are the mean and variance of this envelope?

preY

Computer Experiments

1.32 In this computer experiment we study the statistical characterization of a random process

X(t) defined by
X(t) = A cos(2wft + ©) + W(2)

where the phase @ of the sinusoidal component is a uniformly distributed random variable
over the interval [—, 7], and W{#) is a white Gaussian noise component of zero mean
and power spectral density No/2. The two components of X(#) are statistically indepen-
dent; hence the autocorrelation function of X{(z) is

A? N,
Rx{r) = 5 cos(2af,m) + —2—0 8(7)

This equation shows that for | 7| > 0 the autocorrelation function Rx(7) has the same

sinusoidal waveform as the signal component of X{z).

The purpose of this computer experiment is to perform the computation of Rx{r)
using two different methods:

{a) Ensemble averaging. Generate M = 50 randomly picked realizations of the process
X(t). Hence compute the product x(¢ + 7)x(z) for some fixed time £, where x{t) is a
realization of X(z). Repeat the computation of x{¢ + 7)x(z) for the M realizations of
X(2), and thereby compute the average of these computations over M. Repeat this
sequence of computations for-different values of 7.

(b) Time averaging. Compute the time-averaged autocorrelation function

i (T
R, T) = —=, t+ t) dt
A7 T) 3T _Tx( 7)x(t) d
where x{t) is a particular realization of X(t), and 2T is the total observation interval.
For this computation, use the Fourier-transform pair:

R.(r, T) = o | Xal)
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Band-pass s Modulated wave 35(0)

Modulated wave s () 5 Product
filter with carrier frequency f,

with carrier frequency f; | modulator

T

Ay cos (2nfpt)

FIGURE 2.16 Block diagram of mixer. a\‘
rEnptt s4(t) Is an,

ato Flgure 7d1

To explain the action of the mixer, consider the situati

where, for the purpose of illustration, it is aﬁined

signal with carrier ﬁ'equency fi and bandwi

AM spectrum S{f assumlng b) of the figure

f) of the resultmg si; duct modulator out

The éh vikwed as the sum of ulat onents one com-
ponent rep e shaded spe b and the other component
represented y the unshaded spectrum i pendmg on whether the incoming

carrier frequency f; is translated npward or downward we may identify two different
situations, as described here:

Up conversion. In this case the translated carrier frequency f, is greater than the
incoming carrier frequency fi, and the required local oscillator frequency f; is there-

fore defined by
Lh=hth
or
fi=f~h
814

(@

§°(f)

A
T

FiGURE 2.17 (a) Spectrum of modulated 51gnal s,(1) at the mixer input. (b) Spectrum of the
corresponding signal s'(t) at the output of the product modulator in the mixer.
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where A, is the carrier amplitude. A complete oscillation occurs whenever 0;(2) changes

by 2 radians. If 8,(t) increases monotonically with time, the average frequency in Hertz,

over an interval from ¢ to £ + At, is given by

0,(t + At) — 6;(1)
2o At

follows:
£(t) = lim fale) NO"e

Fadt) = (2.20)

JIEM
p(e &:96

Thus, according to Equation (2.1 erpret the angle-modulated signal
s(t) as a rotating phasor of length A, and angle 8;(t). The angular velocity of such a phasor
is d6,(t)/dt measured in radians per second, in accordance with Equation (2.21). In the
simple case of an unmodulated carrier, the angle 9;(¢) is

0:(t) = 27fit + &b,

and the corresponding phasor rotates with a constant angular velocity equal to 27f,. The
constant ¢, is the value of 8,{(t) at ¢ = 0.

There are an infinite number of ways in which the angle 0;(¢) may be varied in some
manner with the message (baseband) signal. However, we shall consider only two com-
monly used methods, phase modulation and frequency modulation, defined as follows:

1. Phase modulation (PM) is that form of angle modulation in which the angle 0,(t) is
varied linearly with the message signal m{t), as shown by

0,(t) = 2mft + kymit) (2.22)

The term 277f.¢ represents the angle of the unmodulated carrier; and the constant k,
represents the phase sensitivity of the modulator, expressed in radians per volt on
the assumption that m(t) is a voltage waveform. For convenience, we have assumed
in Equation (2.22) that the angle of the unmodulated carrier is zero at t = 0. The
phase-modulated signal s(¢) is thus described in the time domain by

s{) = A, cos[2mf.t + kym(t)] (2.23)

2. Frequency modulation (FM) is that form of angle modulation in which the instan
taneous frequency f,(t) is varied linearly with the message signal mit), as shown by

filt) = f. + kenl(2) (2.24)

The term f, represents the frequency of the unmodulated carrier, and the constant
k represents the frequency sensitivity of the modulator, expressed in Hertz per volt
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where we have used the value I'(3/2) = V2. To calculate the mean signal s, at the
detector output, we also need the expectation of y(¢). Due to the combined presence of
signal and noise, we recall from Section 1.13 that y(?) is Rician distributed, as shown by

Y y2 + A?
) = o} exp( 20% IO 17»:1 fory =0 (21149
0 otherwise

1
where I,(*) is the modified Bessel function of the first kind of zero order (see A a.\
Hence, N O
Ely(e)] = . 8Q
N

Putting A ylok = u and rec

the form e
P n[y 3/2 eXPP Ja- —4— Io{u) du (2.116)

The integral in Equation (2.116) can be written in a concise form by using cornfluent
hypergeometric functions; see Appendix 4. In particular, using the integral representation

. Tomi2)(  (m . 1
J:)u 1 exp(—b2u?)o{n) du = 2 (1F1(5;15W)> (2.117)

with m = 3, T(m/2) = V@2 and b> = 1/4p, we may express the expectation of y(z) in
terms of the confluent hypergeometric function ;F;(3/2;1;p) as

E[y(s) ]—fcmexp( )(11%(%;1;;))) (2.118)

We may further simplify matters by using the following identity:
exp(—u}(iFilasBsu)) = 1F1(B — a5B5—n) {2.119)

and so finally express the expectation of y(t} in the concise form

Ely(z) ]_fUN(1F1(“%'1'—p>) (2.120)

Thus using Equations {2.113) and (2.120) in Equation (2.106) yields the mean output

signal as
o = = onl B —=3Li—p| — 1 (2.121)
a 2 Ny 1t 23 B - .

whose dependence on the standard deviation oy of the noise #(z) is testimony to the
intermingling of signal and noise at the detector output.
Following a similar procedure, we may express the mean-square value of the detector

output y(f) as
WL3 "yl +A2
Byl = J) 2 e -2 )0 (%

= 203 GF(=115-p))

)
(2.122)
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The discriminator output is therefore

‘U(t) = i iaﬁ
27 dt
(2.140)

= km(t) + ny(t)

where the noise term 7,(¢) is defined by

|
nalt) = 52 5 0 sinlit) 9586

We thus see that provided the carrier-t 0-n01se ratio is high, put v(t
consists of the original message signal m(t) myltipli ({gnst actor k . pl
additive noise component 74(¢ Accordln hd output signgl-to- ﬁ:o
as previously defined to assesg peYfolmatice of the M B

thlS, however, it is mstructl can 31mphfy the ex g the noise

From ag am of Figu ag\ the effect of variations in the
phase (t) o§the arrowband noise app?ef e signal term ¢ (£). We know that
the phase (¢} is uniformly distributed over 277 radians. It would therefore be tempting to
assume that the phase difference Y(z) — ¢ (£) is also uniformly distributed over 2 radians.
If such an assumption were true, then the noise #,4(t) at the discriminator output would
be independent of the modulating signal and would depend only on the characteristics of
the carrier and narrowband noise. Theoretical considerations show that this assumption
is justified provided that the carrier-to-noise ratio is high.” Then we may simplify Equation
(2.141) as:

1 d
3o 3 1) sinlu(e)]) 2.142

However, from the defining equations for #(¢) and (t), we note that the quadrature com-
ponent 7,(t) of the filtered noise n(t) is

nolt) = r(t) sin[y(1)] (2.143)

Therefore, we may rewrite Equation (2.142) as

1,(t) =

dng(t)
27wA,  dt

This means that the additive noise n,(t) appearing at the discriminator output is deter-
mined effectively by the carrier amplitude A, and the quadrature component ng(t) of the
narrowband noise nit).

The output signal-to-noise ratio is defined as the ratio of the average output signal
power to the average output noise power. From Equation (2.140), we sce that the message
component in the discriminator output, and therefore the low-pass filter output, is kzn(z).
Hence, the average output signal power is equal to k2P, where P is the average power of
the message signal m(t).

To determine the average output noise power, we note that the noise n4(t) at the
discriminator output is proportional to the time derivative of the quadrature noise com-
ponent ng(t). Since the differentiation of a function with respect to time corresponds to
multiplication of its Fourier transform by j27f, it follows that we may obtain the noise
process #,{t) by passing ng(t) through a linear filter with a frequency response equal to

puf _if
27A, A,

(2.144)

na(t) =
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noise deviates appreciably from a linear function of p when p is about 11 dB. Also whey
the signal is present, the resulting modulation of the carrier tends to increase the averag,
number of clicks per second. Experimentally, it is found that occasional clicks are hearg
in the receiver output at a carrier-to-noise ratio of about 13 dB, which appears to be only

slightly higher than what theory indicates. Also it is of interest to note that the increase iy .

the average number of clicks per second tends to cause the output signal-to-noise ratio t,
fall off somewhat more sharply just below the threshold level in the presence of

to,
that the

modulation. a\‘
From the foregoing discussion we may conclude that threshold effects in xa‘%

may be avoided in most practical cases of interest if the carrier-to-gQis r@;ﬂ
or greater than 20 or, equivalently, 13 dB. Thus using Equass (
loss of message at the discriminator output i%ei "L Wi

. ol
or, cquiva@,(t@vﬂgc\t%%oa‘@@ﬁc:;?Zm}ion

20BN, (2.155)

To use this formula, we may proceed as follows:

1. For a specified modulation index 8 and message bandwidth W, we determine the
transmission bandwidth of the FM wave, Br, using the universal curve of Figure 2.2¢
or Carson’s rule.

2. Tor a specified average noise power per unit bandwidth, Ny, we use Equation (2.155)
to determine the minimum value of the average transmitted power AZ/2 that is nec-
essary to operate above threshold.

& FM THREsSHoLD REDUCTION

In communication systems using frequency modulation, there is particular interest in re-
ducing the noise threshold in an FM receiver so as to satisfactorily operate the receiver
with the minimum signal power possible. Threshold reduction in FM receivers may be
achieved by using an FM demodulator with negative feedback!? (commonly referred to as
an FMEB demodulator), or by using a phase-locked loop demodulator. Such devices are
referred to as extended-threshold demodulators, the idea of which is illustrated in Figure
2.46. The threshold extension shown in this figure is measured with respect to the standard
frequency discriminator (i.e., one without feedback).

The block diagram of an FMFB demodulator? is shown in Figure 2.47. We see that
the local oscillator of the conventional FM receiver has been replaced by a voltage
controlled oscillator (VCO) whose instantaneous output frequency is controlled by the
demodulated signal. In order to understand the operation of this receiver, suppose for the
moment that the VCO is removed from the circuit and the feedback loop is left open
Assume that a wideband FM signal is applied to the receiver input, and a second ™
signal, from the same source but whose modulation index is a fraction smaller, is applied
to the VOO terminal of the mixer. The output of the mixer would consist of the difference
frequency component, because the sum frequency component is removed by the band-pasé
filter. The frequency deviation of the mixer output would be small, although the frequency
deviation of both input FM waves is large, since the difference between their instantaneou’
deviations is small. Hence, the modulation indices would subtract and the resulting F
wave at the mixer output would have a smaller modulation index. The FM wave wit

Q2
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FIGURE 2.54 Phase-plane portrait for critical demping and sinusoidal modulation.

Frequency error, (Hz)

3. For an initial frequency error

14dé.
K dt

with an absolute value equal to 2, we have a saddle point at {0, 7) where the slightest
perturbation applied to the phase-locked loop causes it to shift to the equilibrium
point (0, 0) or (0, 2m).

Summary and Discussion

In this chapter we studied the principles of continuous-wave (CW) modulation. This an-
alog form of modulation uses a sinusoidal carrier whose amplitude or angle is varied in
accordance with a message signal. We may thus distinguish two families of CW modula-
tion: amplitude modulation and angle modulation.

B AMPLITUDE MODULATION

Amplitude modulation may itself be classified into four types, depending on the spectral
content of the modulated signal. The four types of amplitude modulation and their prac-
tical merits are as follows:

1. Full amplitude modulation (AM), in which the upper and lower sidebands are trans-
mitted in full, accompanied by the carrier wave.

Accordingly, demodulation of an AM signal is accomplished rather simply in the receiver
by using an envelope detector, for example. It is for this reason we find that full AM is
commonly used in commercial AM radio broadcasting, which involves a single powerful
transmitter and numerous receivers that are relatively inexpensive to build.
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terms of the peak deviation Af of the carrier frequency, the delay 7, and the repetitiop
frequency f; of the transmitted signal.

£

Transmitted
signal Echo

St AF
TN /Y
\ N\ N\ ’
fe S 4 A + A + t
NAVAV Ve %
b / /
fo-Af - N v 1 X N
~- e
. Nmz ‘5 9
2.26 The @t&e@xem}’ ofa sp a@"@ —}’for |t| = T72, and £, for

a

|t| > termine the spectrum It -modulated wave. Hint: Divide up
the time interval of interest into thrég regions: % <t < —T/2, —T/2 = =< T/2, and
T2 <t<o,

2.27 Single-sideband modulation may be viewed as a hybrid form of amplitude modulation
and frequency modulation. Evaluate the envelope and instantaneous frequency of an SSB
wave for the following two cases:

(a) When only the upper sideband is transmitted.
(b) When only the lower sideband is transmitted.
2.28 Consider a narrowband FM signal approximately defined by

s(t) = A, cos(2af.t) — BA. sin(27ft) sin(27f,,.1)

{a) Determine the envelope of this modulated signal. What is the ratio of the maximum
to the minimum value of this envelope? Plot this ratio versus B, assuming that B is
restricted to the interval 0 = g = 0.3.

{(b) Determine the average power of the narrowband FM signal, expressed as a percentage-
of the average power of the unmodulated carrier wave. Plot this result versus §,
assuming that 8 is restricted to the interval 0 < g = 0.3.

(c) By expanding the angle () of the narrow-band FM signal §(z} in the form of a power
series, and restricting the modulation index B to a maximum value of 0.3 radians,
show that

8,(f) = 2mf.t + B sin(2uf,t) — %i sin(27f,.t)

What is the power ratio of third harmonic to fundamental component for 8 = 0.3
2.29 The sinusoidal modulating wave
m(t) = A,, cos(2mf,,t)
is applied to a phase modulator with phase sensitivity k,. The unmodulated carrier wave
has frequency £, and amplitude A,.
(a) Determine the spectrum of the resulting phase-modulated signal, assuming that the
maximum phase deviation 8, = k,A,, does not exceed 0.3 radians.
(b) Construct a phasor diagram for this modulated signal, and compare it with that of
the corresponding narrowband FM signal.

2.30 Suppose that the phase-inodulated signal of Problem 2.29 has an arbitrary value for the
maximum phase deviation B,. This modulated signal is applied to an ideal band-pass filter
with midband frequency £, and a passband extending from f. — 1.5f, to f. + 1.5/
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(b) Illustrate the operation of this demodulator, using the sawtooth wave of Figure P23y
as the modulating wave.

Limiter Pulse Low-pass Output
wave generator filter signat

FIGURE P2.41

\1
2.42 Suppose that the received 51gna1 1n an FM system con W N‘L mod

ulation of positive amplitude #(t), as shown by “

where f.is the car {fle‘ueﬂhas (1) is related UL@ ng sEhal m(y
P palds

where k; is a constant. Assume that the signal s(t) is restricted to a frequency band of
width B, centered at f., where By is the transmission bandwidth of the FM signal in the
absence of amplitude modulation, and that the amplitude modulation is slowly varying
compared with ¢(t). Show that the output of an ideal frequency discriminator produced
by s{z) is proportional to a(t)m(t). Hint: Use the complex notation described in Appendix

2 to represent the modulated wave s(t).
2.43 (a) Let the modulated wave s(z) in Problem 2.42 be applied to a hard limiter, whosé
output z{?) is defined by '

2(t) = sgn[s(z)]
B {+1, s(t) > 0
T l-1, sty <o

Show that the limiter output may be expressed in the form of a Fourier series as
follows:

\ =
=23 o

. 5 + 1 cos[2mfit(2n + 1) + 2n + L)é(2)]

(b) Suppose that the limiter output is applied to a band-pass filter with a passband mag-;
nitude response of one and bandwidth By centered about the carrier frequency f,
where By is the transmission bandwidth of the FM signal in the absence of amplitude
modulation. Assuming that £, is much greater than By, show that the resulting filter
output equals

yt) = %cos[lﬂtrfct + ¢(t)]

By comparing this output with the original modulated signal s(z) defined in Problem
2.42, comment on the practical usefulness of the result.

2.44 (a) Consider an FM signal of carrier frequency f., which is produced by a modulating
signal m(t). Assume that f; is large enough to ]ustlfy treating this FM signal as 2
narrowband signal. Find an approximate expression for its Hilbert transform.

{b) For the specxal case of a sinusoidal modulating wave m(#) = A,, cos(27f,z), find the
exact expression for the Hilbert transform of the resulting FM signal. For thls casé;
what is the error in the approximation used in part (a)?
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2.45 The single sideband version of angle modulation is defined by
s(t) = exp[—$(#)] cos[2mf.t + (2]

where &(t) is the Hilbert transform of the phase function (), and £, is the carrier
frequency.

(a) Show that the spectrum of the modulated signal s(¢) contains no frequency compo-
nents in the interval —f, < f < f,, and is of infinite extent.

1
{(b) Given that the phase function Sa\
&(t) = B sin(27f,t) e
where B is the modulation index and f;, is the Q derive the

corresponding expression for the modylate m 8Q
Note: For Problems 2. 44 and 2 to Appen @
the Hilbert transform.

Neise in W@io Systems
2.46 A DSB3C modulated signal is transnfftted sy channel, with the power spectral

density of the noise being as shown i Flgu:e P2 46. The message bandwidth is 4 kHz
and the carrier frequency is 200 kHz. Assuming that the average power of the modulated
wave is 10 watts, determine the output signal-to-noise ratio of the receiver.

Snif)
W/Hz

KH
7700 ) aop S

Ficure P2.46

2.47 Evaluate the autocorrelation functions and cross-correlation functions of the in-phase and
quadrature components of the narrowband noise at the coherent detector input for
(a) the DSB-SC system, (b) an SSB system using the lower sideband, and (c) an SSB system
using the upper sideband.

2.48 1In a recciver using coherent detection, the sinusoidal wave generated by the local oscillator
suffers from a phase error 6(t) with respect to the carrier wave cos{27f.t). Assuming that
6(z) is a sample function of a zero-mean Gaussian process of variance o5, and that most
of the time the maximum value of 8{¢) is small compared with unity, find the mean-square
error of the receiver output for DSB-SC modulation. The mean-square error is defined as
the expected value of the squared difference between the receiver output and the message
signal component of the receiver output.

2.49 Following a procedure similar to that described in Section 2.11 for the DSB-SC receiver,
extend this noise analysis to a SSB receiver. Specifically, evaluate the following:
(a) The output signal-to-noise ratio.
(b) The channel signal-to-noise ratio.
Hence, show that the figure of merit for the SSB receiver is exactly the same as that for
the DSB-SC receiver. Note that unlike the DSB-SC receiver, the midband frequency of the
spectral density function of the narrowband-filtered noise at the front end of the SSB
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2.50

2.51

2.52

2.53

receiver is offset from the carrier frequency f. by an amount equal to W/2, where W j,
the message bandwidth.

Let a message signal »2(?) be transmitted using single-sideband modulation. The powe,
spectral density of m(z) is
L ifl=w
Sulf) = W’

0, otherwise

where @ and W are constants. White Gaussian noise of zero mean and po{%ﬁa\
S10T

density Ng/2 is added to the SSB modulated wave at the receiver igpu
for the output signal-to-noise ratio of the receiver.

Consider the output of an envelope detec lon 2.92), which is 8 -~
duced here for convenience ‘ O
A 900
ae of the event

is equal to or less than 6, wher £ <K 1 at is the probablhry that the effect of
the quadrature component (2} is negligible?

(b) Suppose that k, is adjusted relative to the message signal m(t) such that the probability
of the event

Al + km{t)] + ny(t) <O
is equal to 8. What is the probability that the approximation
y(t) = Al + kan(t)] + ni{t)

is valid?
(¢) Comment on the significance of the result in part (b) for the case when 8, and 8, are
both small compared with unity.
An unmodulated carrier of amplitude A, and frequency f. and band-limited white noise
are summed and then passed through an ideal envelope detector. Assume the noise spec-
tral density to be of height Ny/2 and bandwidth 2 W, centered about the carrier frequency
.. Determine the output signal-to-noise ratio for the case when the carrier-to-noise ratio
is high.
Let R denote the random variable obtained by observing the output of an envelope de-
tector at some fixed time. Intuitively, the envelope detector is expected to be operating
well into the threshold region if the probability that the random variable R exceeds the
carrier amplitude A, is 0.5. On the other hand, if this same probability is only 0.01, the
envelope detector is expected to be relatively free of loss of message and the threshold
effect.
{a) Assummg that the narrowband noise at the detector input is white, zero-mean, Gaus-
sian with spectral density NO/Z and the message bandwidth is W, show that the prob-
ability of the event R = A_ is

PR = A,) = exp(— p)
where p is the carrier-to-noise ratio:
A?
4WN,

(b} Using the formula for this probability, calculate the carrier-to-noise ratio when (1} 1) the
envelope detector is expected to be well into the threshold region, and (2) itis expected
to be operating satisfactorily.

p=
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Hence, under the following two conditions:

1. G(fy=0for|f| =W

2. f,=2W
we find from Equation (3.5) that
1
Gif) =5 Golfls  ~W<f<W (34)
Substituting Equation (3.4) into (3.6), we may also write -‘es
1 NO

n jmn

Gif) = 5w ,,Z’m g(ﬁ) exp ——a‘-ﬂ’ {7) 8
Therefore, if the sample valyes g nw a ig: ) are speci@f@ll n\%he
Fourier transform G{f) of s\Iniquely determined discrete-time
Fourier tragsfQr %7]‘ . Because g{r) is %‘to % he inverse Fourier
transform@l \ak t the signal g(¢)get ermined by the sample values
g{ni2W) fo) —e X n< =. In other wor {g{n/2'W)} has all the information
contained in g(f).

Consider next the problem of reconstructing the signal g(t) from the sequence of

sample values {g(#/2W)}. Substituting Equation (3.7) in the formula for the inverse Fourier
transform defining g(¢) in terms of G(f), we get

gty = Lﬂ G(f) exp(j2mft) df

- jwﬁ 3 g(z%l) exp(-’lw’j—f) exp(j2mft) df

Interchanging the order of summation and integration:

e n 1 (¥ ) n -
glt) = n;;m 8l ow ﬁﬁw exp| i2mf|t — 55y af (3.8

The integral term in Equation (3.8) is readily evaluated, yielding the final result

oS 7 ) sin@rWE — nm)
g(t) = n=2—-oc g(ZW) (Zq'rWl‘ e 1177) (3 9)

= n:E_m g(ﬁ) SincQWr — n), —w<t<o
Equation (3.9) provides an interpolation formula for reconstructing the original signal g{f)
from the sequence of sample values {g(n/2W)}, with the sinc function sinc{2 W) playing
the role of an interpolation function. Bach sample is multiplied by a delayed version of
the interpolation function, and all the resulting waveforms are added to obtain g(z).

We may now state the sampling theorem for strictly band-limited signals of finite
energy in two equivalent parts, which apply to the transmitter and receiver of a pulse-
modulation system, respectively:

1. A band-limited signal of finite energy, which has no frequency components higher
than W Hertz, is completely described by specifying the values of the signal at instans
of time separated by 1/2W seconds.

2. A band-limited signal of finite energy, which bas no frequency components higher
than W Hertz, may be completely recovered from a knowledge of its samples taket.
at the rate of 2W samples per second.
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random variable M of continuous amplitude into a discrete random variable V; thejr
respective sample values and v are related by Equation (3.22). Let the quantization errg,
be denoted by the random variable Q of sample value g. We may thus write

g=m=-v (3.23
or, correspondingly,
Q=M-V 3.4

) \1
With the input M having zero mean, and the quantizer assumed to be symmetgey s a.
Figure 3.10, it follows that the quantizer output V and therefore@‘ l%%
y

Q, will also have zero mean. Thus for a partial statistical ¢ teri e Quantizer
in terms of output signal-to-(quantization) n('ﬁ rat nd&dbnly¥ind the mean-sdfiare
A
uo gn

value of the quantization error Q.
Consider then an inpuf plitude in g@mmotmx)'
Assuming a unifor ﬂe idrise type illustrated in Efgurd3 , we find that
the step—si@t{%t' is given by g

2
A;= ALY (3.25)

L

where L is the total number of representation levels. For a uniform quantizer, the quan-
tization error O will have its sample values bounded by —A/2 = g =< A/2.1f the step-size
A is sufficiently small (i.e., the number of representation levels L is sufficiently large), it is
reasonable to assume that the quantization error Q is a uniformly distributed random
variable, and the interfering effect of the quantization noise on the quantizer input is similar
to that of thermal noise. We may thus express the probability density function of the
quantization error Q) as follows:

1A ___A
fola) = {A° 25973 (3.26)
g, otherwise

For this to be true, however, we must ensure that the incoming signal does not overload
the quantizer. Then, with the mean of the quantization error being zero, its variance o}
is the same as the mean-square value:

0% = E[Q7] (3.2
-A/2
- 2
J_M 7*folq) dq
Substituting Equation (3.26) into (3.27), we get

12
o= 5|,

A

12
Typically, the L-ary number k, denoting the kth representation level of the quantizeh

is transmitted to the receiver in binary form. Let R denote the number of bits per samp
used in the construction of the binary code. We may then write

I = 2R (3.29)

(3.28)
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TABLE 3.1 Signal-to-(quantization) noise ratio
for varying number of representation levels
for sinusoidal modulation

Number of
Number of Representation Bits per Signal-to-Noise
Levels, L Sample, R Ratio (dB)

32 5 31.8 \1
64 6 37.8 Sa.
128 7 43.8 O"e
256 8 49.8

rrot { ©°
For various values of L af} Wspon ing values of siqzt A oi%o zQ given
in Table 3.1. Fr ’\lﬁ»'&@.a make a quick estimage of thy/n its per sample

requi r( c@d tpt signal-to-noise rati :@ sinflestd3] modulation. <

Thus far in this section we have ﬂgeﬁ' to characterize memoryless scalar
quantizers and assess theit performance. In so doing, however, we avoided the optimum
design of quantizers, that is, the issue of sclecting the representation levels and partition
cells so as to minimize the average quantization power for a prescribed number of repre- ’
sentation levels. Unfortunately, this optimization problem does not lend itself to a closed-
form solution because of the highly nonlinear nature of the quantization process. Rather,
we have effective algorithms for finding the optimum design in an iterative manner. A well-
known algorithm that deserves to be mentioned in this context is the Lloyd-Max quantizer,
which is discussed next.

& CONDITIONS FOR OPTIMALITY OF SCALAR QUANTIZERS

In designing a scalar quantizer the challenge is how to select the representation levels and
surrounding partition cells so as to minimize the average quantization power for a fixed
number of representation levels.

To state the problem in mathematical terms, consider a message signal m(t) drawn
from a stationary process M(t). Let —A =m = A denote the dynamic range of m{t), which
is partitioned into a set of L cells, as depicted in Figure 3.12. The boundaries of the
partition cells are defined by a set of real numbers #14, #1, . . . 5 M43 that ' satisfy the
following three conditions:

m; = —A
My = A
my, = mg fork=1,2,...,L

The kth partition cell is defined by
Syt my < m =<y fork=12,...,L (3.36)

I

A

my==A4  my m3 my, 1 mp, Mg =tA
| 24 >
FIGURE 3.12 Tllustrating the partitioning of the dynamic range —A = m < A of a message
signal (1) into a set of L cells.
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Example 3.2. These bit streams are called the primary rate in the digital hierarchy,
because it is the lowest bit rate that exists outside a digital switch. The digital switch
is a device consisting of memory and logic, the function of which is merely the switch-
ing of digital signals, hence the name.

& The second-level multiplexer combines four DS1 bit streams to obtain a digital signal
two (DS2) at 6.312 Mb/s.

» The third-level multiplexer combines seven DS2 blt streams to obtain a digital signal
three (DS3) at 44.736 Mb/s.

v The fourth-level multiplexer combines six DS3 bit streams toob
four (DS4) at 274.176 Mbis. Dﬂ
bines two D

» The fifth-level multiplexer, the final o 1%
streams to obtain a dzgztal szgmzl fiv % ' Q
Note that the bit rate o pro uced by any ode ltlp exers is
slightly high, skrifedsfiultiple of the ingg g< bit r use of bit stuffing

built into t s? cl multiplexe e g Assed in the sequel.

Moredyer, it is important to reco 9 gl Jhnctions of a digital transmission
facility is merely to carry a bit stream without interpreting what the bits themselves mean.
However, the digital switches at the two ends of the facility do have a common under-
standing of how to interpret the bits within the stream, such as whether the bits represent
voice or data, framing format, signaling format, and so on.

There are some basic problems involved in the design of a digital multiplexer, irre-
spective of its grouping:

1. Digital signals cannot be directly interleaved into a format that allows for their even-
tual separation unless their bit rates are locked to a common clock. Rather, provision
has to be made for synchronization of the incoming digital signals, so that they can
be properly interleaved.

2. The multiplexed signal must include some form of framing so that its individual
comporents can be identified at the receiver.

3. The multiplexer has to handle small variations in the bit rates of the incoming digital
signals. For example, a 1000-km coaxial cable carrying 3 X 10® pulses per second
will have about one million pulses in transit, with each pulse occupying about one
meter of the cable. A 0.01 percent variation in the propagation delay, produced by
a 1°F decrease in temperature, will result in 100 fewer pulses in the cable. Clearly,
these pulses must be absorbed by the multiplexer.

To tailor the requirements of synchronization and rate adjustment to accommodate small
variations in the input data rates, we may use a technique known as bit stuffing. The idea
here is to have the outgoing bit rate of the multiplexer slightly higher than the sum of the
maximum expected bit rates of the input channels by stuffing in additional non-informa-
tion carrying pulses. All incoming digital signals are stuffed with a number of bits sufficient
to raise each of their bit rates to equal that of a locally generated clock. To accomplish bit
stuffing, each incoming digital signal or bit stream is fed into an elastic store at the mul-
tiplexer. The elastic store .is a device that stores a bit stream in such a manner that the
stream may be read out at a rate different from the rate at which it is read in. At the
demultiplexer, the stuffed bits must obviously be removed from the multiplexed signal.
This requires a method that can be used to identify the stuffed bits. To illustrate one such
method, and also show one method of providing frame synchronization, we describe the
signal format of the AT&T M12 multiplexer, which is designed to combine four DS1 bit

a5\

ﬁ“%Q
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Granular noise

Slope-overload
distortion

m(f)
Staircase

approximation

m, (8

, 1
FIGURE 3.24 [Illustration of the two different forms of quantization error in delta lﬂevsa\
Thus except for the quantization error g[n —], t Winp t is a first back rd%?
difference of the input signal, which ma &v gital apprgximati the
derivative of the input signal o Ul ntl the inverse af t d%;l“' atlon
process. If we consider th X@ s®pe of the original inpht m(r), it is
"]:j

clear that | edliciice of samples { ing e as fast as the input
sequence oﬁn es in a regio a of m(¢), we require that the
condition

dm(t)
x| (3.58)

—

s

be satisfied. Otherwise, we find that the step-size A is too small for the staircase approxi-
mation #1,(t) to follow a steep segment of the input waveform (), with the result that
m,(t) falls behind m(t), as illustrated in Figure 3.24. This condition is called slope overload,
and the resulting quantization error is called slope-overload distortion (noise). Note that
since the maximum slope of the staircase approximation m1,(2) is fixed by the step size A,
increases and decreases in #1,(2) tend to occur along straight lines. For this reason, a delta
modulator using a fixed step size is often referred to as a linear delta modulator.

In contrast to slope-overload distortion, granular noise occurs when the step size A
is too large relative to the local slope characteristics of the input waveform (), thereby
causing the staircase approximation #1,(f) to hunt around a relatively flat segment of the
input waveform; this phenomenon is also illustrated in Figure 3.24. Granular noise is
analogous to quantization noise in a PCM system.

We thus see that there is a need to have a large step-size to accommodate a wide
dynamic range, whereas a small step size is required for the accurate representation of
relatively low-level signals. It is therefore clear that the choice of the optimum step size
that minimizes the mean-square value of the quantization error in a linear delta modulator
will be the result of a compromise between slope-overload distortion and granular noise.
To satisfy such a requirement, we need to make the delta modulator “adaptive,” in the
sense that the step size is made to vary in accordance with the input signal; this issue is
discussed further in a computer experiment presented in Section 3.16.

8 DELTA-SIGMA MODULATION

As mentioned earlier, the quantizer input in the conventional form of delta modulation
may be viewed as an approximation to the derivative of the incoming message signal. This
behavior leads to a drawback of delta modulation in that transmission disturbances such
as noise result in an accumulative error in the demodulated signal. This drawback can be



3.14 Differeniicl Pulse-Code Modulation 227

The LMS algorithm is a stochastic adaptive filtering algorithm, stochastic in the sense
that, starting from the s#itial condition defined by {w[01%1, it seeks to find the minimum
point of the error surface by following a zig-zag path. Moreover, it never finds this mini-
mum point exactly. Rather, it executes a random motion around the minimum point of
the error surface, once steady-state conditions are established.
With this material on linear prediction at hand, we are ready to discuss practical
improvements on the performance of pulse-code modulation. a\‘

Differential Pulse-Code Modulation NO‘e >
When a voice of video signal is sampled at a l@m than tﬁyq : ‘E{asg |
ound t

| 3.14

usually done in pulse-code modulationgtifle relul g ib¥t a

mpled signal
high degree of correlation befy t samples. The mearfin; oAs gh correlation
is that, in an aver. ﬁr&ﬁa does not ch, idl m one sample to the
next, and s@fgdl rence betw j has a variance that is smaller
than the valfance ®f the signal itself. W?iah correlated samples are encoded,

as in the standard PCM system, the resMlting encoded signal contains redundant infor-
mation. This means that symbols that are not absolutely essential to the transmission of
information are generated as a result of the encoding process. By removing this redundancy
before encoding, we obtain a more efficient coded signal, which is the basic idea behind
differential pulse-code modulation.

Now if we know the past behavior of a signal up to a certain point in time, we may
use prediction to make an estimate of a future value of the signal as described in Section
3.13. Suppose then a baseband signal m(t) is sampled at the rate fs = VT, to produce the
sequence {#[n]} whose samples are T, seconds apart. The fact that it is possible to predict
future values of the signal #(t) provides motivation for the differential quantization scheme
shown in Figure 3.28a. In this scheme, the input signal to the quantizer is defined by

e[n] = mn] — rn) (3.74)

which is the difference between the unquantized input sample 7#[n] and a prediction of it,
denoted by #i[#]. This predicted value is produced by using a linear prediction filter whose
input, as we will see, consists of a quantized version of the input sample m[#]. The differ-
ence signal e[#] is the prediction error, since it is the amount by which the prediction filter
fails to predict the input exactly. By encoding the quantizer output, as in Figure 3.284, we
obtain a variant of PCM known as differential pulse-code modulation!® (DPCM).

The quantizer output may be expressed as

e,ln] = e[n] + g[n] (3.75)

where g[#] is the quantization error: According to Figure 3.284, the quantizer output e, [#]
is added to the preédicted value ##[#] to produce the prediction-filter input

myln] = mn] + e [n) (3.76)
Substituting Equation (3.75) into (3.76), we get
myn] = wn] + e[n] + q[n] - (3.77)

However, from Equation (3.74) we observe that the sum term m[n] + e[n] is equal to the
input sample m[n]. Therefore, we may simplify Equation (3.77) as

my[n] = mn] + q[n] (3.78)
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Comparator
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] E+ ( _) > wave
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FIGURE 3.28 DPCM system. (a) Transmitter. (b) Receiver.

which represents a quantized version of the input sample min]. Thatis, irrespective of the
properties of the prediction filter, the quantized sample m,[#] at the prediction filter input
differs from the original input sample m[n] by the quantization error gl#]. Accordingly, if
the prediction is good, the variance of the prediction error e[n] will be smaller than the
variance of m[n], so that a quantizer with a given number of levels can be adjusted to
produce a quantization error with a smaller variance than would be possible if the input
sample m[n] were quantized directly as in a standard PCM system.

The receiver for reconstructing the quantized version of the input is shown in Figure
3.28b. It consists of a decoder to reconstruct the quantized error signal. The quantized
version of the original input is reconstructed from the decoder output using the same
prediction filter used in the transmitter of Figure 3.28a. In the absence of channel noise,
we find that the encoded signal at the receiver input is identical to the encoded signal at
the transmitter output. Accordingly, the corresponding receiver output is equal to m[7,
which differs from the original input m{n] only by the quantization error qi#] incurred as
a result of quantizing the prediction error e[n].

From the foregoing analysis we observe that, in a noise-free environment, the pre-
diction filters in the transmitter and receiver operate on the same sequence of samples,
#m[n]. It is with this purpose in mind that a feedback path is added to the quantizer in the
transmitter, as shown in Figure 3.284.

Differential pulse-code modulation includes delta modulation as a special case. lo
particular, comparing the DPCM system of Figure 3.28 with the DM system of Figust
3.23, we sec that they are basically similar, except for two important differences: the ust
of a one-bit {two-level) quantizer in the delta modulator and the replacement of the pre
diction filter by a single delay element {i.e., zero prediction order). Simply put, DM is the
1-bit version of DPCM. Note that unlike a standard PCM system, the transmitters of both
the DPCM and DM involve the use of feedback.

DPCM, like DM, is subject to slope-overload distortion whenever the input signa!
changes too rapidly for the prediction filter to erack it. Also, like PCM, DPCM suffers
from quantization noise.
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with A/2 for PCM being replaced by A for DM.) The DM system is designed to hangj,
analog message signals limited to bandwidth W.
{a) Show that the average quantization noise power produced by the system is
_4mALW
3f2
where it is assumed that the step size A has been chosen in accordance with the
formula used in Problem 3.27 so as to avoid slope overload.

{b) Hence determine the signal-to-{quantization) noise ratio of the DM ﬁ@@
Q)

sinusoidal input.

(a) Calculate the step size i 0 ize slope ove [
{b) Calculate éﬂl‘» zation) noise ratig of @
sk i il

For t?c‘xma ‘ons, use the form @ @%@ms 3.27 and 3.28.

3.30 Consider a low-pass signal with a bal\dwidth of . A linear delta modulation system,
with step size A = 0.1V, is used to process this signal at a sampling rate ten times the
Nyquist rate.

(a) Evaluate the maximum amplitude of a test sinusoidal signal of frequency 1 kHz,
which can be processed by the system without slope-overload distortion.

{b) For the specifications given in part (a), evaluate the output signal-to-noise ratio under
(i) prefiltered, and (ii) postfiltered conditions.

3.29 Consider a DM system designed to accommodate analo sag& ted to bang-
width W = 5 kHz. A sinusoidal test sigmal tiflefd =41 volt and freqffency
f = 1 kHz is applied to the system. h%lﬁ of the system ig 50 kB
miithi l !

the specified

Linear Prediction

3.31 A one-step linear predictor operates on the sampled version of a sinusoidal signal. The
sampling rate is equal to 10f, where f; is the frequency of the sinusoid. The predictor
has a single coefficient denoted by ;.

(a) Determine the optimum value of s, required to minimize the prediction error
variance.
(b) Determine the minimum value of the prediction error variance.
3.32 A stationary process X(t) has the following values for its autocorrelation function:

Ry(0) = 1
Rx{1) = 0.8
Rx(2) = 0.6
Rx(3) = 0.4

{a) Calculate the coefficients of an optimum linear predictor involving the use of three
unit-delays.
(b) Calculate the variance of the resulting prediction error.

3.33 Repeat the calculations of Problem 3.32, but this time use a linear predictor with two
unit-delays. Compare the performance of this second optimum linear predictor with that
considered in Problem 3.32.

Differential Pulse-Code Modulation

3.34 A DPCM system uses a linear predictor with a single tap. The normalized autocorrelation
function of the input signal for a lag of one sampling interval is 0.75. The predictor i

A\
.

A



BASEBAND PULSE
TRANSMISSION

a\
This chapter discusses the transmission of digital data over a baseband ¢ n@ 165

emphasis on the following topics:

» The matched filter, which is the optimum system f c‘t nhiwm signal in "&e 8 -
white Gaussian noise. . 6
» Calculation of the bit error 16%, \@p esence of ch @og /

» Intersymbol interfer e,{hz arises when t@ ispersive as is commonly the

case in practice.
P Nyquist’s criterion for distortionless baseband data transmission.

» Correlative-level coding or partial-response signaling for combatting the effects of
intersymbol interference.

» Digital subscriber lines.
P Equalization of a dispersive baseband channel.

» The eye pattern for displaying the combined effects of intersymbol interference and
channel noise in data transmission.

[ 4.1 Introduction

In Chapter 3 we described techniques for converting an analog information-bearing signal
into digital form. There is another way in which digital data can arise in practice: The
data may represent the output of a source of information that is inherently discrete in
nature (e.g., a digital computer). In this chapter we study the transmission of digital data
{of whatever origin) over a baseband channel.! Data transmission over a band-pass channel
using modulation is covered in Chapter 6.

Digital data have a broad spectrum with a significant low-frequency content. Base-
band transmission of digital data therefore requires the use of a low-pass channel with a
bandwidth large enough to accommodate the essential frequency content of the data
stream. Typically, however, the channel is dispersive in that its frequency response deviates
from that of an ideal low-pass filter. The result of data transmission over such a channel
is that each received pulse is affected somewhat by adjacent pulses, thereby giving rise to
a common form of interference called intersymbol interference (ISI). Intersymbol interfer-
ence is a major source of bit errors in the reconstructed data stream at the receiver output,
To correct for it, control has to be exercised over the pulse shape in the overall system.
Thus much of the material covered in this chapter is devoted to pulse shaping in one form
or another.

247
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where we have made use of the sifting property of the delta function. Since from Equatig,
{4.46) we have p(0) = 1, it follows from Equations (4.50) and (4.52) that the conditigy
for zero intersymbol interference is satisfied if

oo

Y Pif-nR) =T, (4.53

n=—2=

We may now state the Nyguist criterion® for distortionless baseband transmissioy, \‘
the absence of noise: The frequency function P(f) eliminates intersymbol int a-
samples taken at intervals Ty, provided that it satisfies Equationgd.Ig) Kﬁ
refers to the overall system, incorporating the transmit fil e chahgehatd

€ receiy,

filter in accordance with Equation (4.47). O _‘ ¢ 8?
VAL 20

IDEAL NYQUIS ]e

The si.mpl?aXo istying Equatio ifythe ;requency function P(f) 1,
be in the fokm of a rectangular functio s

1
P(f)= ﬁ, —W<f<W
0, [fl>W (4.54
1 f
= ﬁrect(ﬁ)

where rect(f) stands for a rectangular function of unit amplitude and unit support centered
on f = 0, and the overall system bandwidth W is defined by
_R_ 1

W= 2 a1, (4.55)
According to the solution described by Equations (4.54) and (4.55), no frequencies of
absolute value exceeding half the bit rate are needed. Hence, from Fourier-transform pair
2 of Table A6.3 we find that a signal waveform that produces zero intersymbol interference
is defined by the sinc function:

sin{27Wt)
2aWt (4.56)
sinc(2 Wt)

1

The special value of the bit rate R, = 2W is called the Nyquist rate, and W is juself
called the Nyguist bandwidth. Correspondingly, the ideal baseband pulse transmission,
system described by Equation (4.54) in the frequency domain or, equivalently, Equation
(4.56) in the time domain, is called the ideal Nyquist channel.

Figures 4.8a and 4.8b show plots of P(f) and p(t}, respectively. In Figure 4,84, the
normalized form of the frequency function P(f) is plotted for positive and negative fre-
quencies. In Figure 4.8b, we have also included the signaling intervals and the correspond-
ing centered sampling instants. The function p(t) can be regarded as the impulse responsé
of an ideal low-pass filter with passband magnitude response 1/2W and bandwidth V.
The function p(#) has its peak value at the origin and goes through zero at integer multiples
of the bit duration T}. It is apparent that if the received waveform y(f) is sampled at the
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Input
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Filter Hy(f)

a\
FIGURE 4.11 Ducbinary signaling scheme. -‘es

input of this filter, we get two unit impulses c’@mapart at the filter oui; 8 -~
We may therefore express thg duohy od tpEc), as the supaQfi pri ut
pulse a and its previouﬁl\(e, wi 2%

. e

y
P ( e P a‘g (4.66)
One of the effects of the transformatiol} descfibed by Equation 4.66) is to change the

(
input sequence {a;} of uncorrelated two-level pulses into a sequence {c} of correlated three-
level pulses. This correlation between the adjacent pulses may be viewed as introducing
intersymbol interference into the transmitted signal in an artificial manner. However, the
intersymbol interference so introduced is under the designer’s control, which is the basis
of correlative coding.

An idea! delay element, producing a delay of Ty, seconds, has the frequency response
exp(—j27f Ts), so that the frequency response of the simple delay-line filter in Figure 4.11
is 1 + exp(—72mfT;). Hence, the overall frequency response of this filter connected in
cascade with an ideal Nyquist channel is

Hi{f) = Hiyquinl )1 + exp(=j27fTe)]
= Hiyyuae f)exp(jmf Ts) + exp(—jmfTy)] exp(—jmfT,) {4.67)
= 2Hygyquisel f) cos(mf To) exp(~jmfTp)

where the subscript 1in Hy{f) indicates the pertinent class of partial response. For an ideal
Nyquist channel of bandwidth W = 1/27T,,, we have (ignoring the scaling factor Tj)

1,  |f|=112T,

. (4.68)
0, otherwise

HNyquisc(f) = {

Thus the overall frequency response of the duobinary signaling scheme has the form ofa
half-cycle cosine function, as shown by

Hf) = {2 cos(nfT,) exp(—~jmfTohs | f1= 12T, @6
0, otherwise
for which the magnitude response and phase response are as shown in Figures 4.124 and
4.12b, respectively. An advantage of this frequency response is that it can be easily 3
proximated, in practice, by virtue of the fact that there is continuity at the band edges:
From the first line in Equation (4.67) and the definition of Hyyquiself) in Equatio?
(4.68), we find that the impulse response corresponding to the frequency response Hif!
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|H(A)] arg [H(F)]
2.0 L3
S 2
T 1
I 27T,
T o P
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7 ’ ] SO ' \‘
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o, 2T, t
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FIGURE 4.12  Frequency response of the duobinary conygssi tel| (a) Magnitude respon 8 -
(b) Phase response. {( G O

; 9
consists of two siny %)\Eﬂz)!re time-dijsgl by ads with respect to
each other@u@ (eXcept for a scali Q
b (t) — Sil’l(ﬂ't/ al Tb)/T[,]

! T, w(t — T,WT,
_ sin(m/T,) __sin(m/T,)
T wT,  w— TT, (4.70)
_ T sin(mt/T,)

Wt(Tb - t)

The impulse response 4,(z) is plotted in Figure 4.13, where we see that it has only two
distinguishable values at the sampling instants. The form of b(t) shown here explains why
we also refer to this type of correlative coding as partial-response signaling. The response
to an input pulse is spread over more than one signaling interval; stated in another way,
the response in any signaling interval is “partial.” Note also that the tails of by(¢) decay as
1/]¢|?, which is a faster rate of decay than the 1/ |t| encountered in the ideal Nyquist
channel.

The original two-level sequence {4,} may be detected from the duobinary-coded
sequence {c;} by invoking the use of Equation (4.66). Specifically, let 4, represent the
estimate of the original pulse 4, as conceived by the receiver at time = kt,. Then, sub-
tracting the previous estimate 4,_; from ¢y, we get

ﬁk =Cp — dk_1 (4.71)

It is apparent that if ¢, is received without error and if also the previous estimate d,_; at
time ¢ = (k — 1)T,, corresponds to a correct decision, then the current estimate 4, will be

Y
t
-21,, T, 0 T, 2Ty ~—-"31, 4T,

FIGURE 4.13  Impulse response of the duobinary conversion filter.
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Sayb=1if [cp] <1

Decision
device

Say by =0if o [ > 1

Threshold =1
FIGURE 4.15  Detector for recovering original binary sequefice from the precoded duobinary a\‘

coder output. -‘e
fawl

When |c,| = 1, the receiver simply makes a random g symbol 1 qu
According to this decision rule, the detector @ : er, the oytput ofs '1§ is -~
compared in a decision device to a_ thcegholdhol 1.8 block di the -% is
shown in Figure 4.15. A us aqs‘this etector is that fio ed@e-of any input
sample other than ¢ t required. Hen pr aton cannot occur in

the dgtect@ﬁ@ P a

B ExampLE 4.3 Duobinary Coding with Precoding

Consider the binary data sequence 0010110. To proceed with the precoding of this sequence,
which involves feeding the precoder output back to the input, we add an extra bit to the
precoder output. This extra bit is chosen arbitrarily to be 1. Hence, using Equation (4.73), we
find that the sequence [4,} at the precoder output is as shown in row 2 of Table 4.1. The polar
representation of the precoded sequence {d,} is shown in row 3 of Table 4.1, Finally, using
Equation (4.74), we find that the duobinary coder output has the amplitude levels given in
row 4 of Table 4.1.

To detect the original binary sequence, we apply the decision rule of Equation {4.76),
and so obtain the binary sequence given in row § of Table 4.1. This latrer result shows that,
in the absence of noise, the original binary sequence is detected correctly. 4§

2 MODIFIED INUOBINARY SIGNALING

In the duobinary signaling rechnique the frequency response H(f), and consequently the
power spectral density of the transmitted pulse, is nonzero at the origin. This is considered
to be an undesirable feature in some applications, since many communications channels
cannot transmit 2 DC component. We may correct for this deficiency by using the class
IV partial response or modified duobinary technique, which involves a correlation span
of two binary digits. This special form of correlation is achieved by subtracting amplitude-
modulated pulses spaced 27T, seconds apart, as indicated in the block diagram of Figure

[ TaBLE 4.1 [llustrating Example 4.3 on duobinary coding

Binary sequence {5} 0 0 1 0 1 1 0
Precoded sequence {d,} 1 1 1 0 0 1 0

Two-level sequence {a;} +1 +1 +1 -1 -1 +1 -1 -1
Duobinary coder output {c,) +2 42 0 -2 0 0 -2
Binary sequence obtained by 0 0 1 0 1 1 0

applying decision rule of Eq. (4.76)
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Here, again, we find that a three-level signal is gencrated. With a, = 1, we find that ¢,
takes on one of three values: +2, 0, and —2.
The overall frequency response of the delay-line filter connected in cascade with an

ideal Niyquist channel, as in Figure 4.16, is given by
Hiolf) = Hyyquisd FY1 — exp(—i4mfTy)]

= 2jHnyquisi f)sin(27f T,) exp(—j27fT)
where the subscript IV in Hyy(f) indicates the pertinent class of partial response and
Hpyyquislf) is as defined in Equation (4.68). We therefore have an overall frequency re-
sponse in the form of a half-cycle sine function, as shown by
2j sin(2nf Ty) exp(—2wfTp), | fl = 12T,
0, elsewhere

(4.77)

(4.78)

Hw(f) = { (479)

The corresponding magnitude response and phase response of the modified duobinary
coder are shown in Figures 4.174 and 4.17b, respectively. A useful feature of the modified
duobinary coder is the fact that its output has no DC component. Note also that this

arg [Hpy ()]

L 0 i
27T, !
fo N2

\
1 1 0 1 1 )

Tom, 4T, 4T, £ 2

(@) b)

FIGURE 4,17 Frequency response of the modified duobinary conversion filter. (a) Magnitude
response. (b) Phase response.

o
i 2
I L
I‘ 2T, ;
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second form of correlative-level coding exhibits the same continuity at the band edges as
in duobinary signaling.

From the first line of Equation (4.78) and the definition of Hyyquise{f) in Equation
{4.68), we find that the impulse response of the modified duobinary coder consists of two
sinc (Nyquist) pulses that are time-displaced by 2T, seconds with respect to each other, as
shown by (except for a scaling factor)

. , ) 1
_ sin{mt/T;)  sin[w(t = 2T,)/T,)] \

hlV(t) = ﬂ't/Tb ( 2Tb /Tb tesa
_sin(mt/T,)  sin(mt/T,) NO 4.50) Q
M of ©°

Tt/ Tb

This impuls igure 4. 18 wh - sifiods lz&asthree distinguish-
able levels tants No duoblnary signaling, the tails
of bry{¢) forghe modlﬁed duobmary 51g

To eliminate the possibility of erro propagatlon in the modlﬁed duobinary system,
we use a precoding procedure similar to that used for the duobinary case. Specifically,

prior to the generation of the modified duobinary signal, 2 modulo-two logical addition
is used on signals 2T, seconds apart, as shown by (see the front end of Figure 4.16)

dp=b, ®di
_ {symbol 1 if either symbol b, or symbol d;_, (but not both) is 1(4.81)
symbol 0 otherwise

where {h,} is the incoming binary data sequence and {d,} is the sequence at the precoder
output. The precoded sequence {d,} thus produced is then applied to a pulse-amplitude
modulator and then to the modified duobinary conversion filter.

In Figure 4.16, the output digit ¢, equals —2, 0, or +2, assuming that the pulse-
amplitude modulator uses a polar representation for the precoded sequence {d;}. Also we
find that the detected digit b, at the receiver output may be extracted from ¢; by disre-
garding the polarity of c,. Specifically, we may formulate the following decision rule:

If |ci| > 1,  say symbol by is 1

4.82
If|cy| <1,  say symbol by is 0 (4.82)

At

1.0

~ | N ;
AT, o T, o1, 3T, AT,

A0 ———————

FIGURE 4.18 Impulse response of the modified duobinary conversion filter.
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Transmitter Transmitter
- ! Common !
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Receiver J L Receiver

(a)
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Transmitter
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X e Receiver
N/ Echo-free
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FIGURE 4.22 Full-duplex operation using (4) time compression multiplexing, and
(b) echo-cancellation. '

Receiver

Echo-free
signal

(b

Figure 4.224. To account for propagation time across the line, a guard time s inserted
between individual bursts of data. Accordingly, the line rate is slightly greater than
twice the data rate.

Echo-cancellation mode, which supports the simultaneous flow of data along the
common line in both directions. For this form of transmission to be feasible, each
transceiver {transmitter/receiver) includes a hybrid for two purposes: the separation
of the transmitted signal from the received signal and the two-to-four-wire conver-
sion, as shown in Figure 4.22b. The hybrid, or more precisely, the hybrid trans
former, is basically a bridge circuit with three ports (terminal pairs), as depicted in
Figure 4.23. If the bridge is not perfectly balanced, the transmitter port of the hybrid

L

z
[
E
i ¥4
Transmitter . il) Subscriber
_ loop
1 D)

-
Receiver

1 I

FIGURE 4.23 Simplified circuit of hybrid transformer. For the bridge to be balanced, the
reference impedance Z..¢ should equal the line impedance z;.
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Transmitted
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FIGURE 4.25 Model of tv\nsted-palr N 8Q
2. Far-end crosstalk (FEX]T), gex&a d trans % fu@‘svay
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FEXT nat h a e line los XT does not. Accord.
ingly, in thd c o ancellanon scheme ere mgnals travel in both direc-
h§tronger th

tions in the ‘cable, NEXT will be muc FEXT Henceforth, we ignore the
effect of FEXT.

Indeed, near-end crosstalk and intersymbol interference are the two most important
factors in determining the performance of a digital subscriber loop. Figure 4.25 shows the
model of a twisted-pair channel dominated by these two impairments. Since all twisted
pairs are usually transmitting similar signals, we may model the NEXT as a signal with
the same power spectral density as the transmitted signal passing through a crosstalk
frequency response Hyexr(f), which is approximated by

Hyexrlf) = Bf 32 (4.87)

where B is a constant of the cable. The interesting point to note from Figure 4.25 is that
both the transmitted signal and the interfering signal have the same power spectral density;
they differ from each other merely in their associated frequency responses, as shown in
Equations (4.85) and (4.87), respectively. When the model described herein is used for
simulation study, the transmitted signal is represented by a random data sequence, while
the interference is represented by a Gaussian noise sequence.

= LINE CODES FOR DIGITAL SUBSCRIBER LINES

Now that we have identified the major transmission impairments, we may describe the
desirable features the spectrum of a transmitted signal should exhibit:

1. The power spectral density of the transmitted signal should be zero at zero frequency,

since no DC transmission through a hybrid transformer is possible.

The power spectral density of the transmitted signal should be low at high frequencies

for the following reasons:

& Transmission attenuation in a twisted pair is most severe at high frequencies.

b Crosstalk between adjacent twisted pairs increases dramatically at high frequencies
because of increased capacitive coupling. In this regard, recall that the impedance
of a capacitor is inversely proportional to frequency.

To satisfy these desirable properties, we have to be careful in choosing the line code

that maps the incoming stream of data bits into electrical pulses for transmission 0%

the line. Various possibilities, cach with its own advantages and disadvantages, exist

2

H
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for such a choice. The list of potential candidates for line codes includes the
following;:
> Manchester code, which is simple and has zero DC component. Its disadvantage is
the occupation of a large spectrum, which makes it vulnerable to near-end crosstalk
and intersymbol interference. (The Manchester code was discussed in Section 3.7.)
> Modified duobinary code, which has zero DC, is moderately spectrally efficient, \‘
and causes minimal intersymbol interference. However, simulation studies of
crosstalk performance of the modified duobinary code have shown

munity to near-end crosstalk and intersymbol interferenge ida @
poorer than that of block codes on worst-case suhsgribe NFhe modified

duobinary code was discussed in Sectign 4. 8?
» Bipolar code, in which successiv 1fﬁro¥em ed alternagelypby p d
negative but equal leve d boM0%s represent eghave SBipolar
signaling has ze r simulations hage sho t ear-end cross-
ta i @n ifterference perfi @ht nferior to the modified
du xz on all digital s %‘ (The bipolar code, also known as
the Nternate mark inversion (AN) coB6, discussed in Section 3.7.)
* 2B1Q code, which stands for two binary digits encoded into one quaternary sym-
bol. This code is a block code representing a four-level PAM signal, as illustrated
in Figure 4.20. Assuming that symbols 1 and 0 are equiprobable, the 2B1Q code
has zero DC on the average, Moreover, among all the line codes considered herein,
it offers the greatest baud reduction, and the best performance with respect to
near-end crosstalk and intersymbol interference.

Itis because of the desirable properties of the 2BIQ code compared to the Manchester
code, modified duobinary code, the bipolar code, and other line codes not mentioned here,”
that the 2B1Q code has been adopted as the North American standard for digital sub-
scriber loops.

Using the 2B1Q as the line code and VLSI implementation of a transceiver that
incorporates adaptive equalizers and echo cancellers, it is possible to achieve a bit error
rate of 10”7 operating full duplex at 160 kb/s on the vast majority of twisted-pair sub-
scriber lines. A bit error rate of 1077 with 12 dB noise margin, when 1 percent worst-case
NEXT is present, is an accepted performance criterion for digital subscriber lines. Noise
margin is the amount of receiver noise (including uncancelled echo) that can be tolerated
without exceeding the 1077 error rate.

2 ASYMMETRIC DIGITAL SUBSCRIBER LINES

Another important type of DSL is the asymmetric digital subscriber line (ADSL), which is
a local transmission system designed to simultaneously support three services on a single
twisted-wire pair:

1. Data transmission downstream (toward the subscriber) at bit rates of up to 9 Mb/s.

2. Data transmission upstrearm (away from the subscriber) at bit rates of up to 1 Mb/s.
3. Plain old telephone service (POTS).

The downstream and upstream bit rates depend on the length of the twisted pair used to
do the transmission. The DSL is said to be “asymmetric” because the downstream bit rate
is much higher than the upstream bit rate. Analog voice is transmitred at baseband fre-
quencies and combined with the passband transmissions of downstream and upstream



286 CHAPTER 4 BASERAND PULSE TRANSMISSION

where ) = C(f), g(t) = Q(f), and R; = S,(f)- Solving Equation (4.109) for Cify
we get . ’

=T N, {4.110)

In Problem 4.33 it is shown that the power spectral density of the sequence | 1 a\‘
can be expressed as N é.%
Q{ m

which means T_hat the po e of the @
pertodzc f on (4.110) su g n of the opti-
the casca omponents
atched @ where q(t) = glt) k b(b).

filter whose 1mpuls%
4 A transversal (tapped- delay IinePequalizer whose frequency response is the inverse
of the periodic function 8,{f) + (No/2).

To implement Equation (4.110) exactly we need an equalizer of infinite length. In practice,
we may approximate the optimum solution by using an equalizer with a finite set of
coefficients {c,}i-_n, provided N is large enough Thus the receiver takes the form shown
in Figure 4.27. Note that the block labeled 2~ 1jn Figure 4.27 introduces a delay equal o
T, which means that the tap spacing of the equalizer is exactly the same as the bit duration
T,. An equalizer so configured is said to be synchronous with the transmitter.

# PRACTICAL CONSIDERATIONS

The mmse receiver of Flgure 4.27 works well in the laboratory, where we have access 0
the system to be equalized, in which case we may determine a transversal equalizer char-
acterized by the set of coefficients {ce}2L _n» which provides an adequate approximation
to the frequency response C(f) of Equation (4.110). In a real-life telecommunications
environment, however, the channel is usually time varying. For example, in a public

Matched
filter

Received
signal =— e
)

\—y(nTb)

Ho

FIGURE 4.27 Optimum linear receiver consisting of the cascade connection of matched filter
and transversal equalizer.
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When the effect of intersymbol interference is severe, traces from the upper portion of the
eye pattern Cross traces from the lower portion, with the result that the eye is COmpletely
closed. In such a situation, it is impossible to avoid errors due to the combined presence
of intersymbol interference and noise in the system.

In the case of an M-ary system, the eye pattern contains (M ~ 1) eye openings stacked
up vertically one on the other, where M is the number of discrete amplitude levels used ¢,
construct the transmitted signal. Ina strictly linear system with truly random data, all these
eye openings would be identical.

In the next two experiments, we use computer simulations to study the
for a quaternary (M = 4) baseband PAM transmission system undggy is @ , RoRuany

band-limited conditions. The effect of channel nonlinearim'e #discussed in 8Q

Problem 4.38. O
Experime om\{f‘&-el\h!e “( ?)lA O“

Figure 4.3 eye diagram of § aaﬁzed conditions: no channe]
noise and n® bandwidth limitation. Theygour s used are randomly generated on
a computer, with raised cosine pulse-shabing. The system parameters used for the gener-
ation of the eye diagram are as follows: Nyquist bandwidth W = 0.5 Hz, rolloff factor
« = 0.5, and symbol duration T = T, log, M = 2T,. The openings in Figure 4.34 are
perfect, indicating reliable operation of the system. Note that this figure has M — 1 =3
openings.

Figures 4.34b and 4.34c show the eye diagrams for the system, but this time with
channel noise cotrupting the received signal. These two figures were simulated for signal-
to-noise ratio SNR = 20 dB and 10 dB, respectively, with the SNR being measured at the
channel output. When SNR = 20 dB the effect of channel noise is hardly discernible in
Figure 4.34b, but when SNR = 10 dB the openings of the eye diagram in Figure 4.34care
barely visible.

Experiment 2: Effect of Bandwidth Limitation

Figures 4.35a and 4.35 b show the eye diagrams for the quaternary system using the same
parametets as before, but this time under a bandwidth-limited condition and a noiseless
channel. Specifically, the channel is now modeled by a low-pass Butterworth filter, whose
squared magnitude response is defined by

1
HOW = T 5™
where N is the order of the filter, and f, is its 3-dB cutoff frequency. For the computet
experiment described in Figure 4,354, the following values are used:
N = 25 and fo, = 0.975 Hz
The bandwidth required by the PAM trasmission system is computed to be
By = W(l + a) = 0.75 Hz

Although the channel bandwidth (i.e., cutoff frequency) is greater than absolutely nece®
sary, its effect on the passband is observed as a decrease in the size of the eye opening
compared to those in Figure 4.344. Instead of the distinct values at time £ = 1 s (as show?!
in Figure 4.344), now there is a blurred region.

A\

A
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FIGURE 4.34 (a) Eye diagram for noiseless quaternary system. (b) Eye diagram for quaternary
system with SNR = 20 dB. (¢) Eye diagram for quaternary system with SNR = 10 dB.
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m; 50 F10] = estimate of m;
hizisr?:ie —l){ Transmitter — Channel Receiver

Ficure 5.1 Block diagram of a generic digital communication system.

The channel is assumed to have two characteristics:

1
1. The channel is linear, with a bandwidth that is wide enough to accom‘(e%a\

transmission of signal s, () with negligible or no distortion. Q

2. The channel noise, 2/(2), is the sample function of ea aussian nise

process. The reasons for this second a tﬁWﬁ makes receiver la-
tions tractable, and it isa reasm dxxi e type of poig€Hese y
practical communicatj @ . ‘3@

We refer Ka%n.n as an additiue 1wps @ notse (AWGN) channel, Ac-

cordingly, e ma¥ express the receiued@aﬁ[ g

0=t=T
x(t) = si(t) + wlt), {,. s (53)

and thus model the channel as in Figure 5.2.

The receiver has the task of observing the received signal x(z) for a duration of T
seconds and making a best estimate of the transmitted signal s,(t) or, equivalently, the
symbol ;. However, owing to the presence of channel noise, this decision-making process
is statistical in nature, with the result that the receiver will make occasional errors. The
requirement is therefore to design the receiver so as to minimize the average probability
of symbol error, defined as

M
P, = >, p: Plir # m; |m) (54)
=1

where m; is the transmitted symbol, # is the estimate produced by the receiver, and
P(s# # m; |m;) is the conditional error probability given that the ith symbol was sent. The
resulting receiver is said to be optimum in the minimum probability of error sense.

This model provides a basis for the design of the optimum receiver, for which we
will use geometric representation of the known set of transmitted signals, {s;(#)}. This
method, discussed in Section 5.2, provides a great deal of insight, with considerable sim-
plification of detail.

Transmitted Received
signal signal
50 + Xe)

White Gaussian noise
win

FIGURE 5.2 Additive white Gaussian noise (AWGN) model of a channel.

Q2
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Case 1

In the first case, we assume that it is possible to perform the mapping from bip,
to M-ary symbols in such a way that the two binary M-tuples corresponding to any pair
of adjacent symbols in the M-ary modulation scheme differ in only one bit position, This
mapping constraint is satisfied by using a Gray code. When the probability of symbo]
error P, is acceptably small, we find that the probability of mistaking one symbo] for
either one of the two “nearest” symbols is much greater than any other kind of sym}

it follows that the average probability of symbol error is related

follows: m
E, é@[i t'h‘XiSQerror} 66 O“
s s

\
p(e\l = p@@,a .

= log,

error. Moreover, given a symbol error, the most probable number of bit egrorsa
subject to the aforementioned mapping constraint. Since there are lo : e@]
ﬁ el%or rate 5

We also note that
P, = P(ith bit is in error) = BER (5.98)

It follows therefore that the bit error rate is bounded as follows:

P
‘£ =< BER =
TogM BE P, (5.99)

Case 2

Let M = 2K, where K is an integer. We assume that all symbol errors are equally
likely and occur with probability

Pe — Pe
M-1 2K-1
where P, is the average probability of symbol error. What is the probability that the ith
bit in a symbol is in error? Well, there are 2X~1 cases of symbol error in which this

particular bit is changed, and there are 2X~ cases in which it is not changed. Hence, the
bit error rate is

R 5.
BE (2}{ )Pe (
or, equiv alently s

BER (M )Pe (

Note that for large M, the bit error rate approaches the limiting value of P,/2. The same
idea described here also shows that bit errors are not independent, since we have

K—2

X1 P, # (BER)*

P(ith and jth bits are in error) =

52\

Q2
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LEiSummary and Discussion

The primary goal of the material presented in this chapter is the formulation of a systematic
procedure for the analysis and design of a digital communication receiver in the presence

of additive white Gaussian noise (AWGN). The procedure, known as maximum likelihood
detection, decides which particular transmitted symbol is the most likely cause of the noisy

signal observed at the channel output. The approach that led to the formulation of the 1
maximum likelihood detector (receiver) is called signal-space analyszs The bastc 1d a
approach is to represent each member of a set of transmitted signals

vector, where N is the number of orthonormal basis funcuons ne geo-

metric representation of the transmitted signals. The set o veclors¥o ormed d 8Q

a signal constellation in an N- d1mens1ona1 s

For a given signal constellatlo ver! S b1 ity of e
in maximum hkehhood s1gr er a AWGN cha e rint to otatlon
of the signal const ts translatlon How, e ce a ew simple (but

important) @ 1ca calcula 3 act1cal proposition. To over-
come this df cul customary pra?oi t to the use of bounds that lend
themselves to computatlon in a straightfdkward manner. In this context, we described the
union bound that follows directly from the signal-space diagram. The union bound is based
on an intuitively satisfying idea: The probability of symbol error P, is dominated by the
nearest neighbors to the transmitted signal. The results obtained using the union bound
are usually fairly accurate when the signal-to-noise ratio is high.

With the material on signal-space analysis and related issues on hand, we are well-
equipped to study passband data transmission systems, which we do in Chapter 6.

l NOTES AND REFERENCES

1. The geometric representation of signals was first developed by Kotel’nikov in 1947: V. A.
Kotel'nikov, The Theory of Optimum Noise Immunity (Dover Publications, 1960), which
is a translation of the original doctoral dissertation presented in January 1947 before the
Academic Council of the Molotov Energy Institute in Moscow. In particular, see Part I of
the book. This method was subsequently brought to fuller fruition in the classic book by
Wozencraft and Jacobs (1965). Signal-space analysis is also discussed in Cioffi (1998),
Anderson (1999), and Proakis {1995).

2. In Section 5.7, we derived the union bound on the average probability of symbol error; the
classic reference for this bound is Wozencraft and Jacobs (1965). For the derivation of tighter
bounds, see Viterbi and Omura (1979, pp. 58-59).

3. In Chapter 4, we used the following upper bound on the complementary error function

exp(—#*)
erfc(u) < N

For large positive #, a second bound on the complementary error function is obtained by
omitting the multiplying factor 1/« in the above upper bound, as shown by
exp(—#’)
erfc(u) < ————
NV

It is this second upper bound that is used in Equation (5.97).
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(e

5.14 In the Bayes test, applied to a binary hypo%’ obleth where we have &)se
one of two possible hypotheses 1s ize the risk tbyc
\, ‘ ﬂ say Hong 1s %
(€ 53
+ C1 ( is true)
+ CoM,P(say Hy|H, is true)

The terms Cgg, Cyo, Ci1, and Cy,; denote the costs assigned to the four possible outcomes
of the experiment: The first subscript indicates the hypothesis chosen, and the second the
hypothesis that is true. Assume that Cy > Cyo and Cp; > C;. The pg and p; denote the
a priori probabilities of hypotheses H, and H;, respectively.

(a) Given the observation vector x, show that the partitioning of the observation space
so as to minimize the risk R leads to the likelibood ratio test:

say Hp if A(x) < A
say Hy if A{x) > A

where A(x) is the likelibood ratio

_ Ix(x|Hy)
Fx(x|H,

and A is the threshald of the test defined by

20{C10 — Coo)
p1{Cor — C11)

Ax)

A=

(b) What are the cost values for which the Bayes’ criterion reduces to the minimum
probability of error criterion?

Principles of Rotational and Translational Invariance

5.15 Continuing with the four line codes considered in Problem 5.1, identify the line codes
that have minimum average energy and those that do not. Compare your answers with
the observations made on these line codes in Section 3.7.

5.16 Consider the two constellations shown in Figure 5.11. Determine the orthonormal matrix
Q that transforms the constellation shown in Figure 5.11a into the one shown in Figure
5.11b.

FIGURE P5.13 Otesa\‘

Q2



PASSBAND DATA
TRANSMISSION

\1
This chapter builds on the material developed in Chapter 5 on signal-spgce @tasa

discusses the subject of digital data transmission over a band-pass ch e

linear or nonlinear. As with analog communicatiops, thi mda nsmission gelies Q

on the use of a sinusoidal carrier wave modul te**ﬂ‘@t stream. ﬁ «~
Specifically, the following to Ssewed: 6 A. O

B Different methods?% OJI ion, namgly, phas @eygquadmture-

n, and

amplitude modula requency-shift g g‘: ¥ir individual variants.

B Coberent detection of modulated signals in additive white Gaussian noise, which requires
the receiver to be synchronized to the transmitter with respect to both carrier phase and
bit timing.

B Noncoberent detection of modulated signals in additive white Gaussian noise,
disregarding phase information in the received signal.

B Modems for the transmission and reception of digital data over the public switched
telephone network.

B Sophisticated modulation techniques, namely, carrierless amplitude/phase modulation and
discrete multitone, for data transmission over a wideband channel with medium to severe
intersymbol interference.

B Techniques for synchronizing the receiver to the transmitter.

| 6.1 Introduction

In baseband pulse transmission, which we studied in Chapter 4, a data stream represented
in the form of a discrete pulse-amplitude modulated (PAM) signal is transmitted directly
over a low-pass channel. In digital passband transmission, on the other hand, the incoritg
data stream is modulated onto a carrier (usnally sinusoidal) with fixed frequency fimits
imposed by a band-pass charinel of interest; passband data transmission is studied in this
chapter.

The communication channel used for passband data transmission may be a micto*
wave radio link, a satellite channel, or the like. Yet other applications of passband dat?
transmission are in the design of passband line codes for use on digital subscriber loops
and orthogonal frequency-division multiplexing techniques for broadcasting. Inany evetlh
the modulation process making the transmission possible involves switching (keying) t*
amplitude, frequency, or phase of a sinusoidal carrier in some fashion in accordance W
the incoming data. Thus there are three basic signaling schemes, and they are known #

344
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Returning to the functional model of Figure 6.2, the bandpass communication chan-
nel, coupling the transmitter to the receiver, is assumed to have two characteristics:

1. The channel is linear, with a bandwidth that is wide enough to accommodate the
transmission of the modulated signal s;(2) with negligible or no distortion.

2. The channel noise w/(t} is the sample function of a white Gaussian noise process of
zero mean and power spectral density No/2.

1
The assumptions made herein are basically the same as those invoked in Chapt %a.\
with signal-space analysis. ')i
The receiver, which consists of a detector followed b‘yﬁmx ecoder,
t T

petforms two functions:

1. It reverses the operations performe “
2. It minimizes the effect t e estimate %@or tA€trans-
mitted symbol e
| 6.3 Coherent Ehuse-Shtft Keytng E g

With the background material on the coherent detection of signals in additive white Gaus-
sian noise that was presented in Chapter § at our disposal, we are now ready to study
specific passband data transmission systems. In this section we focus on coherent phase-
shift keying (PSK) by considering binary PSK, QPSK and its variants, and finish up with
M-ary PSK.

# BINARY PHASE-SHIFT KEYING

In a coherent binary PSK system, the pair of signals s;{#) and s,(¢) used to represent binary
symbols 1 and 0, respectively, is defined by

s1(t) = lzTi cos(27f.t) (6.8)
b

s,(t) = /Z;‘b Q2aft+m) = — /—ZTE—" cos(2nf.t) (6.9)
b b

where 0 < t < T, and E, is the transmitted signal energy per bit. To ensure that each
transmitted bit contains an integral number of cycles of the carrier wave, the carrier fre-
quency f; is chosen equal to #,./T,, for some fixed integer #,. A pair of sinusoidal waves
that differ only in a relative phase-shift of 180 degrees, as defined in Eqautions (6.8) and
(6.9), are referred to as antipodal signals.

From this pair of equations it is clear that, in the case of binary PSK, there is only
one basis function of unit energy, namely,

&aq{t) = \/Tzcos(wact), 0=t<T, (6.10)
b
Then we may express the transmitted signals s,(¢) and s,(¢) in terms of ¢,(2) as follows:
)= VEit), 0=t<T, (6.11)

and
= ~VE$.(t), 0=t<T, (6.12)
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other hand, if x; < 0, it decides in favor of symbol 0. If x, is exactly zero, the receiver
makes a random guess in favor of 0 or 1.

Power Specira of Binary PSK Signals

From the modulator of Figure 6. 4a, we see that the complex envelope of a binary
PSK wave consists of an in-phase component only. Furthermore, depending on whether
we have symbol 1 or symbol 0 at the modulator input during the signaling inte
0 =t =< T, we find that this in-phase component equals +g(t) or —g(t), %
where g(t) is the symbol shaping ﬁmctzon defined by

A\

glt) = Scjm d%n%?

We assume that the b1 a random, w1th s e ally likely and
the d1ff

the symboll st tlcally independent. In
Example 1. 1 it is shown th! ﬁ tral density of a random binary
wave so des 1bed is equal to the energy ty of the symbol shaping function

divided by the symbol duration. The energy spectral density of a Fourier transformable
signal g(z) is defined as the squared magnitude of the signal’s Fourier transform. Hence,
the baseband power spectral density of a binary PSK signal equals

2E, sin*(#T,f)
Sslf) = =)
s (mTof)? (6.22)
= 2E, sinc*(T,f)
This power spectrum falls off as the inverse square of frequency, as shown in Figure 6.5.
Figure 6.5 also includes a plot of the baseband power spectral density of a binary

FSK signal, details of which are presented in Section 6.5. Comparison of these two spectra
is deferred to that section.

Binary PSK

Delta function
(part of FSK spectrum)

| Binary
FSK

Normalized power spectral density, Sglfi2E,
o
[&4]
I

|
0 0.5 1.0 1.5 2.0
Normalized frequency, £T;

FIGURE 6.5 Power spectra of binary PSK and FSK signals.
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Input
binary o] 1 1 0 1 0 0 o]
sequence TV e ovel
Dibit 01 Dibit 10 Dibit 10 Dibit 00
(@
Odd-numbered sequence 0 1 1 0
Polarity of coefficient s; - + + -

ANCADN N AN N

|
sl N NNT T T TV 59-\
e

Even-numbered sequence
Polarity of coefficient s;; e

AN AN WAWAWAWANANAY
AAVAN\VAVAVIVAVAVAY

FIGURE 6.7 (a) Input binary sequence. (b) Odd-numbered bits of input-sequence and associated
binary PSK wave. (¢) Even-numbered bits of input sequence and associated binary PSK wave.
(d) QPSK waveform defined as s() = s;1,(f) + si2¢b2(t).

off the appropriate regions. We thus find that the decision regions are quadrants whose vertices
coincide with the origin. These regions are marked Zs, Z,, Z3, and Z,, in Figure 6.6, according
to the message point around which they are constructed.

Error Probability of QPSK
In a coherent QPSK system, the received signal x(t) is defined by

0=t=T

_ (6.28)
i=1,23,4

x(t) = s,{t) + wlz), {
where w(2) is the sample function of a white Gaussian noise process of zero mean and

power spectral density No/2. Correspondingly, the observation vector x has two elements,
%, and x,, defined by

.
51 = [ %000 do
VE cos| (2i — 1) g] + wy (6.29)

-
3 4

il
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bandwidth. For a prescribed performance, QPSK uses channel bandwidth better than bi-
nary PSK, which explains the preferred use of QPSK over binary PSK in practice.

Generation and Detection of Coherent QPSK Signals

Consider next the generation and detection of QPSK signals. Figure 6.8 shows a
block diagram of a typical QPSK transmitter. The incoming binary data sequence is first
transformed into polar form by a nonreturn-to-zero level encoder. Thus, symbols 1 and 0
are represented by +VE, and ~A/E,, respectively. This binary wave is next
means of a demultiplexer into two separate binary waves consisting of

%& that
S;Nan

numbered input bits. These two binary waves are denoted by a,(

in any signaling interval, the amplitudes of a,(¢ and s, TESpECti ly,
depending on the particular dibit that is be h two binary w ﬁ
and 4,(¢) are used to modulate‘a pair f rs or ortho 51s
¢.(t) equal to V2T cosﬁZ\'n'f\ qual to \/2/T sin(2 f . The It is a pair of
&y = 1)2/T cos(2mft) 4
Binary Polar nonreturn- QapPsSK
data to-zero level > Demultiplexer b3 )9 i
sequence encoder +< ng(I:)al
()
= (%)

i

&,(f) = \J 2/T sin(2mf.5)
(@)

Threshold = 0

Xy

T -
f @t o Decision
[}

device

-NO]

Received In-phase channel Estimate of
signal Multiplexer =3 transmitted binary
(1) saquence

T X it
f @ 2 Decision
0 device

3,() T

Threshold =0

Quadrature channel
»

FIGURE 6.8 Block diagrams of (a) QPSK transmitter and (b} coherent QPSK receiver.

a\‘
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binary PSK signals, which may be detected independently due to the orthogonality of .0y
and ¢,(t). Finally, the two binary PSK signals are added to produce the desired QPlSK
signal.

The QPSK receiver consists of a pair of correlators with a common input and supplieg
with a locally generated pair of coherent reference signals ¢ (¢} and ¢,(¢), as in Figure
6.8b. The correlator outputs x; and x,, produced in response to the received signa] x(t)
are each compared with a threshold of zero. If x; > 0, a decision is made in favoy 0;
symbol 1 for the in-phase channel output, but if x; < 0, a decision is made in favq,
symbol 0. Similarly, if x, > 0, a decision is made in favor of symbol 1 for t %
channel output, but if x, < 0, a decision is made in favor of sym& ]x‘ﬁ

r
t

a\

two
binary sequences at the in-phase and quadrature channel uts ed in a ). Q
tiplexer to reproduce the original binary seqgen m\it input with the‘%m_g -~

mum probability of symbol error in an AW h . 0 O
-
Power Syeceq*& 3%
Ass h{t inary wave at a@ﬁs random, with symbols 1 apq
0 being eqBally likely, and with the s s ed during adjacent time slots being
e

statistically independent. We make the following observations pertaining to the in-phase
and quadrature components of a QPSK signal:

1. Depending on the dibit sent during the signaling interval — T}, < ¢ =< T}, the in-phase
component equals +g(¢) or —g(t), and similarly for the quadrature component. The
£(t) denotes the symbol shaping function, defined by

E
glt) = \/; 0=t=T (6.39)

0, otherwise

Hence, the in-phase and quadrature components have a common power spectral
density, namely, E sinc?(Tf).

1.0

b
o

Normalized power spectral density, Sy(f)V4E,

<
=

| : )
0 0.25 0.5 0.75 1.0
Normalized frequency, /T,

FIGURE 6.9 Power spectra of QPSK and MSK signals.
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transmitted signal corresponds to the message point #2,, whose coordinates along the
¢4-and ¢ r-axes are +V'E and 0, respectively. Suppose that the ratio E/N, is large enough
to consider the nearest two message points, one on cither side of 1, as potential candidates
for being mistaken for 7, due to channel noise. This is illustrated in Figure 6.15b for the
case of M = 8. The Euclidean distance of each of these two points from my is (for M = 8)

diz = dyg =¢‘ 2VE sin(—%)

\1
Hence, the use of Equation (35.92) of Chapter 5 yields the averagaN -‘ﬁa;

error for coherent M-ary PSK as
-‘ -
O™ o 080
es% ely tight, for fixed

where it is a e approx1mat
M, as E/N, F T M 4, E es to the same form given in
Equation (6 QPSK

Power Specira of M-ary PSK Signals
The symbol duration of M-ary PSK is defined by

T=T,log, M (6.48)

where T, is the bit duration. Proceeding in a manner similar to that described for a QPSK
51gna] we may show that the baseband power spectral density of an M-ary PSK signal is
given by

Ss(f) = 2E sinc*(Tf)

6.49
= 2E, log, M sinc*(T,f log, M ( )

In Figure 6.16, we show the normalized power spectral density S5(f)/2E, plotted versus
the normalized frequency fT, for three different values of M, namely, M = 2, 4, 8.

w
o

I
©

-
o

Normalized power spectral density, Sp(f)/2E,

o

0.5 1.0
Normalized frequency

FIGURE 6.16 Power spectra of M-ary PSK signals for M = 2, 4, 8.
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ization complicates the determination of the probability of symbol error P, incurred in the
use of M-ary QAM characterized by a cross constellation. We therefore simply state the
formula for P, without proof, as shown here

1 (E .
P, = 2(1 - \/ﬁ) erfc( ﬁ‘;) for high Eo/N, (6.65)

which agrees with the formula of Equation (6.61) for-a square constellatlon, except éa.\‘

the inclusion of an extra 0.5 bit per dimension in the constellation.” Note a
not possible to perfectly Gray code a QAM cross constellation, {2

8 CARRIERLESS AMPLITUDE/PHAS M&Y
The passband ba51s functlo and (6. 54 % of aTectan-
gular pulse £ nctlon For reas me apparent, we
redefine th y QAM si ) in terms of a general pulse-
shaping fun 10n

0=t=T

s(t) = apg(t — kT) cos(2mft) — byg{t — kT) sin(27f.t), k=0,=*1,%2,...

(6.66)

It is assumed that carrier frequency f. has an arbitrary value with respect to the symbol
rate 1/T. On the basis of Equation (6.66), we may express the transmitted M-ary QAM
signal s(¢) for an infinite succession of symbols as

£

st) = 2 silt)
koo (6.67)

o

= > [ag(t — kT) cos2mfit) — byg(t — kT) sin(2nf.t)]
=it

This equation shows that for an arbitrary f,, the passband functions g(t — kT) cos(27f.t)
and g(¢ — kT) sin(27f.¢) are aperiodic in that they vary from one symbol to another.

How can we eliminate the time variations of these passband basis functions from
symbol to symbol? To answer this question, we find it convenient to change our formalism
from real to complex notation. Specifically, we rewrite Equation (6.67) in the equivalent
form

) = Re{ S (a + jbulglt — KT) eXP(/'ZWﬁt)}

k=—c

(6.68)
{ > Apglt — kT) explf2nf.t) }
where A, is a complex number defined by
Ay = ay, + jb, ' (6.69)

and Ref-} denotes the real part of the complex quantity enclosed inside the braces. Clearly,
Equation (6.68) is unchanged by multiplying the summand in this equation by unity ex-
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g BINarY FSK

In a binary FSK system, symbols 1 and 0 are distinguished from each other by transmitting
one of two sinusoidal waves that differ in frequency by a fixed amount. A typical pair of
sinusoidal waves is described by

|2E,
s(t) = Tbcos (2ft), 045 t=T, (6.86) ‘
0, elsewhere a

where i = 1, 2, and E,, is the transmitted signal energy per bit; theﬂ Q
8 o

is

i- . fors &(te@ncandz—-g

-
Thus symb ﬁﬂ ﬁ and symb signal described
here is kn SK. It is a gnal in the sense that phase

continuity i lways maintained, mclud witching times. This form of dig-
ital modulation is an example of continRous- phase frequency-shift keying (CPFSK), on
which we have more to say later on in the section.

From Equations (6.86) and (6.87), we observe directly that the signals s;(¢) and s,(2)
are orthogonal, but not normalized to have unit energy. We therefore deduce that the most
useful form for the set of orthonormal basis functions is

bilt) = \/sz cos(2mfit), 0=st=T, (6.88)

0, elsewhere

where i = 1, 2. Correspondingly, the coefficient s;; for i = 1, 2, and j = 1, 2 is defined by
T,
Sy = J:) s;(t);{t) dt
Ty
- j2Ep 2
= J:) T, cos(2mft) \/;b cos(2mfit) dt (6.89)

_ ]V E,, i=j
0, i#Fj
Thus, unlike coherent binary PSK, a coherent binary FSK system is characterized by having

a signal space that is two-dimensional (i.e., N = 2) with two message points (i.e., M = 2},
as shown in Figure 6.25. The two message points are defined by the

5y = [ ’ Eb] (6.90)
0
and
0
s, = [ \/E_b] (6.91)

with the Euclidean distance between them equal to V2E,. Figure 6.25 also includes a
couple of inserts, which show waveforms representative of signals s,(¢) and s,(t).
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the line joining the two message points. The receiver decides in favor of symbol 1 if the
received signal point represented by the observation vector x falls inside region Z;. This
occurs when x; > x,. If, on the other hand, we have x; < x,, the received signal point
falls inside region Z,, and the receiver decides in favor of symbol 0. On the decision
boundary, we have x; = x,, in which case the receiver makes a random guess in favor of
symbol 1 or 0.

Define a new Gaussian random variable Y whose sample value y is equal to the

difference between x; and x,; that is, ?
Yy =% X N t@

The mean value of the random variable Y depends o ol was t ns—
mitted. Given that symbol 1 was transmltted om varlables X, %

whose sample values are denoted b an values e z 0,
respectively. Correspondmg nal mean of the ran R glven that

symbol 1 wa trafre\r %
P E[Y|1] ; %@Z (6.95)

On the other hand, given that symbol 0 was transmitted, the random variables X, and X,
have mean values equal to zero and VE,, respectively. Correspondingly, the conditional
mean of the random variable ¥, given that symbol 0 was transmitted, is
E[Y]0] E[X1 \ 0] — E[X,0]
= —\/E
The variance of the random variable Y is 1ndependent of which binary symbol was trans-
mitted. Since the random variables X, and X, are statistically independent, each with a
variance equal to Ny/2, it follows that
var[Y] = var[X;] + var[X5]
=N,
Suppose we know that symbol 0 was transmitted. The conditional probability density
function of the random variable Y is then given by

(6.96)

(6.97)

(y + VEy) ] (6.98)

1
fY(ylo) = \/ZW—I\IOeXPI:_ 2N,

Since the condition x; > x;, or equivalently, y > 0, corresponds to the receiver making a
decision in favor of symbol 1, we deduce that the conditional probability of error, given
that symbol 0 was transmitted, is

P10 = P(y > 0|symbol 0 was sent)
=f0 Fely[0) dy (6.99)
-1 f B _ly + VE)? J
V2aNg o P N, Y

Put

(6.100)

a\‘
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fr.A)

Conditional
probability
of error

\1
eSa
FIGURE 6.41 Calcul:gﬁe\cind’ﬁ'(‘ hat I, > 1,, given 1, ‘

Substituting E ua{oé\’ ation (6.168 et
E Pl > l]@ﬁ (6.169)

Consider next the output amplitude /;, pertaining to the upper path in Figure 6.394. Since
the filter in this path is matched to s,(¢), and it is assumed that s,(¢) is transmitted, it
follows that ; is due to signal plus noise. Let xy and xg, denote the components at the
output of the matched filter (in the upper path of Figure 6.39a) that are in phase and in
quadrature with respect to the received signal, respectively. Then from the equivalent struc-
ture depicted in Figure 6.39b, we see that (fori = 1)

L=Vaj + x, (6.170)

Figure 6.40b presents a geometric interpretation of this relation. Since a Fourier-
transformable signal and its Hilbert transform form an orthogonal pair, it follows that x;
is due to signal plus noise, whereas x¢; is due to noise alone. This means that (1) the
random variable X, represented by the sample value x;; is Gaussian distributed with mean
VE and variance Ny/2, where E is the signal energy per symbol, and (2) the random
variable X, represented by the sample value x; is Gaussian distributed with zero mean
and variance Ny/2. Hence, we may express the probability density functions of these two
independent random variables as follows:

- 1 (xnn — \/E)Z
fX“(xll) - \/W—I\IC. exp(i No ) (6.171)
and
1 2,
Fxp(®on) = v eXP(AxFQO) (6.172)

Since the two random variables Xj; and Xy, are independent, their joint probability den-
sity function is simply the product of the probability density functions given in Equations
(6.171) and (6.172).

To find the average probability of error, we have to average the conditional proba-
bility of error given in Equation (6.169) over all possible values of I;. Naturally, this
calculation requires knowledge of the probability density function of random variables L,
represented by sample value /;. The standard method is now to combine Equations (6.171)
and (6.172) to find the probability density function of L, due to signal plus noise. However,
this leads to rather complicated calculations involving the use of Bessel functions. This
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analytic difficulty may be circumvented by the following approach. Given x;; and x ona
error occurs when, in Figure 6.39a, the lower path’s output amplitude [, due to noise al,

o
exceeds /; due to signal plus noise; from Equation (6.170) we have ne
l% =x% + xZQ] (6. 173)

The probability of such an occurrence is obtained by substituting Equation (6.173) ; into

Equation (6.169), as shown by \‘
. (5)

- Pletror|xyy, xgq) = exp( *h le t@lﬁ

This is now a conditional probability of errog, con he&ut of the m ed Q

filter in the upper path taking on values X;. ondmonal roba

tiplied by the joint probabiljty den cti T and Xowis,

given xp) and xgl Since X| statlstlcally 1ndepe1}ﬁ nt proba b1 1ry

i sity functions. The

density f t of their indivi ba
resultingu? s a comphcate nd xo;. However, the average
probability§of error, which is the issu ? be obtained in a relatlvely simple
manner. We first use Equations (6.171 172), and 6.174) to evaluate the desired error.
density as

P(err0r|xn, X1 fxn(xn)fxm(xgﬂ

1 1
= W ex P{ No [x7 + x3 + (xn — VE? + xél]}

Completing the square in the exponent of Equation (6.175), we may rewrite the exponent
except for =~1/N, as

(6.175)

E\ E
xh + xp1 + {xpn — VEP + X = Z(xn — T) +2x%, + 3 (6.176)

2

Next, we substitute Equation (6.176) into Equation {6.175) and integrate the error-density
over all x;; and xg;. We thus evaluate the average probability of error as

P, = j_m j_w P(error|xn, le)fxn(xn)fol(le) dxpy dxgy

1 E j“‘ 2 VE\?
= = - 2= 6.177
N, exp( ZNO) . °xP [ N, ("“ 2 ) |4 (6.477)
- o
. j_m exp(— ;[?) dx o

We now use the following two identities:

AR P

= 2x7 No7
Lm exp(— ;[fl) dxg: = —;1-_ (6.179)

The identity of Equation (6.178) is obtained by considering a Gaussian-distributed variable
with mean VE/2 and variance Ny/4, and recognizing that the total area under the curv
of a random variable’s probability density function equals unity; the identity of Equation

and
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Thus ?o imum fecezver12 for c@e erent detection of binary DPSK is
as shown in Figure 6.43b, which followsWMirectly from Equation (6.185). This implemen-
tation merely requires that sample values be stored, thereby avoiding the need for fancy
delay lines that may be needed otherwise. The equivalent receiver implementation that
tests squared elements as in Equation (6.186) is more complicated, but its use makes the
analysis easier to handle in that the two signals to be considered are orthogonal over the
interval (0, 2T); hence, the noncoherent orthogonal demodulation analysis applies.

6.10 Comparison of Digital Modulation
Schemes Using a Single Carrier

@ PROBABILITY OF ERROR

In Table 6.8 we have summarized the expressions for the bit error rate (BER) for coherent
binary PSK, conventional coherent binary FSK with one-bit decoding, DPSK, noncoherent
binary FSK, coherent QPSK, and coherent MSK, when operating over an AWGN channel.
In Figure 6.45 we have used the expressions summarized in Table 6.8 to plot the BER as
a function of the signal energy per bit-to-noise spectral density ratio, E,/Nj.

¢ TABLE 6.8 Summary of formulas
for the bit error rate of different
¢ digital modulation schemes

Signaling Scheme Bit Error Rate
(a) Coherent binary PSK
Coherent QPSK 2 erfc{VE,/Ny)
Coherent MSK
(b) Coherent binary FSK L eric{VE,/2N,)
(c) DPSK 2 exp(—E,/Ny)

(d) Noncoherent binary FSK 2 exp(— E4/2Np)




SYMMETRIC MODEM CONFIGURATIONS

6.11

Voiceband Modems 421

The simplest approach to the design of modems is to treat the entire PSTN as a linear
analog network, as indicated in Figure 6.47a4. {(Recall from Chapter 3 that the PSTN is
almost entirely digital due to the use of pulse-code modulation (PCM) for the transmission
of voice signals.) In such a setting, analog-to-digital and digital-to-analog conversions are
needed whenever the modems send signals to and receive signals from the PSTN. The
modem configuration depicted in Figure 6.474 exhibits “symmetry” in that both mode

are identical and the data rate downstream (from the ISP to the user) is exact]

as the data rate upstream (from the user to the ISP).
The symmetnc modem configuration of Figure 6.474

modem types, ranging in data rate from 300 /s to

A6.7 on a selection of standard modems T

sion over telephone cha

niques we ﬁ
Cons@’ ple,
i

characteris

shift keying, which catered taer %
T
the 1nformat10

the popul

Carrier frequency = 1,800 Hz
Modulation rate = 2,400 bauds

Data rate = 9,600 b/s

easmgly more sop.

@,

0%/s| as marlzed in
4b odems began gvith fi
tes As the d A{f&fﬁ

bo number of

lation tech-
telephone channel.
dard that has the following

The signaling data rate of 9,600 b/s assumes a high signal-to-noise ratio. The V.32 standard
specifies two alternative modulation schemes:

Nonredundant coding. Under this scheme, the incoming data stream is divided into
quadbits {i.e., groups of four successive bits} and then transmitted over the telephone
channel as 16-QAM. In each quadbit, the most significant input dibit undergoes
phase modulation, whereas the least significant input dibit undergoes amplitude
modulation. Discussing the phase modulation first, practical considerations favor
the use of differential phase modulation for the receiver need only be concerned with
the detection of phase charges. This matter is taken care of by using a differential
encoder, which consists of a read-only memory and a couple of delay units, as
shown in Figure 6.48a. Let Q; ,Q; ,, denote the current value of the most significant

(b}

Upstream Publi Pownstream
User's —> ublic -~ Server's
analog ey tz\?g:zchh;\de oo analog
nalo nalo;
modem 4 network g modem
(a)
Upstream ) Pownstream
User's —> Public -~ Server's
analog — tsevlvt-;t)cnh;de Py digital
nalo; igita
modem g network g modem

FIGURE 6.47 (a) Environmental overview of symmetric modem configuration: the upstream and
downstream data rates are equal. (b) Environmental overview of “asymmetric” modem configura-
tion: data rate downstream is higher than upstream.

teag;a\‘
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FIGURE 6,53 Quarter-superconstellation of V.34 modem with 240 signal points. The full super-
constellation is obtained by combining the rotated versions of these points by 0, 90, 180, and 270
degrees. (Taken from Forney et al., 1996, with permission of the IEEE.)

4. Trellis coding.

This etror-control coding technique is used to provide an effective coding gain of about
3.6 dB; there is an optional more powerful trellis code with an effective coding gain of
about 4.7 dB.

5. Decision feedback equalization.

To make full use of the available telephone channel bandwidth, including frequencies neat
the band edges where there can be attenuation as much as 10 to 20 dB, a decision feedback
equalizer (DFE) is used. (The DFE is discussed in Chapter 4.) However, it isnota straié'lf'
forward matter to combine coding with DFE because decision feedback requires immediate
decisions, whereas coding inherently involves decoding delay. The overcome this problfm:
the feedback section of the DFE is moved to the transmitter, which is made posSlb.e
through the use of the Tomlinson-Harashima precoding. (This form of equalization V14
precoding is discussed briefly in Note 12 of Chapter 4.)

17+ “ ~5
222 177 135 102 77 55 41 35|31 37 48 65 91 e
L] L] L] L] L] L ] L] L]
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where K is a prescribed constant under the designer’s control. That is, the sum of y,
transmit power and the noise variance {(power) scaled by the ratio T'/gZ must be maintaineg
constant for each subchannel. The process of allocating the transmit power P to the jy,
dividual subchannels so as to maximize the bit rate of the entire multichannel transmissjy,
system is called Joading.

WATER-FILLING INTERPRETATION OF THE OPTIMIZATION PROBLEM

at the gap T

In solving the constrained optimization problem just described, two conditi %
satisfied, namely, Equations (6.210) and (6.213). The optimum suﬁ san
a in =

interesting interpretation as illustrated in Figure 6.56 fo, 6,
is constant over all the subchannels. To simp @Win 1gure 6.56 we haleser
a2 = Np Af = 1, that is, the average if p is orallNs nel@e ing
to this figure, we may now, aen wing observations: 9} 6
+ The T;:%\’Acated to channel t@cal B power T/g2 satisfies
the tragnt Of Equation (6.21? fa channels for a prescribed valye
of thé constant K.

» The sum of power allocations to these four subchannels consumes all the available
transmit power, maintained at the constant value P.

» The remaining two subchannels have been eliminated from consideration because
they would each require negative power to satisfy Equation (6.213) for the prescribed
value of the constant K; this condition is clearly unacceptable. :

The interpretation illustrated in Figure 6.5 6 prompts us to refer to the optimum solution
of Equation (6.213), subject to the constraint of Equation (6.210), as the water-filling
solution. This terminology follows from analogy of our optimization problem with a fixed
amount of water (standing for transmit power) being poured into a container with a
number of connected regions, each having a different depth (standing for noise power).
The water distributes itself in such a way that a constant water level is attained across the
whole container. We have more to say on the water-filling interpretation of information
capacity in Chapter 9.

Returning to the task of how to allocate the fixed transmit power P among the
various subchannels of a multichannel transmission system so as to optimize the bit rate

Energy

index of subchannel, n

FIGURE 6,56 Water-filling interpretation of the loading problem.
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FIGURE 6.60 Block diagram of the discrete-multitone (DMT) data-transmission system.

» Inverse discrete Fourier transformer (IDFT), which transforms the frequency-domain
parallel data at the constellation encoder output into parallel time-domain data. For
efficient implementation of the IDFT using the fast Fourier transform (FFT) algo-
rithm, we need to choose N = 2% where & is a positive integer.

» Parallel-to-serial converter, which converts the parallel time-domain data into serial
form. Guard intervals stuffed with cyclic prefixes are inserted into the serial data on
a periodic basis before conversion into analog form.

» Digital-to-analog converter (DAC), which converts the digital data into analog form
ready for transmission over the channel.

Typically, the DAC includes a transmit filter. Accordingly, the time function h(t) should
be redefined as the combined impulse response of the cascade connection of the transmit

filter and the channel.

The receiver performs the inverse operations of the transmitter, as described here:

¥ Analog-to-digital converter (ADC), which converts the analog channel output into

digital form.

» Serial-to-parallel converter, which converts the resulting bit stream into parallel form.
Before this conversion takes place, the guard intervals (cyclic prefixes) are removed.
# Discrete Fourier transformer (DFT), which transforms the time-domain parallel data
into frequency-domain parallel data; as with the IDFT, the FFT algorithm is used to

implement the DFT.
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The approach taken in the exposition is sequential in that timing recovery is pe,
formed before phase recovery. The reason for so doing is that if we know the group dela.
incutred by transmission through the channel, then one sample per symbol at the matcheg
filter output in the receiver is sufficient for estimating the unknown carrier phase. Moge.
over, the computational complexity of the receiver is minimized by using synchronizatig,
algorithms that operate at the symbol rate 1/T.

\1
& DECISION-DIRECTED RECURSIVE ALGORITHM FOR PHASE REC Sa

As remarked earlier, the first important step in solving the s nchr§ @r lem is 1o
formulate the log-likelihood function for the,carri Sy H\given t aussian ggige. Q
had

contaminated received signal. Let /(8) denot ih®od function, which.sq

the objective function for essm, e tep 15 to determi iva & oW

with respect to 6. The fna SX oMnulate a recursive (itﬁtv a thm for com.

puting a ?T—;@l odbestimate of the unkqen absrdp-by-step manner.
EvalBation of 81(0)/06* a

Let s, (¢) denote the transmitted signal for symbol & = 0,1,..., M — 1:

E
se(t) = /27 cos(2mfit + ay), 0=t=T (6.238)
where E is the symbol energy, T is the symbol period, and
27 27
@ = 0,50 M- D (6.239)
Equivalently, we may write
2E
splt) = T cos(2mf.t + ag)g(t) (6.240)

where g(2) is the shaping pulse, namely, a rectangular pulse of unit amplitude and duration
T. Let 7, denote the carrier {phase) delay, and 7, denote the envelope (group) delay, both
of which are introduced by the channel. By definition, 7. affects the carrier and 7, affects
the envelope. Then the received signal is

x(t) = \/% cos(2mfi(t — 7.) + an)glt — T, T wit)
(6.241)

= \/%?g cos2af,t + 0 + a)glt — 7)) + wlt)

where w(t) is the channel noise and 6 is defined as —27f.7. to be consistent with the
notation in Section 6.6. Both the carrier phase 6 and group delay 7, are unknown. How
ever, it is assumed that they remain constant over the observation interval 0 = ¢ = To of
through the transmission of Lo = To/T symbols. Equivalently, we may write (using 710
place of 7, to simplify matters)

2E
x(t) = 27 cos(2mf.t + 6 + az) + wit), r=t=T+r (6-242)

% A reader who is not interested in the formal derivation of §l(6)/a8 may omit this subsection a nd move onte the

next subsection without loss of continuity.
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IGURE 6.64 Nondat@e:@y- delay synchronizer.

where 7 is the step-size parameter in which 2E/NF and 1/T are absorbed, and the error
signal e[#] is defined by Equation (6.285). The c[#] is a real number employed as the control
for the frequency of an oscillator, referred to as a number-controlled oscillator (NCO).
The scheme for implementing the timing recovery algorithm of Equations (6.285) and
(6.286) is shown in Figure 6.64. This scheme is analogous to the continuous-time version
of the early-late gate synchronizer widely used for timing recovery. It is thus referred to
as a nondatg-aided early-late delay (NDA-ELD) synchronizer. At every iteration, it works

. - T
on three successive samples of the matched filter output, namely, %| #T + 7 + %,

T
f(nT + %, ] and | #T + 3 'f',,,l). The first sample is early and the last one is late,

both with respect to the middle one.

Note that we could have simplified the derivations presented in this section by using
the band-pass to complex low-pass transformation described in Appendix 2. We did not
do so merely for the sake of simplifying the understanding of the material presented here.

6.15 Computer Experiments:
| Carrier Recovery and Symbol Timing

In this section we illustrate the operations of the recursive Costas loop and nondata-aided
early-late delay synchronizer by considering a coherent QPSK system with the following
specifications:
(i) Channel response: raised cosine (Nyquist) with rolloff factor @ = 0.5.
(i) Loop filter: first-order digital filter with its transfer function defined by
1
© = a-m
where 1y is the step-size parameter and A is a parameter to be defined.
(iii) Loop bandwidth, B; = 2% of the symbol rate 1/T; that is, B,T = 0.02.
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FiGURE 6.68 Effects of varying the step-size parameter on convergence behavior of the recur-
sive Costas loop.

When steady-state conditions have been established, the estimated phase 8 will fluc-
tuate around the true value 6. The extent of these fluctuations depends on the step-size
parameter y and the received signal-to-noise ratio:

(i) Figure 6.68 plots the phase error ¢ versus the normalized time #/T for two different
values of step-size parameter 7y, namely, 0.1 and 0.5, and fixed E/N, = 20 dB. This
figure clearly shows that the smaller we make v the smaller the steady-state fluctu-
ations in the phase error ¢ will be. However, this improvement is attained at the
expense of a slower rate of convergence of the algorithm, The number of iterations
needed by the algorithm to reach steady-state is approximately given by

1
Lo=ppr (6.291)
The normalized bandwidth B, T is itself approximately given by
B,T = 144 (6.292)

where A is the slope of the S-curve measured at the origin. For y = 0.1, and
B, T = 0.02, Equation (6.291) yields L, = 25 iterations, which checks with the solid
curve plotted in Figure 6.68. Moreover, from Equations {6.291) and (6.292) we see
that Ly is inversely proportional to v, which again checks with the results presented
in Figure 6.68.

(if) Figure 6.69 plots the phase error ¢ versus the normalized time /T for three different
values of E/N,, namely, 5, 10, and 30 dB, and fixed y = 0.08. We now see that the
larger we make the signal-to-noise ratio, the smaller the steady-state fluctuations in
the phase error ¢ will be. Moreover, the rate of convergence of the algorithm also
improves with increased signal-to-noise ratio, which is intuitively satisfying.
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Complex envelope t=nT +7, A
of matched filter o T +7,)
output at time #

30]
Error
detector

Avera‘ge Sa\‘
s(s) O-" Q
FIGURE 6.71 Scheme for measuring the S-curv{ mmly -late-delay synchrof 8

In any event, the exmx ﬂr“encal results r@ ; ;0 are in very

close agre

Experiment 2: Symbol Timing Recovery

To measure the S-curve for the nondata-aided early-late delay synchronizer for symbol
timing recovery, we may use the experimental set-up shown ion Figure 6.71, where the §
in §(8) refers to the timing offset. The S-curve so measured is plotted in Figure 6.72 for
E/N, = 10 dB and E/N, = .

Figure 6.73 plots the normalized value of the experimentally measured symbol timing
error versus E/N, for two different values of step-size parameter y, namely, T/20 and
T/200. This figure also includes theoretical plots of the corresponding modified Cramér-
Rao bound of Equation (6.293) adapted for symbol-timing error. From the results pre-
sented here, we observe that as the step-size parameter y is reduced, the normalized timing

0.8 T T

0.6f |~ ENp=e
~ = = E/N, = 10dB

0.4

-08 . . ; : . L . . .
05 04 03 02 01 0 01 02 03 04 05

Normalized timing offset 8/T

FIGURE 6.72 S-curve of NDA-ELD synchronizer measured under noiseless and noisy
conditions.



Problems 469
where k,, is the phase sensitivity, and the data signal m(#) takes on the value +1 for binary
symbol 1 and ~1 for binary symbol 0. The VCO output is

rf) = A, sin2afr + 0(2)]

(a) Evaluate the loop filter output, assuming that this filter removes only modulated com-
ponents with carrier frequency 2£.

(b) Show that this output is proportional to the data signal #2(z) when the loop is phase
locked, that is, 8(¢) = 0.

: 1
6.4 The signal component of a coherent PSK system is defined by _‘esa

s(t) = Ak sin(2mf.t) = AVT — B2 cos(2
where 0 =< # < T, and the plus sign corresponds tg s 1§ and the minus sign Byre Q
sponds to symbol 0. The first term represel% nent included for t ose | &
of synchronizing the receiver to thegtrgnsm @
(a) Draw a signal-spac - iﬁWne scheme described ,%g
you make a ﬂ ‘3 ?
(b) S E @e esence of addies § @ noise of zero mean and power
spdtral density Ny/2, the averadgﬁ i TTOr is

_I E 2
Pﬁ—zerfc( N(l k))

ervations can

where
—_ 1 2
E, = 3 AT,

{c) Suppose that 10 percent of the transmitted signal power is allocated to the carrier
component. Determine the E;/N; required to realize a probability of error equal to
1074,
(d) Compare this value of E,/N, with that required for a conventional PSK system with
the same probability of error.
6.5 (a) Given the input binary sequence 1100100010, sketch the waveforms of the in-phase
and quadrature components of a modulated wave obtained by using the QPSK based
on the signal set of Figure 6.6.
{(b) Sketch the QPSK waveform itself for the input binary sequence specified in part (a).
6.6 Let P,y and P, denote the probabilities of symbol error for the in-phase and quadrature
channels of a narrowband digital communication system. Show that the average proba-
bility of symbol error for the overall system is given by

P,=P;+ Py~ PPy

6.7 Equation (6.47) is an approximate formula for the average probability of symbol error
for coherent M-ary PSK. This formula was derived using the union bound in light of the
signal-space diagram of Figure 6.15b. Given that message point #2; was transmitted, show
that the approximate formula of Equation (6.47) may be derived directly from Figure
6.15b.

6.8 Find the power spectral density of an offset QPSK signal produced by a random binary
sequence in which symbols 1 and 0 (represented by +1) are equally likely, and the symbols
in different time slots are statistically independent and identically distributed.

6.9 Vestigial sideband modulation (VSB), discussed in Chapter 2, offers another modulation
method for passband data transmission.

(a) In particular, a digital VSB transmission system may be viewed as a time-varying one-
dimensional system operating at a rate of 2/T dimensions per second, where T is the
symbol period. Justify the validity of this statement.

(b) Show that digital VSB is indeed equivalent in performance to the offset QPSK.
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CHAPTER 7 8 SPREAD-SPECTRUM MODULATION

{operating in synchronism with the transmitter) to despread the received signa g
that the original data sequence may be recovered.

Although standard modulation techniques such as frequency modulation and pulse-cod,
modulation do satisfy part 1 of this definition, they are not spread-spectrum techniqueg
because they do not satisfy part 2 of the definition.

Spread-spectrum modulation was ongmally developed for military apphcanons
where resistance to jamming (interference) is of major concern. However, there are civil;
applications that also benefit from the unique characteristics of spread-spec
lation, For example, it can be used to provide multipath rejectzon i

radio environment. Yet another application is in multzple-acc in Wlnch
a number of independent users are required sha ¢ nnel w1thout al
ternal synchronizing mechanism; here, for ex: ention a ground-b,

environment involving mobl.lev mmumcate %

is sald about this latter é pter 8. g“
e nciples of spre @e ation, with emphasig

on dlrect- n e requency-ho a direct- -sequence spread.

spectrum te§hnique, two stages of modu First, the incoming data sequence
is used to modulate a wideband code. Thi code transforms the narrowband data sequence
into a noiselike wideband signal. The resulting wideband signal undergoes a second mod-
ulation using a phase-shift keying technique. In a frequency-hop spread-spectrum tech-
nique, on the other hand, the spectrum of a data-modulated carrier is widened by changing
the carrier frequency in a pseudo-random manner. For their operation, both of these tech-
niques rely on the availability of a noiselike spreading code called a pseudo-random or
pseudo-noise sequence. Since such a sequence is basic to the operation of spread-spectrum
modulation, it is logical that we begin our study by describing the generation and prop-
erties of pseudo-noise sequences.

§ 7.2 Pseudo-Noise Sequences

A pseudo-noise (PN) sequence is a periodic binary sequence with a noiselike waveform
that is usually generated by means of a feedback shift register, a general block diagram of
which is shown in Figure 7.1. A feedback shift register consists of an ordinary shift register
made up of m flip-flops (two-state memory stages) and a logic circuit that are intercon-
nected to form a multiloop feedback circuit. The flip-flops in the shift register are regulated
by a single timing clock. At each pulse (tick) of the clock, the state of each flip-flop is
shifted to the next one down the line. With each clock pulse the logic circuit computes 2

Logic }

| Flip-flop
1 2 . m Output
sequence

FIGURE 7.1 Feedback shift register.

Clock
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Boolean function of the states of the flip-flops. The result is then fed back as the input to
the first flip-flop, thereby preventing the shift register from emptying. The PN sequence so
generated is determined by the length  of the shift register, its initial state, and the feed-
back logic.

Let s;(k) denote the state of the jth flip-flop after the kth clock pulse; this state may
be represented by symbol 0 or 1. The state of the shift register after the kth clock pulse is
then defined by the set {s;(k), s»(k), . .., s..(k)}, where k = 0. For the initial state, k is
zero. From the definition of a shift register, we have

k=0 "a
e 120 NO
where so(k) is the input apphed to the ﬁrst ﬂ1 { ﬁh\clock pulge ﬁ
the conﬁguranon desc.rlbed 1;1 Boolean %@% 1
s

states s,(k), s2(k s S ed length 1, this n uniquely

deterrnmes of states and equence produced at
total number of m flip-flops,
3

the output e nAL#ip- op in the s ﬁa
the number §f possible states of the shift Refist t 2. It follows therefore that the

PN sequence generated by a feedback shilt register must eventually become periodic with
a period of at most 2™,

A feedback shift register is said to be linear when the feedback logic consists entirely
of modulo-2 adders. In such a case, the zero state (e.g., the state for which all the flip-flops
are in state 0) is #ot permitted. We say so because for a zero state, the input so(k) produced
by the feedback logic would be 0, the shift register would then continue to remain in the
zero state, and the output would therefore consist entirely of 0s. Consequently, the period
of a PN sequence produced by a linear feedback shift register with # flip-flops cannot
exceed 2 — 1, When the period is exactly 2 — 1, the PN sequence is called a maximal-
length-sequence or simply m-sequence.

B~ EXAMPLE 7.1

Consider the linear feedback shift register shown in Figure 7.2, involving three flip-flops. The
input s, applied to the first flip-flop is equal to the modulo-2 sum of s, and s;. It is assumed
that the initial state of the shift register is 100 (reading the contents of the three flip-flops from
left to right). Then, the succession of states will be as follows:

100, 110, 111, 011, 101, 010, 001, 100, . . ..

Modulo-2
adder

L/

Flip-flop

Output

1 2 3
50 5 P 53 sequence

FIGURE 7.2 Maximal-length sequence generator for m = 3.

Clock

a\‘
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TABLE 7.2a

Evolution of the maximal-
length sequence generated by the feedback-
shift register of Fig. 7.4a

Feedback

State of Shift Register

Symbol

[ury

Qutput
Symbol

0

HOOOOHOO‘—IO#—‘P—‘OOH»—‘»—‘HHOOOHHOHHHOH

_—O R R RO RO

N O OO O R OORORRP,POOKRRPRRKRPEOO

74‘
OOOO'—‘OOHOHHOOHHHHHOOOB@OHHHOHOH =)

OOO#—‘OOHO»—‘»—!OOHHHHHOOOH‘»—‘A»—‘#—‘OHOHO =)
. .
-
i

OHOOHO»—'{HOOHHHHHOOOHHﬂH%HOHOOO o

OOP—‘OOHOHHOOH»—‘H»—‘HOOOH»—‘O

(e}

1

HOOHOP—‘D—‘OOHP—‘HHHOOOH»—‘O

Code: 0000101011101160011111601101001
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TABLE 7.2b  Evolution of the maximal-
length sequence generated by the feedback-

shift register of Fig. 7.4b

State of Shift Register

Feedback
Symbol

Output
Symbol

HOOOOD—\HHOOHHOH(HHHHOHO@HOOHOHOH —
-
oooow»—nmoo»—»—no»—n»—u—u—»—nor—nooomowo»—no>—n»-o
ooo»—n.—n»—noo»—n»—no»—n»—n»—n»—xuo\mooom‘éwo»—kowb—koo
OOHHHOOHHOHHHHHOHOOOHOO@D—\OHD—\O‘OO
)

OHHHOOHi—owi—»—ki—v—Ov—ooowmuo'Zoi—Hooo =}

H O OO OR R CFOORRORRLRPLEEEORODODOROODR, O RO R

0

3 e\
o WO oo

R QO R O RO R OO O -

Code: 0000110101001000101111101100111
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Binary Polar nonreturn- | 5(s) mlt) .
data sequence ——==  to-zero level m B'nadrYIPSK — x(2)
(b} encoder modulator
c) T
PN code Carrier
generator

(@)

Coherent detector m NO Q
1 ﬁ
. i . 0 8
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generator
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FIGURE 7.7 Direct-sequence spread coherent phase-shift keying. (a) Transmitter. (b) Receiver.

The receiver, shown in Figure 7.7b, consists of two stages of demodulation. In the
first stage, the received signal ¥(z) and a locally generated carrier are applied to a product
modulator followed by a low-pass filter whose bandwidth is equal to that of the original
message signal 7(¢). This stage of the demodulation process reverses the phase-shift keying
applied to the transmitted signal. The second stage of demodulation performs spectrum
despreading by multiplying the low-pass filter output by a locally generated replica of the
PN signal ¢{t), followed by integration over a bit interval 0 < ¢ < T, and finally decision-
making in the manner described in Section 7.3.

# MODEL FOR ANALYSIS

In the normal form of the transmitter, shown in Figure 7.7a, the spectrum spreading is
performed prior to phase modulation. For the purpose of analysis, however, we find it
more convenient to interchange the order of these operations, as shown in the model of

TABLE 7.3 Truih table for phase modulation
0(t), radians

Polarity of Data
Sequence b(t) at Time t

+ —

Polarity of PN + 0 T
sequence c(t) at time t - T 0




492 CHAPTER 7 © SPREAD-SPECTRUM MODULATION

m{t)

+1 -

o [

-1

Carrier
AC

¢}

(@) ;
FIGURE 7.8 () Product signal m(t) = c(t)b{t). (b} Sinusoidal carrier. (c) DS/BPSK signal.

Figure 7.9. We are permitted to do this because the spectrum spreading and the binary
phase-shift keying are both linear operations; likewise for the phase demodulation and
spectrum despreading, But for the interchange of operations to be feasible, it is important
to synchronize the incoming data sequence and the PN sequeice. The model of Figure 7.9
also includes representations of the channel and the receiver. In this model, it is assumed
that the interference j(¢) limits performance, so that the effect of channel noise may be
ignored. Accordingly, the channel output is given by

y(t) = x{t) + i(t)

PN code

generator carrier

generator

. (7.12)
= ¢(t)s(t) + f(2)
| | )
Transmitter /ﬁ Channel :<—— Receiver

N

Data N s x{) ¥y u(?) .

- Binary PSK N Lo /e 1 N\ Coherent Estimate

s;’g(r;)al modulator o > x detector | o of bl
I 1
[ |
.
Carrier PNcode | | 1P ) Local

| 1
| ]

FIGURE 7.9 Model of direct-sequence spread binary PSK system.
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the output signal-to-noise ratio as the instantaneous peak power E;, divided by the variance
of the equivalent noise component in Equation (7.34). We thus write

2E,
JT.

The average signal power at the receiver input equals E,/T,. We thus define an input signal-

to-noise ratlo as \‘
Ey/ a'
(sNR), = e t@%
Hence, eliminating E;/J between Equations (7.35) a miy € press the oygput Q
signal-to-noise ratio in terms of the input sig ( ti® as ?

SNR 6’&_’( (7.37)
It is custom! r t@o express 51gn ec1bels To that end, we intro-
ally, we write

(SNR)o = (7.35)

duce a term %alled the processing gain ( ﬁned as the gain in SNR obtained
by the use of spread spectrum. Specific

PG = = 7.38

TC (7.38)

which represents the gain achieved by processing a spread-spectrum signal over an un-
spread signal. We may thus write Equation (7.37) in the equivalent form:

10 log1o(SNR) = 10 logyo(SNR); + 3 + 10 log;o(PG) dB (7.39)

The 3-dB term on the right-hand side of Equation (7.39) accounts for the gain in SNR
that is obtained through the use of coherent detection (which presumes exact knowledge
of the signal phase by the receiver). This gain in SNR has nothing to do with the use of
spread spectrum. Rather, it is the last term, 10 log,,(PG), that accounts for the processing
gain. Note that both the processing gain PG and the spread factor N (i.e., PN sequence
length) equal the ratio T,/T,. Thus, the longer we make the PN sequence (or, correspond-
ingly, the smaller the chip time T, is), the larger will the processing gain be.

1 7.6 Probability of Error

Let the coherent detector output v in the direct-sequence spread BPSK system of Figure
7.9 denote the sample value of a random variable V. Let the equivalent noise component
v,; produced by external interference denote the sample value of a random variable V.
Then, from Equations (7.23) and (7.27) we deduce that

V=2VE +V, (7.40)

where E,, is the transmitted signal energy per bit. The plus sign refers to sending symbol
(information bit) 1, and the minus sign refers to sending symbol 0. The decision rule used
- by the coherent detector of Figure 7.9 is to declare that the received bit in an interval (0,
T,) is 1 if the detector output exceeds a threshold of zero, and that it is 0 if the detector
output is less than the threshold; if the detector output is exactly zero, the receiver makes
a random guess in favor of 1 or 0. With both information bits assumed equally likely, we
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Using the definition of Equation (7.38) for the processing gain PG we may reformulate
this result as
] _ PG
P EJN,

(7.46)

The ratio J/P is termed the jamming margin. Accordingly, the jamming margin and the
processing gain, both expressed in decibels, are related by \

(Jamming margm)dB = (Procesing gain)qg —~ 10 log; t@&

where {Ey/No) i 15 the minimum value needec'i(o sup, !mn a rage proba‘lty 8Q
of error. 6

& EXAMPLE 7., I‘“a]\, \e\l\l l
A spreg ‘ mmunication sy? parameters:
. By duration, 1,

= 4,095 ms
PN chip duration, T, = 1 us

Information

Hence, using Equation (7.38) we find that the processing gain is
PG = 4095

Correspondingly, the required period of the PN sequence is N = 4095, and the shift-register
length is m = 12.

For a satisfactory reception, we may assume that the average probability of error
is not to exceed 107°, From the formula for a coherent binary PSK receiver, we find that
E,/Np = 10 yields an average probability of error equal to 0.387 X 107>, Hence, using this
value for E;/Ng, and the value calculated for the processing gain, we find from Equation (7.47)
that the jamming margin is

(Jamming margin)ss = 10 log;o 4095 — 10 log;4(10)
=361~ 10
= 26.1 dB
That is, information bits at the receiver output can be detected reliably even when the noise
or interference at the receiver input is up to 409.5 times the received signal power. Clearly,

this is a powerful advantage against interference (jamming), which is realized through the
clever use of spread-spectrum modulation. <

i 7.7 Frequency-Hop Spread Specirum

In the type of spread-spectrum systems discussed in Section 7.4, the use of a PN sequence
to modulate a phase-shift-keyed signal achieves instantaneous spreading of the transmis-
sion bandwidth. The ability of such a system to-.combat the effects of jammers is determined
by the processing gain of the system, which is a function of the PN sequence period. The
processing gain can be made larger by employing a PN sequence with narrow chip dura-
tion, which, in turn, permits a greater transmission bandwidth and more chips per bit.
However, the capabilities of physical devices used to generate the PN spread-spectrum
signals impose a practical limit on the attainable processing gain. Indeed, it may turn out
that the processing gain so attained is still not large enough to overcome the effects of
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A receiver based on the second procedure is optimum in the sense that it minimizes the
average probability of symbol error for a given E/No.

» EXAMPLE 7.5

Figure 7.12a illustrates the variation of the transmitted frequency of a fast FEUMFSK signa]
with time. The signal has the following parameters: E \1

Number of bits per MESK symbol K= -‘
Number of MFSK tones K&O
Length of PN segment m 8

Total :mrr‘lber Wneﬁfﬂ 2% " =
Aat is, the chip

In this example S 2% the same number of bl

rate bl rate Rb After each ¢ r1er 'y of the transmitted
ed to a different ﬂ casmns when the k-chip segment
of th sequence repeats itself.

] ]
=
T FH
carrier
-
2
3
o
@
s =
b ] =
e fesesi]
F ] s
R B L EBEE _J__. I____\__L__J—
Time —>
MFSK
symbol
1 010

Inputbmarydata‘O 1}1 1111000100111

PN sequence 001110011001001001 1100110010010011100110010010011 10011001001
(@)

2 e E ]
o
;_; s T e s
w
Time —>
(b}
FiGurg 7.12 [Mustrating fast-frequency hopping. (a) Variation of the transmitter frequency with,

time. (b) Variation of the dehopped frequency with time.
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7.9 A direct-sequence spread binary phase-shift keying system uses a feedback shift register
of length 19 for the generation of the PN sequence. Calculate the processing gain of the
system.

7.10 In a DS/BPSK system, the feedback shift register used to generate the PN sequence has
length m = 19. The system is required to have an average probability of symbol error
due to externally generated mterfermg signals that does not exceed 1075, Calculate the

_following system parameters in decibels:

{a) Proc‘:‘essing gai..n‘ ' L Sa\‘

(b) Antijam margin.
7.11 In Section 7.5, we presented an analysis on the signal-space dimen! cessmg Q
e- eymg

gain of a direct sequence spread-spectrum system usin ph
the analysis presented therein to the case o in quadrlphase shi % =
Frequency-Hop Sprea 6
s the followmg ar

712 A slo
er e: MFSK symb!
Nuthber of MFSK symbols per h

Calculate the processing gain of the system.
7.13 A fast FH/MFSK system has the following parameters:
Number of bits per MFSK symbol =
Number of hops per MFSK symbol =
Calculate the processing gain of the system.

Computer Experiments

7.14 Consider two PN sequences of period N = 63. One sequence has the feedback taps [6, 1]
and the other sequence has the feedback taps [6, , 2, 1], which are picked in accordance
with Table 7.1.
(a) Compute the autocorrelation function of these two sequences, and their cross-
correlation function.
(b) Compare the cross-correlation function computed in part (a) with the cross-
correlation function between the sequence [6, 5 2, 1] and its mirror image [6, 5, 4, 1].
Comment on your results.
7.15 (a) Compute the partial cross-correlation function of a PN sequence with feedback taps
[5, 2] and its image sequence defined by the feedback taps [5, 3].
(b) Repeat the computation for the PN sequence with feedback taps [5, 2] and the PN
sequence with feedback taps [5, 4, 2, 1].
{c) Repeat the computation for the PN sequence with feedback taps [5, 4, 3, 2] and the
PN sequence with feedback taps [5, 4, 2, 1].
The feedback taps [5, 2], [5, 4, 3, 2], and [3, 4, 2, 1] are possible taps for a maximal-
length sequence of period 31, in accordance with Table 7.1.



MULTIUSER RADIO
COMMUNICATIONS

a\
As its name implies, multiuser communications refers to the simultanggu umes

communication channel by a number of users. In this chapte iscs ser {2
communication systems that rely on radio propag f@r Nrkki e feceivers to th 8
transmitters. ‘

-
In particular, we focus on qf\leut“pics: 632
» Multiple-access tec&iqux, which are basic tc?l@g%m‘cation systems.

» Satellite communications, offering global coverage.

» Radio link analysis, highlighting the roles of transmitting and receiving antennas and free-
space propagation. '

» Wireless communications with emphasis on mobility and the multipath phenomenon.
» Speech coding for wireless communications.

» Adaptive antennas for wireless communications.

8. 1 Introduction

Much of the material on communication theory presented in earlier chapters has been
based on a particular idealization of the comumunication channel, namely, a channel model
limited in bandwidth and corrupted by additive white Gaussian noise (AWGN). The clas-
sical communication theory so developed is mathematically elegant, providing a sound
introduction to the ever-expanding field of communication systems. An example of a phys-
ical channel that is well represented by such a model is the satellite communications chan-
nel. Tt is therefore befitting that the first type of multiuser communications discussed in
this chapter is satellite communications.

A satellite communication system in geostationary orbit relies on line-of-sight radio
propagation for the operation of its uplink from an earth terminal to the transponder and
the downlink from the transponder to another carth terminal. Thus the discussion of
satellite communications naturally leads to the analysis of radio propagation in free space:
linking a receiving antenna to a transmitting antenna.

The use of satellite communications offers global coverage. The other multiuser com-
munication system studied in this chapter, namely, wireless communications, offers mo-
bility which, in conjunction with existing telephone networks and satellite communication
systems, permits a mobile unit to communicate with anyone, anywhere in the world. A
other characteristic feature of wireless communication systems is that they are tetherless

512
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However, insofar as link calculations are concerned, such a complete knowledge is not
necessary, Rather, it is sufficient to merely specify the variation of the power density for
the antenna.

By definition, the Poynting vector or power density is the rate of energy flow per unit
area; it has the dimensions of watts per square meter. The treatment of the transmitting
antenna as a point source greatly simplifies matters in that the power density of a point
source has only a radial component; that is, the radlated energy streams from the source
along radial lines.

It is useful to have a “reference” antenna against which the perfo

transmitting and receiving antennas can be compared. The customw
ctions. A

that the reference antenna is an isotropic source, defined a;

pletely nondirectional) antenna that radzat ung a n iso prc "y
source is hypothetical because, in reah ag) a$have some di
small. Nonetheless, the notlon 0, ce is useful a par-

ison purposes.

o source radiatigg noted by P,, measured
in watts. power passes ullifo) sphere of surface area 4md>,
where d is the dlstance (in meters) from e sotrCe. ce, the power density, denoted by

, at any point on the surface of the sphere is given by

pld) = 4£;2 watts/m? (8.3)
Equation (8.3) states that the power density varies inversely as the square of the distance
from a point source. This statement is the familiar inverse-square law that governs the
propagation of electromagnetic waves in free space.

Multiplying the power density p(d) by the square of the distance d at which it is
measured, we get a quantity called radiation intensity denoted by ®. We may thus write

® = d’p(d) (8.4)

Whereas the power density p(d) is measured in watts per square meter, the radiation
intensity ® is measured in watts per unit solid angle (watts per steradian).

In the case of a typical transmitting or receiving radio antenna, the radiation intensity
is a function of the spherical coordinates 6 and ¢ defined in Figure 8.5. Thus, in general,

rsin 8d¢
rdf
Element of area
r2sin 6dédp
!
Point
source x
¢

z

FIGURE 8.5 Illustrating the spherical coordinates of a point source.
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we may express the radiation intensity as ©(6, ¢), and so speak of a radiation-intens;.
pattern. The power radiated inside an infinitesimal solid angle df is given by ®(6, ¢) 4o,
where (referring to Figure 8.5) ’

dQ = sin§ do d¢ steradians (8.5)

The total power radiated is therefore

p=[ a6, 41d0 wans t é'gga\

which is a mathematical statement of the power theorem. In wo

em
states that if the radiation-intensity pattern ®(8, ¢) is kng or“ f angle pajr Q
(6, ¢), then the total power radiated is given 7 a (6,%) over a solid faele 8 -~
of 47 steradians. The average power radigtedfpe§u 1} angle is 0 O
-
\ \@\NM #) d0 BA'
e i e
Pl
= an ian

which represents the radiation intensity that is produced by an isotropic source radiating
the same total power P.

Directive Gain, Directivity, and Power Gain’

Now the ability of an antenna to concentrate the radiated power in a given direction
as in the case of the transmitting antenna or, conversely, to effectively absorb the incident
power from that direction as in the case of the receiving antenna, is specified in terms of
its directive gain or directivity. For a direction specified by the angle pair (6, ), the directive
gain of an antenna, denoted by g(6, ¢} is defined as the ratio of the radiation intensity in
that direction to the average radiated power, as shown by

(6, &)

g6,6)=—p

(6, ¢)

" PlAn

The directivity of an antenna, denoted by D, is defined as the ratio of the maximum
radiation intensity from the antenna to the radiation intensity from an isotropic source.
That s, the directivity D is the maximum value of the directive gain g(0, ¢). Thus, whereas
the directive gain of the antenna is a function of the angle pair (6, ), the directivity D is
a constant that has been maximized for a particular direction.

The definition of directivity is based on the shape of the radiation-intensity pattern
®(8, ¢); as such, it does not involve the effect of antenna imperfections due to dissipation
loss and impedance mismatch. A quantity called power gain does involve the radiation
efficiency of the antenna. Specifically, the power gain of an antenna, denoted by G, is
defined as the ratio of the maximum radiation intensity from the antenna to the radiation
intensity from a lossless isotropic source, under the constraimt that the same input power
is applied to both antennas. Specifically, using 7:adission 10 denote the radiation efficiency
factor of the antenna, we may relate the power gain G to the directivity D as

G = NradiationD (89 )

Thus, the power gain of an antenna over a lossless isotropic source equals the direcﬁﬁfy
if the antenna is 100 percent efficient (i.e., 7.diadon = 1), but it is less than the directivity

(8.8)
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compared to the reciprocal of the spread in propagation path delays. Multipath in such
an environment results in two effects: rapid fading of the received signal envelope and 4
spread in Doppler shifts in the received spectrum. Real-life signals radiated in a mobile
radio environment may, however, occupy a bandwidth wide enough to require more de-
tailed considerations of the effects of multipath propagation on the received signal. In thig
section, we present a statistical characterization of a mobile radio channel.*

Consider a mobile radio channel with multiple propagation paths. In accordance

with the complex notation described in Appendix 2, we may express the transmitted ba‘ga

No&s

pass signal as

s(t) = Re[3(t) exp(j2af.t)]

where §(t) is the complex (low-pass) envelope {, i ominal carrier frpquelcy,
Since the channe! is time vawing dmfnul h ®ffects, the i s@}:of e

channel is delay dependept ime-varying functi Ise response

of the c%la T&@MS\
v birt) = R@,tapgfieﬂ] (8.38)

where B(r;t) is the (low-pass) complex impulse response of the channel, and 7 is a delay
variable. The complex impulse response b {73t) is called the input delay-spread function of
the channel. The (low-pass) complex envelope of the channel output is defined by the
convolution integral :

5,8 = % Ji st — Db(mt) dr (8.39)

where the scaling factor  is the result of using complex notation.

In genéralythe behavior of a mobile radio channel can be described only in statistical
terms. For analytic purposes, the delay-spread function b(7;t) may thus be modeled as a
zero-mean complex-valued Gaussian process. Then, at any time ¢ the envelope | b(r;t)| is
Rayleigh distributed, and the channel is referred to as a Rayleigh fading channel. When,
however, the mobile radio environment includes fixed scatterers, we are no longer justified
in using a zero-mean model to describe the input delay-spread function birt). Insucha
case, it is more appropriate to use a Rician distribution to describe the envelope \E(r,tH,
and the channel is referred to as a Rician fading channel. The Rayleigh and Rician distri-
butions for a real-valued random process were considered in Chapter 1. In the discussion
presented in this chapter, we consider only a Rayleigh fading channel.

The time-varying transfer function of the channel is defined as the Fourier transform
of the input delay-spread function h(;t) with respect to the delay variable 7, as shown by

H{f;t) = J: B(r;t) exp(—j2mf7) d7 (8.40)

where # denotes the frequency variable. The time-varying transfer function H(f;t) may be
viewed as a frequency transmission characteristic of the channel.

*Readers who are not interested in the mathematical details pertaining to the statistical characterization of fadiﬂg
multipath channels, may skip the material presented in this section, except for the subsection on the classification
of multipath channels at the end of the section.

Q2



546 CHAPTER 8 2 MULTIUSER RADIO COMMUNICATIONS

50 Recglver

E20) Receiver

3,0
2 [~

Linear Decision Say LifRe[8,(0]> Re {§ sy
combiner - device Say 0 if Rel 51(”] <Rep
Vo(r)

&)
0

e
Nov

PR RARATCLe
ﬁc%mé\il‘ iser ﬂlust%’ng @esé di%@m fe.

10-2

Receiver
L

T (1) —=

N
2 NS \\\ FSK {noncoherent) — |
N s e e DPSK
10-2 AN N e == PSK (coherent}
SN \\ N
5 \ \‘ S \‘
\‘ \\ \ § \\\\
AR NN

2 v ‘\‘ \ . ~J

10-3 A \ AN

N\,
vy \ \.\
10-4 \ \\‘ \ \\ \‘\\\\ hY
) ANIAN AN

N\
hY
S

Bit error rate

N

o]
S

'-’-

-
.
/
P
B

s

‘
-6 1 Y
e 5. 10 15 20

5 40
fo. 4B

FIGURE 8.24 Performance of binary signaling schemes with diversity. (From Proakis, 1995,
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a period of 10 to 30 ms, during which the speech signal is treated as pseudo.
stationary.

# The optimum excitation for the synthesis filter is computed by minimizing the pey.
ceptually weighted error with the loop closed as in Figure 8.274.

Thus the speech samples are divided into frames (10 to 30 ms long) for computing the
filter parameters, and each frame is divided further into subframes (5 to 15 ms) for opti-
mizing the excitation, The quantized filter parameters and quantized excitation constit a.\‘

the transmitted signal.
Note that by first permitting the filter parameters to vary frow&ee ;
tc

and then permitting the excitation to vary from one subfr; to the e encoder is Q
enabled to track the nonstationary behavior g spge; el of a -by-batch b&s. 8
The decoder, located in the receiver, gonSgtSsi 0 parts: exgitgtio: or ~
i b. OfT

and synthesis filter, as showrei 7 se two par ntizl to -
sponding ones in the WI‘& 10n of the decodgr is e ed signal to
produce a xcgi of¥the original speech gt é{lis defichieved by passing the
decoded e@iﬁi tiréugh the synthes a@a eters are set equal to those in
the encoder? i

To reduce the computational complexity of the codec (i.e., contraction of coder/
decoder), the intervals between the individual pulses in the excitation are constrained to
assume a common value. The resulting analysis-by-synthesis codec is said to have a regular-
pulse excitation. ‘

Cope-Excitep LPC

Figure 8.28 shows the block diagram of the code-excited LPC, commonly referred to as
CELP. The distinguishing feature of CELP is the use of a predetermined codebook of
stochastic (zero-mean white Gaussian) vectors as the source of excitation for the synthesis
filter. The synthesis filter itself consists of two all-pole filters connected in cascade, one of
which performs short-term prediction and the other performs long-term prediction.

As with the multi-pulse excited LPC, the free parameters of the synthesis filter are
computed first, using the actual speech samples as input. Next, the choice of a particular
vector (code) stored in the excitation codebook and the gain factor G in Figure 8.28 is
optimized by minimizing the average power of the perceptually weighted error between

Minimization of
+
e z perceptually  f= = m s

speech > weighted error =
_____ |
Synthetic ¢ t
speach -~ ¥ Code #1
Synthesis 2in Code #2
fiter [~ | fader
Code #N
Excitation codebook
of size N

FIGURE 8.28 Encoder of the code-excited linear predictive codec (CELP): the transmitted sig-
nal consists of the address of the code selected from the codebaok, quantized G, and quantized
filter parameters.
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8.17 In this problem we study the maximal-ratio combmlng diversity scheme. To proceed,
consider a set of noisy signals {x,(2)}X,, where x; 5(2) is defined by
x,{t) = 5,(t) + ni{1), i=1.,2,...,N
Assume the following:
® The signal components s;(f) are locally coherent, that is,

si{t) = zmlt), j=1,2, ,N |
where the z; are positive real numbers, and m(#) denotes a message 51gnal with ga

power.
> The noise components #;(2) have zero mean, and they arc statlsnw‘ at is, Q
-‘ 8 -

2
Elrnit)n, t)

The output of the Hneew is d ed by 686 O
Ehere the parameters a; are to E dete] %

) Show that the output signal-to-noise ratio is

(SNR)o = —
3, ao?
=
{(b) Set
M = o0
%
v, o=
7 (T,

and reformulate the expression for (SNR ). Hence, applying the Schwarz inequality
to this reformulation, show that

(i) (SNR)o 2 (SNR};

where (SNR), 2Ha?.
(ii) The optimum values of the combiner’s coefficients are defined by

%
o = O_—I?_
in which case the Schwarz inequality is satisfied with the equality sign

The Schwarz inequality is discussed in Section 5.2.

Adaptive Antenna Arrays

8.18 Consider the array signal processor of Figure 8.29 where there are only two users (N =
2) and the array consists of two elements (M = 2). Construct the subspace W for this
problem. Hence, using a signal-space diagram, illustrate the computation of the weight

characterizing the array signal processor.
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of the extended source, is equal to # times H(¥), the entropy of the original source. That
is, we may write :

H(Y™) = nH(Y) (9.17)

B ExampiE 9.2 Entrepy of Extended Source

Consider a discrete memoryless source with source alphabet & = (s, 51, 52} wt@%a

probabilitics _ % N
oM 1o of &

Hence, the use oé me eatropy o t@urce a;g
E ( = Po 1052 P aé

+ v, log, )
== log2(4) + = logz log2
= z bits

Consider next the second-order extension of the source. With the source alphabet &
consisting of three symbols, it follows that the source alphabet $? of the extended source has
nine symbols. The first row of Table 9.1 presents the nine symbols of 2, denoted as a0,
i, . .+, 0. The second row of the table presents the composition of these nine symbols in
terms of the corresponding sequences of source symbols sy, 51, and s,, taken two at a time.
The probabilities of the nine source symbols of the extended source are presented in the last
row of the table. Accordingly, the use of Equation (9.9) vields the entropy of the extended
source as

8
1
H(¥?Y) = E ploy) log, o

1 1
R log,{16) + 1€ log,(16) + = logz 8) + ]ogz(lé)
1 1
+ Te log,(16) + 3 log,(8) + = 1032(8) +3 10g2( )+ Z log,(4)

= 3 bits

We thus see that H(¥?) = 2H(¥) in accordance with Equation (9.17). <4

TABLE 9.1 Alphabet particulars of second-order extension
of a discrete memoryless source

Symbols of ¥ o oy o, a3 oy os a6 o, a3

Corresponding sequences  sosp  sos;  SoS2 S8 Si$1 S1S2 Sxfo SaS Si8y
of symbols of &

o 1 1 1 1 L 1 1 1 1

Probability p(a;), 1€ 1 H 76 i€ g 8 5 3

i=0,1,...,8
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where the factor 2 refers to the radix (number of symbols) in the binary alphabet. It is
important to note, however, that the Kraft-McMillan inequality does #ot tell us that a
source code is a prefix code. Rather, it is merely a condition on the code-word lengths of
the code and not on the code words themselves. For example, referring to the three codes
listed in Table 9.2, we note the following:

# Code I violates the Kraft—-McMillan inequality; it cannot therefore be a prefix code, ‘
# The Kraft-McMillan inequality is satisfied by both codes II and III; but only co

accomplished as soon as the binary sequen e

e symb igfull
For this reason, prefix codes are mstantane
Given a discrete m entropy H(9),a pr be constructed

is a prefix code.
Prefix codes are distingunished from other uniquely dec % e fact that Q
the end of a code word is always recogniz { odifg o a prefix ¢ 8
C

Wthh is bou

with an av, ‘d
? s@< (9.23)

The left-hand bound of Equation (9.23) is satisfied with equality under the condition that
symbol s, is emitted by the source with probability

Py =27 (9.24)

where I, is the length of the code word assigned to source symbol s,. We then have
K—1 K-1
E 27k = E pr=1
i=0 =0

Under this condition, the Kraft—-McMillan inequality of Equation (9.22) tells us that we
can construct a prefix code, such that the length of the code word assigned to source symbol
s is ~log,p,. For such a code, the average code-word length is

_ K-1 lk
L=> 2 (9.25)

k=0

and the corresponding entropy of the source is

(zlk) log,(2)

l

H(9)

Il

,,.

»—-o

(9.26)

b

-~

I

A
i

=
(%]

Hence, in this special (rather meretricious) case, we find from Equations (9.25) and (9.26)
that the prefix code is matched to the source in that L = H(¥).

But how do we match the prefix code to an arbitrary discrete memoryless source?
The answer to this problem lies in the use of an extended code. Let I, denote the e average
code-word length of the extended prefix code. For a uniquely decodable code, L, is the
smallest possible. From Equation (9.23), we deduce that

H$) =L, < HY) + 1 9.27) -
Substituting Equation (9.17) for an extended source into Equation (3.27), we get
#H(P) = T, < nH(P) + 1
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The first row shown in this figure merely indicates the numerical positions of the
individual subsequences in the code book. We now recognize that the first subsequence of
the data stream, 00, is made up of the concatenation of the first code book entry, 0, with
itself; it is therefore represented by the number 11. The second subsequence of the data
stream, 01, consists of the first code book entry, 0, concatenated with the second code
book entry, 1; it is therefore represented by the number 12. The remaining subsequences
are treated in a similar fashion. The complete set of numerical representations for the
various subsequences in the code book is shown in the third row of Figure 9.6. As a furt
example illustrating the composition of this row, we note that the subsequence %
of the concatenation of the subsequence 01 in position 4 and symb

the numerical representation 41. The last row shown in F 9.6\s encoded
representation of the different subsequences ofsthe d
The last symbol of each subsequenc mrﬁl (le., the SECo;

9.6) is an innovation symbol, w lled cognmon of g:s aj

to a particular subse uegce L@ s*it from all pre tored in the
code book e ast bit of each loc bits in the binary en-
coded repr@ the data stream| @ in Figure 9.6) represents the
innovation s¥mbol for the particular subs que consideration. The remaining bits

provide the equivalent binary representation of the ‘pointer” to the root subsequence that
matches the one in question except for the innovation symbol.

The decoder is just as simple as the encoder. Specifically, it uses the pointer to identify
the root subsequence and then appends the innovation symbol. Consider, for example, the
binary encoded block 1101 in position 9. The last bit, 1, is the innovation symbol. The
remaining bits, 110, point to the root subsequence 10 in position 6. Hence, the block 1101
is decoded into 101, which is correct.

From the example described here, we note that, in contrast to Huffman coding, the
Lempel-Ziv algorithm uses fixed-length codes to represent a variable number of source
symbols; this feature makes the Lempel-Ziv code suitable for synchronous transmission.
In practice, fixed blocks of 12 bits long are used, which implies a code book of 4096
entries.

For a long time, Huffman coding was unchallenged as the algorithm of choice for
data compaction. However, the Lempel-Ziv algorithm has taken over almost completely
from the Huffman algorithm. The Lempel-Ziv algorithm is now the standard algorithm
for file compression. When it is applied to ordinary English text, the Lempel-Ziv algorithm
achieves a compaction of approximately 55 percent. This is to be contrasted with a com-
paction of approximately 43 percent achieved with Huffman coding. The reason for this
behavior is that, as mentioned previously, Huffman coding does not take advantage of the
intercharacter redundancies of the language. On the other hand, the Lempel-Ziv algorithm
is able to do the best possible compaction of text (within certain limits) by working effec-
tively at higher levels.

f 9.5 Discrete Memoryless Channels

Up to this point in the chapter, we have been preoccupied with discrete memoryless sources
responsible for information generation. We next consider the issue of information trans-
mission, with particular emphasis on reliability. We start the discussion by considering a
discrete memoryless channel, the counterpart of a discrete memoryless source.

A discrete memoryless channel is a statistical model with an input X and an output
Y that is a noisy version of X; both X and Y are random variables. Every unit of time, the
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HZ,%Y)

H(E)

FIGURE 9.9 Illustrating thqaniov‘* Q idhs channel enu7es. O
-
The first double s t*ﬁ the right-hand si q@QJ 6) is recognized
as the neg t utal informat I(Z; W), previously given in
Equation (#02). As for the second sumg manipulate it as follows:
. oy

J-1 21 | [ 1 1—1l 1 ]k
,Z:) 2 pix;, y&) log, Pg(x—/)P(J’k)] = ,Zf) nglim:l ;:;) plx; yi)
K~1 1 -1
+ log,| —— "
,ZJO og_l:ﬁ()’k):l P plocjs yi)
2 i o
= ; —_— 9.57
3, vl loga| o7 9.57)
K-1
+ 1
> (v ng[p( )]
= H(Z) + H(%)
Accordingly, using Equations (9.52) and (9.57) in Equation (9.56), we get the result
H&, %) = -I{%; %) + HX) + HWY) (9.58)

Rearranging terms in this equation, we get the result given in Equation (9.54), thereby
confirming Property 3.

We conclude our discussion of the mutual information of a channel by providing a
diagramatic interpretation of Equations (9.43), (9.44), and (9.54). The interpretation is
given in Figure 9.9. The entropy of channel input X is represented by the circle on the left.
The entropy of channel output Y is represented by the circle on the right. The mutual
information of the channel is represented by the overlap between these two circles.

9.7 Channel Capacit
14 y

Consider a discrete memoryless channel with input alphabet %, output alphabet ¥, and
transition probabilities p(y | x;), wherej = 0,1,...,J ~1landk=0,1,...,K — 1. The
mutual information of the channel is defined by the first line of Equation (9.49), which is
reproduced here for convenience:

== p(yk|xi)]
%, ) = ;Z’g Pt b(x; vl 1082[ 2(ve)
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channel noise on the system is minimized. The first mapping operation is performed ip the
transmitter by a channel encoder, whereas the inverse mapping operation is performed in
the receiver by a channel decoder, as shown in the block diagram of Figure 9.11;t0 simplj
the exposition, we have not included source encoding (before channel encoding) and Source
decoding (after channel decoding) in Figure 9.11.

The channel encoder and channel decoder in Figure 9.11 are both under the ge.
signer’s control and should be designed to optimize the overall reliability of the compmy,.
nication system. The approach taken is to introduce redundancy in the channel
so as to reconstruct the original source sequence as accurately as possible. ﬁéﬁ
loose sense, we may view channel coding as the dual of source co I@K Ormer
introduces controlled redundancy to improve reliabﬁ T t t reduces regup.

dancy to improve efficiency.

The subject of channel coding i ate Ve n Chapter 1Q. e of
our present discussion, it s cﬁ e ollr attention to #flotk opd. thisTlass of
codes, the message s cd i vided into sequeni: ck{ed its long, and each
k-bit bloc t®an #-bit bl whege he number of redundant bt
added by the encBder to each transmi 1o€kA k bits. The ratio k/» is called the
code rate. Using 7 to denote the code rath, we may thus write

k
r==
n

where, of course, 7 is less than unity. For a prescribed k, the code rate  (and therefore the
system’s coding efficiency) approaches zero as the block length # approaches infinity.

The accurate reconstruction of the original source sequence at the destination re-
quires that the average probability of symbol error be arbitrarily low. This raises the
following important question: Does there exist a channel coding scheme such that the
probability that a message bit will be in error is less than any positive number e (i.e., as
small as we want it), and yet the channel coding scheme is efficient in that the code rate
need not be too small? The answer to this fundamental question is an emphatic “yes.”
Indeed, the answer to the question is provided by Shannon’s second theorem in terms of
the channel capacity C, as described in what follows. Up until this point, tize has not
played an important role in our discussion of channel capacity. Suppose then the discrete
memoryless source in Figure 9.11 has the source alphabet & and entropy H(Y¥) bits per
source symbol. We assume that the source emits symbols once every T, seconds. Hence,
the average information rate of the source is H(¥)/T, bits per second. The decoder delivers
decoded symbols to the destination from the source alphabet ¥ and at the same source
rate of one symbol every T, seconds. The discrete memoryless channel has a channel ca-
pacity equal to C bits per use of the channel. We assume that the channel is capable of
being used once every T, seconds. Hence, the channel capacity per unit time is C/T,, bits
per second, which represents the maximum rate of information transfer over the channel.
We are now ready to state Shannon’s second theorem, known as the channel coding
theorem.

Discrete Discrete "
memoryless g:ggg:: memoryless — gg:g;:': Destination
source channef
Transmitter T Receiver

Noise

FIGURE 9.11 Block diagram of digital communication system.
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A
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the mutual information between X and Y,. We may then define the information capacity
of the channel as
C = max{I(Xy; Yu):E[X3] = P) (9.87)
Iy
where the maximization is performed with respect to fx,(x), the probability density func.
tion of Xj.
The mutual information I{X,; Y,) can be expressed in one of the two equlva%a.\‘

forms shown in Equation (9.81). For the purpose at hand, we use the secon
equation and so write

XL, Yk = ’7 Yk - 8
Since X and N, are mdependent rando vd eir sum equ
tion (9.84), we find that the Oy iffefen’ al entropy k, a to
the differential entré @' lem 9.28):
,P {9.89)
Hence, we may rewrite Equation (9.88) %s
I(Xys Yi) = b(Ye) — B{Ny) {9.90)

Since »(N,) is independent of the distribution of X, maximizing I{Xy; Y4) in accor-
dance with Equation (9.87) requires maximizing #(Y), the differential entropy of sample
Y, of the received signal. For 4(Y,) to be maximum, Y, has to be a Gaussian random
variable (see Example 9.8). That is, the samples of the received signal represent a noiselike
process. Next, we observe that since N, is Gaussian by assumption, the sample X, of the
transmitted signal must be Gaussian too. We may therefore state that the maximization
specified in Equation (9.87) is attained by choosing the samples of the transmitted signal
from a noiselike process of average power P. Correspondingly, we may reformulate Equa-
tion (9.87) as

C = I{X,; Y.): X, Gaussian, EXil=P (9.91)

where the mutual information I{X,; Y,) is defined in accordance with Equation (9.90).
For the evaluation of the information capacity C, we proceed in three stages:

1. The variance of sample Y, of the received signal equals P + o, Hence, the use of
Equation (9.76) yields the differential entropy of Y, as

h{(Yy) = 5 loga[2me(P + o%)] (9.92)

2. The variance of the noise sample N; equals o2 Hence, the use of Equation (9.76)
yields the differential entropy of N, as

b(N,) = 1 log,(2med?) (9.93)
3. Substituting Equations (9.92) and (9. 93) into Equation (9.90) and recognizing the
definition of information capacity given in Equation (9.91), we get the desired result:

logz(l + P) bits per transmission (9.94)

With the channel used K times for the transmission of K samples of the process X(?)
in T seconds, we find that the information capacity per unit time is (K/T) times the result
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given in Equation (9.94). The number K equals 2BT, as in Equation (9.83). Accordingly,
we may express the information capacity in the equivalent form:

P .
C=B8 logz(l + N_OB> bits per second (9.95)

where we have used Equation (9.85) for the noise variance 0%
Based on the formula of Equation (9.95), we may now state Shannon’s third (and
most famous) theorem, the information capacity theorem,'° as follows: ﬁa

The information capacity of a continuous channel of bandw1dth t@
additive white Gaussian noise of power spectral densuy bandwid 8Q

to B, is given by
-iem its per secm%l
where P is v( @\lﬂl ed poweP ge

The 1nformat10n capacity theorem 1s one of the most remarkable results of infor-
mation theory for, in a single formula, it highlights most vividly the interplay among three
key system parameters: channel bandwidth, average transmitted power (or, equivalently,
average received signal power), and noise power spectral density at the channel output.
The dependence of information capacity C on channel bandwidth B is linear, whereas its
dependence on signal-to-noise ratio P/NyB is logarithmic. Accordingly, it is easier to in-
crease the information capacity of a communication channel by expanding its bandwidth
than increasing the transmitted power for a prescribed noise variance.

The theorem implies that, for given average transmitted power P and channel band-
width B, we can transmit information at the rate of C bits per second, as defined in
Equation (9.93), with arbitrarily small probability of error by employing sufficiently com-
plex encoding systems. It is not possible to transmit at a rate higher than C bits per second
by any encoding system without a definite probability of error. Hence, the channel capacity
theorem defines the fundamental limit on the rate of error-free transmission for a power-
limited, band-limited Gaussian channel. To approach this limit, however, the transmitted
signal must have statistical properties approximating those of white Gaussian noise.

# SPHERE PACKING!!

To provide a plausible argument supporting the information capacity theorem, suppose
that we use an encoding scheme that yields K code words, one for each sample of the
transmitted signal. Let # denote the length (i.e., the number of bits) of each code word. It
is presumed that the coding scheme is designed to produce an acceptably low probability
of symbol error. Furthermore, the code words satisfy the power constraint; that is, the
average power contained in the transmission of each code word with 7 bits is #P, where
P is the average power per bit.

Suppose that any code word in the code is transmitted. The received vector of 7 bits
is Gaussian distributed with mean equal to the transmitted code word and variance equal
to na?, where o2 is the noise variance. With high probability, the received vector lies inside
a sphere of radius Vno?, centered on the transmitted code word. This sphere is itself
contained in a larger sphere of radius V#(P + o7), where n(P + &%) is the average power
of the received vector.
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where the factor 1/2 accounts for the fact that Af applies to both positive and negative
frequencies. All the N subchannels are independent of one another, Hence the total ca-
pacity of the overall channel is approximately given by the summation

N
C= 2 Ce
k=1
1Y P,
== 1 + ==
2 2 A 082<1 Gz)
The problem we have to address is to maximize the overa]l informatio x
to the constraint: “@

The usual procedure to \@K oth_rmzatlon robl e method of
Lagrange in Cha pter 6. @‘ Is optimization, we
h

(9.118)

first define blct functlon that i e information capacity C and
the constraiit [i.c., Equanons (9.118) any 9 own by

2 Af logz(l + P—) + A(P - 2 Pk) (9.120)

where A is the Lagrange multiplier. Next, differentiating the objective function J with

respect to Py and setting the result equal to zero, we obtain
Af log, e
> 32 A=0
P, + ox

To satisfy this optimizing solution, we impose the following requirement:
Po+o2=KAf fork=12,...,N (9.121)

where K is a constant that is the same for all k. The constant K is chosen to satisfy the
average power constraint.

Inserting the defining values of Equations (9.115) and (9.116) in the optimizing con-
dition of Equation (9.121), simplifying, and rearranging terms, we get

Sx(fa) = |1E;I(fk)\2’ k=1,2,...,N (9.122)
Let %, denote the frequency range for which the constant K satisfies the condition
Sulf)
K=
(H(f)|?

Then, as the incremental frequency interval Af is allowed to approach zero and the number
of subchannels N goes to infinity, we may use Equation (9.122) to formally state that the
power spectral density of the input ensemble that achieves the optimum information ca-
pacity is a nonnegative quantity defined by

Sulf) .
sif) =X " qmpp oo S 9.123)
0

otherwise
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Since the average power of a random process is the total area under the curve of the power
spectral density of the process, we may express the average power of the channel inpy;

x(t) as
p= f (K Sndf) ) df (9.124
fesa [H(f) |2 124)

For a prescribed P and specified Sx(f) and H{f), the constant K is the solution to Equation
(9.124).

The only thing that remains for us to do is to find the optimum ‘:@
Substituting the optimizing solution of Equation (9.121) into Equ then
using the defining values of Equations (9.115) and (9 eypbt

1 |Q

takes the |

\ ? o @?J
When the ﬁrﬁ @KM y interval Af i alg appweich zero, this equation
ngeo

c=1[ |HA?
31 logz( Sul) )df (9.125)

where the constant K is chosen as the solution to Equation (9.124) for a prescribéd mput
signal power P.

WATER-FILLING INTERPRETATION
OoF THE INFORMATION CAPACITY THEOREM

Equations (9.123) and (9.124) suggest the picture portrayed in Figure 9.21. Specifically,
we make the following observations:

% The appropriate input power spectral density Sx(f) is described as the bottom regions
of the function Sx(f) | H(f}|? that lie below the constant level K, which are shown
shaded.

b The input power P is defined by the total area of these shaded regions.

The spectral domain picture portrayed here is called the water-filling (pouring) inter-
pretation in the sense that the process by which the input power is distributed across

Sy{F)

H(I?

o !

FIGURE 9.21 Water-filling interpretation of information-capacity theorem for a colored noisy
channel.

a\‘
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A

Variance o2

esd)

O" N

| P 41c)_ ﬁ;%Bv
FIGURE 9.23 Reverse Wat Wmﬁi set of parall s BACBSO

B Emm@ ( gt\ol I}ag;lel s 6%

Consider next a set of N independent ;aussian random variables (X;}X,, where X; has zero

mean and variance o7. Using the distortion measure

3
Sourc

N
d =72 (% — %)
Fanl

and building on the result of Example 9.14, we may express the rate distortion function for
the set of parallel Gaussian sources described here as

N
R(D) = 21 % 1og(§_) {9.134)
where D; is itself defined by
D, = {)‘ A< (9.135)
o? if A= of

and the constant A is chosen so as to satisfy the condition
N
> D;=D (9.136)
=1
Equations (9.135) and (9.136) may be interpreted as a kind of “water-filling in reverse,” as
illustrated in Figure 9.23. First, we choose a constant A and only the subset of random variables

whose variances exceed the constant A. No bits are used to describe the remaining subset of
random variables whose variances are less than the constant A. 4

§ 9.14 Data Compression

Rate distortion theory naturally leads us to consider the idea of data compression that
involves a purposeful or unavoidable reduction in the information content of data froma
continuous or discrete source. Specifically, we may think of a data compressor, or signal
compressor, as a device that supplies a code with the least number of symbols for the
representation of the source output, subject to a permissible or acceptable distortion. The
data compressor thus retains the essential information content of the source output by
blurring fine details in a deliberate but controlled manner. Accordingly, data compression
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9.20 Figure 9.10 depicts the variation of the channel capacity of a binary symmetric channg]
with the transition probability p. Use the results of Problem 9.19 to explain this Variation

9.21 Consider the binary symmetric channel described in Figure 9.8. Let po denote the prob.
ability of sending binary symbol x, = 0, and let p, = 1 — p, denote the probability of
sending binary symbol x; = 1. Let p denote the transition probability of the channej -

(a) Show that the mutual information between the channel input and channel output i

given by a\‘
I(%; ) = 3(z) — H(p) S
where NOte

p.
kO of ©°

oreN e
P ( Hip)=p lg(;)a;g )

+{(1-p 10g2(1—p)

{(b) Show that the value of p, that maximizes I{%; ¥) is equal to 1/2.
(c) Hence, show that the channel capacity equals

C=1- H(p)
9.22 Two binary symmetric channels are connected in cascade, as shown in Figure P9.22. Find

the overall channel capacity of the cascaded connection, assuming that both channels
have the same transition probability diagram shown in Figure 9.8.

Binary Binary
Intput symmetric symmetric OQutput
channel 1 channel 2
FIGURE P9.22

9.23 The binary erasure channel has two inputs and three outputs as described in Figure P9.23.
The inputs are labeled 0 and 1, and the outputs are labeled 0, 1, and e. A fraction « of
the incoming bits are erased by the channel. Find the capacity of the channel.

1 O 1
l-a

FiGurE P9.23



theory. In particular, in this chapter we present error-control codipg td Q
provide different ways of implementing Shannon’s ghan %he em. Each errof 8
control coding technique involves the use of a alﬁle(eme in the transpritter @i ~
decoding algorithm in the receiver. ‘\@N 6

escr ‘

The error-control cc?' wi 1bed herein i de
classes of codes: P l@ P ag

¥ Linear block codes.

B Cyclic codes.
¥ Convolutional codes. ’

¥ Compound codes exemplified by turbo codes and low-density parity-check codes, and
their irregular variants.

E 10.1 Introduction

The task facing the designer of a digital communication system is that of providing a cost-
effective facility for transmitting information from one end of the system at a rate and a
level of reliability and quality that are acceptable to a user at the other end. The two key
system parameters available to the designer are transmitted signal power and channel
bandwidth, These two parameters, together with the power spectral density of receiver
noise, determine the signal energy per bit-to-noise power spectral density ratio E,/Np. In
Chapter 6, we showed that this ratio uniquely determines the bit error rate for a particular
modulation scheme. Practical considerations usually place a limit on the value that we can
assign to E,/N,. Accordingly, in practice, we often arrive at a modulation scheme and find
that it is not possible to provide acceptable data quality (i.e., low enough error perfor-
mance). For a fixed E;/Ny, the only practical option available for changing data quality
from problematic to acceptable is to use error-control coding.

Another practical motivation for the use of coding is to reduce the required E,/No
for a fixed bit error rate. This reduction in E,/N, may, in turn, be exploited to reduce the
required transmitted power or reduce the hardware costs by requiring a smaller antenna
size in the case of radio communications.

Error control® for data integrity may be exercised by means of forward error cor-
rection {FEC). Figure 10.14 shows the model of a digital communication system using such
an approach. The discrete source generates information in the form of binary symbols.
The channel encoder in the transmitter accepts message bits and adds redundancy accord-
ing to a prescribed rule, thereby producing encoded data at a higher bit rate. The channel

626
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a “sliding window” equal in duration to its own memory. This, in turn, means that i,
a convolutional code, unlike a block code, the channel encoder accepts message bits as 5
continuous sequence and thereby generates a continuous sequence of encoded bits 4
a higher rate.

In the model depicted in Figure 10.1a, the operations of channel coding and mody-
lation are performed separately in the transmitter; likewise for the operations of detection
and decoding in the receiver. When, however, bandwidth efficiency is of major concery
the most effective method of implementing forward error-control correction coding i ,
combine it with modulation as a single function, as shown in Figure 10.15.
approach, coding is redefined as a process of imposing certain patigegs iﬁ"e

signal. m
AUTOMATIC-REPFAT REQU:W "( O

Feed-forward error éﬁ\%) elies on the cm:éled% A%dancy in the
h e

transmitte the dete io% jon rrors incurred during
the course arBmISsion over a nois ective of whether the decoding of
the received®code word is successful, nokturth® proe€ssing is performed at the receiver.
Accordingly, channel coding techniques suitable for FEC require only a ore-way link he-
tween the transmitter and receiver.

There is another approach known as automatic-repeat request (ARQ)* for solving
the error-control problem. The underlying philosophy of ARQ is quite different from that
of FEC. Specifically, ARQ uses redundancy merely for the purpose of error detection. Upon
the detection of an error in a transmitted code word, the receiver requests a repeat trans-
mission of the corrupted code word, which necessitates the use of a return path (e, a
feedback channel). As such, ARQ can be used only on half-duplex or full-duplex links. In
a half-duplex link, data transmission over the link can be made in either direction but not
simultaneously. On the other hand, in a full-duplex link, it is possible for data transmission
to proceed over the link in both directions simultaneously.

A half-duplex link uses the simplest ARQ scheme known as the stop-and-wait strat-
egy. In this approach, a block of message bits is encoded into a code word and transmitted
over the channel. The transmitter then stops and waits for feedback from the receiver. The
feedback signal can be acknowledgment of a correct receipt of the code word or a request
for transmission of the code word because of an error in its decoding. In the latter case,
the transmitter resends the code word in question before moving onto the next block of
message bits. ’

The idling problem in stop-and-wait ARQ results in reduced data throughput, which
is alleviated in another type of ARQ known as continuzous ARQ with pullback. This second
strategy uses a full-duplex link, thereby permitting the receiver to send a feedback signal
while the transmitter is engaged in sending code words over the forward channel. Specif-
ically, the transmitter continues to send a succession of code words until it receives a
request from the receiver (on the feedback channel) for a retransmission. At that point,
the transmitter stops, pulls back to the particular code word that was not decoded correctly
by the receiver, and retransmits the complete sequence of code words starting with the
corrupted one.

In a refined version of continuous ARQ known as the continuous ARQ with selective
repeat, data throughout is improved further by only retransmitting the code word that.

was received with detected errors. In other words, the need for retransmitting the success-

fully received code words following the corrupted code word is eliminated.

a\

£ 87
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B ExampiLE 10.1 Repetition Codes

Repetition codes represent the simplest type of linear block codes. In particular, a single mes-
sage bit is encoded into a block of # identical bits, producing an (#, 1) block code. Such a
code allows provision for a variable amount of redundancy. There are only two code words
in the code: an all-zero code word and an all-one code word.
Consider, for example, the case of a repetition code with ¢ = 1 and # = 5. In this case,
we have four parity bits that are the same as the message bit. Hence, the identity matrix I, = \1
1, and the coefficient matrix P consists of a 1-by-4 vector that has 1 for all of its @%a

Correspondingly, the generator matrix equals a row vector of all ls,a&hc@b‘

G=[1 11 1:1

The transpose of the coefficient matrix P, n; v a D" Rcoksists of a 4-by-1 v, at% &=
has 1 for all of its elements. The identity ma\iNL, sists of a 4-by-4gfRatrix. @e e
parity-check matrix equals e\l\l 6
e\, \ 10 008
Pe o)
H
0071 %1
1

000 1

Since the message vector consists of a single binary symbol, 0 or 1, it follows from Equation
(10.13) that there are only two code words: 00000 and 11111 in the (5, 1) repetition code,
as expected. Note also that HGT = 0, modulo-2, in accordance with Equation (10.15), <&

SYNDROME: DEFINITION AND PROPERTIES

The generator matsix G is used in the encoding operation at the transmitter. On the other
hand, the parity-check matrix H is used in the decoding operation at the receiver. In the
context of the latter operation, let r denote the 1-by-n received vector that results from
sending the code vector ¢ over a noisy channel. We express the vector r as the sum of the
original code vector ¢ and a vector e, as shown by

r=c+e (10.17)

The vector e is called the error vector or error pattern. The ith element of e equals 0 if the
corresponding element of r is the same as that of ¢. On the other hand, the ith element of
e equals 1 if the corresponding element of r is different from that of ¢, in which case an
error is said to have occurred in the #th location. That is, for 7 = 1, 2,...,n, we have

(10.18)

1 if an error has occurred in the ith location
2, = i
; 0 otherwise

The receiver has the task of decoding the code vector ¢ from the received vector r.
The algorithm commonly used to perform this decoding operation starts with the com-
putation of a 1-by-(n — k) vector called the error-syndrome vector or simply the syn-
drome.® The importance of the syndrome lies in the fact that it depends only upon the
error pattern.

Given a 1-by-n received vector r, the corresponding syndrome is formally defined as

s =rHT (10.19)

Accordingly, the syndrome has the following important properties.
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Property 1
The syndrome depends only on the error pattern, and not on the transmitted code word,

To prove this property, we first use Equations (10.17) and (10.19), and then Equation
(10.16) to obtain

s = (c + e)HT

, . 1
cHT + eH’ , a_\
cH™ “é

Hence, the parity-check matrix H of a code permits us tmteN me s, \%ch

depends only upon the error pattern e. _‘(
Property 2 % \l\l 56 O
All error @MAH ode word have g(@sybn .
For k ¥nessage bits, there are 2* Qc&' ors denoted as ¢;, i = 0, 1,...,

2% — 1. Correspondingly, for any error pattern e, we define the 2% distinct vectors e; as

e=e+c, i=0,1,...,2%-1 (10.21)

The set of vectors {e;, i = 0, 1,. .., 2% — 1] so defined is called a coset of the code. In
other words, a coset has exactly 2* elements that differ at most by a code vector. Thus,
an (n, k) linear block code has 277* possible cosets. In any event, multiplying both sides
of Equation (10.21) by the matrix H”, we get .

eH” = eH” + cHT

et (10.22)

which is independent of the index i. Accordingly, we may state that each coset of the code
is characterized by a unique syndrome.

We may put Properties 1 and 2 in perspective by expanding Equation (10.20). Spe-
cifically, with the matrix H having the systematic form given in Equation (10.14), where
the matrix P is itself defined by Equation {10.8), we find from Equation (10.20) that the
( — k) elements of the syndrome s are linear combinations of the # elements of the error
pattern e, as shown by

So =€y + e pPoo t Cnp-1Pro T 0t EnaPr-10
e; + e, pPor T CppraPpn t oo T €u1Proaa

$1
. (10.23)

Spekel = €nep—1 T €y tPopp-1 T 0 T Ptk

This set of {# — k) linear equations clearly shows that the syndrome contains information
about the error pattern and may therefore be used for error detection. However, it should
be noted that the set of equations is underdetermined in that we have more unknowns
than equations. Accordingly, there is 7o unique solution for the error pattern. Rathet,
there are 2 error patterns that satisfy Equation (10.23) and therefore result in the same
syndrome, in accordance with Property 2 and Equation (10.22). In particular, with 2"
possible syndrome vectors, the information contained in the syndrome s about the error
pattern e is #of enough for the decoder to compute the exact value of the transmitted code
vector. Nevertheless, knowledge of the syndrome s reduces the search for the true error
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c, =0 [ €3 c; [
[ G+ € Cite ... g+Ey ... Bite
8y Gy + 8y C3+B ... C+By ... Cp+Bg
g Cy+ e C3tE ... G+ Cof + €

Byn-k by +8pn-k Oyt Bpnek i+ @yt Byt + Bk

1
FIGURE 10.7 Standard array for an (#, k) block code. “esa\
leaders.
For a given channel, thg P ng error 1s en 'mbst
likely error patterns (i.e, é rgest probablht o re chosen as
the coset le g in ma ler the Hamming
weight of :?o p n the more lik ag cordmgly, the standard array
should be cdstructed with each coset h;? h
coset.

minimum Hamming weight in its
We may now describe a decoding procedure for a linear block code:

represent the cosets of the code, and their K ele ﬁare called ﬁet%?

1. For the received vector r, compute the syndrome s = rHT,

2, Within the coset characterized by the syndrome s, identify the coset leader (i.e., the
error pattern with the largest probability of occurrence); call it e,.

3. Compute the code vector
c=r1+¢ (10.26)
as the decoded version of the received vector r.

This procedure is called syndrome decoding.

B ExamPLE 10.2 Hamming Codes*

Consider a family of (#, k) linear block codes that have the following parameters:
Block length: n=2"-1
Number of message bits: k& =2" —m — 1
Number of parity bits: n—k=m
where m = 3. These are the so-called Hamming codes.
Consider, for example, the (7, 4) Hamming code with # = 7 and & = 4, corresponding
to m = 3. The generator matrix of the code must have a structure that conforms to Equation

(10.12). The following matrix represents an appropriate generator matrix for the (7, 4) Ham-
ming code:

O B e =
=)
o O Rr O
S = O O
= o © o
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advantage of cyclic codes over most other types of codes is that they are easy to encode,
Furthermore, cyclic codes possess a well-defined mathematical structure, which has led ¢,
the development of very efficient decoding schemes for them.

A binary code is said to be a cyclic code if it exhibits two fundamental Properties:

1. Linearity property: The sum of any two code words in the code is also a code word,
2. Cyclic property: Any cyclic shift of a code word in the code is also a code word, \‘

Property 1 restates the fact that a cyclic code is a linear block code (i.e., it can he
as a parity-check code). To restate Property 2 in mathematical tergns t =
(€0, €15+ + + 5 €4-1) denote a code word of an (#, k) linear block coﬁ@ie 8 a cyclic {2
code if the n-tuples m 8
U=
- §4O Qﬁ
Wla R Cn—3)s 662

\e
preV page ©

are all code words in the code.
To develop the algebraic properties of cyclic codes, we use the elements Cos Cly o o .
¢x—1 of a code word to define the code polynomial

dX)=co+ X+ X2+ 4, X1 (10.27)

3

where X is an indeterminate, Naturally, for binary codes, the coefficients are 1s and 0s,
Each power of X in the polynomial c(X) represents a one-bit shift in time. Hence, multi-
plication of the polynomial ¢(X) by X may be viewed as a shift to the right. The key
question is: How do we make such a shift cyclic? The answer to this question is addressed
next. '
Let the code polynomial ¢(X) be multiplied by X’, yielding
Xoo(X) = Xico + exX + +++ + g a X 4 ¢, X
+ ot g XY
=X+ o X+ e+ X 4, X
4+ oeen 4 C"_lxn+i—1
= CilX o G XL 4 g X+ o X!
+ AR + Cn—i_lxn_l

(10.28)

where, in the last line, we have merely rearranged terms. Recognizing, for example, that
€~ + ¢,-; = 0 in modulo-2 addition, we may manipulate the first i terms of Equation
(10.28) as follows:

Xoe(X) = Cpi + o F Cur X+ X H X e+ Cuin X1

- (10.29)
+ Cn_i(X" + 1) + .. 4+ C,;_1X' I(Xn + 1)
Next, we introduce the following definitions:
() = . e i~1 i i+1
X = Cpms + o+ Gua X X X (10.30)

Hoee oo X
AX) = Coi F CpginX + e+ g X (10.31)
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good cyclic codes, whereas some of them generate bad cyclic codes. The issue of how to
select generator polynomials that produce good cyclic codes is very difficult to resolve.
Indeed, coding theorists have expended much effort in the search for good cyclic codes.

GENERATOR AND PARITY-CHECK MATRICES

Given the generator polynomial g(X) of an (n, k) cyclic code, we may construct the gen—
erator matrix G of the code by noting that the & polynomials g(X
span the code. Hence, the n-tuples corresponding to these polyn“

cyctic code fro

rows of the k-by-n generator matrix G.

However, the construction of the parlty—chec D
parity-check polynomial #(X) requlres spec1 ‘, s Wescribed h “
Equation (10.42) by a(x) and{ then

we 0 ta
X’ \ X) + X"a( (10.43)

The polync@ XJ@ ) are the uatnons (10.27) and (10.40),
respectively,$which means that their prig ct ft hand side of Equation (10.43)
contains terms with powers extending up fo »# + k — 1. On the other hand, the polynomial
a(X) has degree k ~ 1 or less, the implication of which is that the powers of X*, X**1, . .
X! do not appear in the polynomial on the right-hand side of Equation {10.43). Thus,
setting the coefficients of X*, X*~*, ..., X"~ in the expansion of the product polynomial
c(X)h(X) equal to zero, we obtain the following set of n'— k equations:

jrk

Y ochpi=0 forO0sjsn—k-1 (10.44)

=i
Comparing Equation (10.44) with the corresponding relation of Equation (10.16), we may
make the following important observation: The coefficients of the parity-check polynomial
h(X) involved in the polynomial multiplication described in Equation (10.44) are arranged
in reversed order with respect to the coefficients of the parity-check matrix H involved in
forming the inner product of vectors described in Equation (10.16). This observation sug-
gests that we define the reciprocal of the parity-check polynomial as follows:

k=1
XX = X”(l + 2 hX+ X"‘)
= (10.45)

k-1

=1+ > b X' +X*
i=1

which is also a factor of X + 1. The n-tuples pertaining to the (n — k) polynomials
XEB(X Y, XEBXY, . .., X7 (X ™Y) may now be used in rows of the (n — k)-by-n
parity-check matrix H.

In general, the generator matrix G and the parity-check matrix H constructed in the
manner described here are not in their systematic forms. They can be put into their sys-
tematic forms by performing simple operations on their respective rows, as illustrated in
Example 10.3.

ENCODER FOR CycLIC CODES

Earlier we showed that the encoding procedure for an (#, &) cyclic code in systematic form
involves three steps: (1) multiplication of the message polynomial 72(X) by X*7*, (2) di-

a\‘
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Let g(X) denote the quotient and s(X) denote the remainder, which are the results of
dividing 7(X) by the generator polynomial g(X). We may therefore express 7(X) as follows:
r(X) = g(X)g(X) + s(X) (10.47)

The remainder s{X) is a polynomial of degree # — k& — 1 or less, which is the result of
interest. It is called the syndrome polynomial because its coefﬁc1ents make up the (# — k)-

10.8 except for the fact that the received bits are fed into the (# — kLsta,
shift register from the left. As soon as all the received b1ts have bee he Shlft
register, its contents define the syndrome S.

The syndrome polynomial s(X) has the lvl‘ uBproperties that fol 1%
the definition given in Equatign (IOW
1. The syn, ’@ ({ e&,d\(gpolynomial isa nd the corresponding

by-1 syndrome s. ‘
Figure 10.9 shows a syndrome calculator that is identical to the encod i 58.

error poly

Given that a%cyclic code with polynomLaE c(X)Es seffover a noisy channel, the received
word polynomial is defined by

r(X) = ¢(X) + e(X) (10.48)
where e(X) is the error polynomial. Equivalently, we may write
e(X) = rX) + ¢X) (10.49)
Hence, substituting Equations (10.35) and (10.47) into (10.49), we get
e(X) = u(X)g(X) + s(X) (10.50)

where the quotient is #(X) = a(X) + g(X). Equation (10.50) shows that s(X) is also the
syndrome of the error polynomial e(X). The implication of this property is that when the
syndrome polynomial s(X) is nonzero, the presence of transmission errors in the received
word is detected.

2. Let s(X) be the syndrome of a received word polynomial r(X). Then, the syndrome of
Xr(X), a cyclic shift of r(X), is Xs(X).
Applying a cyclic shift to both sides of Equation (10.47), we get

Xr(X) = Xq(X)g(X) + Xs(X) (10.51)

Received
bits

FIGURE 10.9 Syndrome calculator for (», k) cyclic code.

Flip-flop  Modulo-2
adder



16.4 Cyclic Codes 653

i TABLE 10.5 CRC codes

Code Generator Polynomial, g(X) n—k

CRC-12 code 1+ X+X2+ X3+ X1+ X12 12
CRC-16 code (USA) 1+ X2+ XY+ X 16
CRC-ITU code 14+ X5+ X"+ X% 16

Table 10.5 presents the generator polynomials of three CRC codeg th; m
international standards. All three codes contain 1 + X as a prim! -12
code is used for 6-bit characters, and the other two cod secdh fONB-Bit characters.
CRC codes provide a powerful method of e, n §od use 1n automatig:
request (ARQ) strategies dlscussed in Secfion dlgltal sub
in Chapter 4.

ghem (BCH)
One o st 1mportant and po inear-block codes are BCH codes,

which are hc codes with a wide variet} of parame 1s. The most common binary BCH
codes, known as primitive BCH codes, are characterized for any positive integers # (equal
to or greater than 3) and ¢ [less than (2 — 1)/2] by the following parameters:

Block length: n=2"-1
Number of message bits: k= n — mt
Minimum distance: dpin =28+ 1

Each BCH code is a t-error correcting code in that it can detect and correct up to ¢ random
errors per code word. The Hamming single-error correcting codes can be described as
BCH codes. The BCH codes offer flexibility in the choice of code parameters, namely,
block length and code rate. Furthermore, for block lengths of a few hundred bits or less,
the BCH codes are among the best known codes of the same block length and code rate.

A detailed treatment of the construction of BCH codes is beyond the scope of
our present discussion. To provide a feel for their capability, we present in Table 10.6, the
code parameters and generator polynomials for binary block BCH codes of length up to
2° — 1. For example, suppose we wish to construct the generator polynomial for (15, 7)

B TABLE 10.6 Binary BCH codes of length up to 2° — 1

n k t Generator Polynomial

7 4 1 1 011
15 11 1 10 011
15 7 2 111 010 001
15 5 3 10 100 110 111
31 26 1 100 101
31 21 2 11 101 101 001
31 16 3 1 000 111 110 101 111
31 11 5 101 100 010 011 011 010 101
31 6 7 11 001 011 011 110 101 000 100 111

Notation: n = block length
k = number of message bits
¢t = maximum number of detectable errors

The high-order coefficients of the generator polynomial g(X) are at the left.
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Depth

FIGURE 10.16 (a) A portion of the central part of the trellis for the encoder of Figure 10.13a
(b) State diagram of the convolutional encoder of Figure 10.13a.

agrees exactly with our previous result. Thus, the input-output relation of a convolutional
encoder is also completely described by its state diagram,

10.6 Maximum Likelihood
Decoding of Convolutional Codes

Now that we understand the operation of a convolutional encoder, the next issue to be
considered is the decoding of a convolutional code. In this section we first describe the
underlying theory of maximum likelihood decoding, and then present an efficient algo-
rithm for its practical implementation.

Let m denote a message vector, and ¢ denote the corresponding code vector applied
by the encoder to the input of a discrete memoryless channel. Let r denote the received
vector, which may differ from the transmitted code vector due to channel noise. Given the
received vector r, the decoder is required to make an estimate fh of the message vector.
Since there is a one-to-one correspondence between the message vector m and the code
vector ¢, the decoder may equivalently produce an estimate € of the code vector. We may
then put @ = m if and only if &€ = c. Otherwise, a decoding error is committed in the
receiver. The decoding rule for choosing the estimate &, given the received vector r, is said
to be optimum when the probability of decoding error is minimized. From the material
presented in Chapter 6, we may state that for equiprobable messages, the probability of
decoding error is minimized if the estimate ¢ is chosen to maximize the log-likelibood
function. Let p(r | c) denote the conditional probability of receiving r, given that ¢ was sent.
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The log-likelihood function equals log p(r|c). The maximum likelihood decoder or deci-
sion rule is described as follows:

Choose the estimate & for which the

log-likelihood function log p(r|c) is maximum. (10.56)

Consider now the special case of a binary symmetric channel. In this case, both the
transmitted code vector ¢ and the received vector r represent binary sequences of length

N, say. Naturally, these two sequences may differ from each other in some locations E

cause of errors due to channel noise. Let ¢; and r; denote the ith el
respectively. We then have ﬁ
sﬁ 8 <

Correspondmgly, the log W li 6%& d
Let the transition probablhty p(r:|c;) be défined as

log pir|c (10.58)

(rle) g - (10.59)
rile) = .

p 1 - ifr, = ¢

Suppose also that the received vector r differs from the transmitted code vector ¢ in exactly
d positions. The number d is the Hamming distance between vectors r and c. Then, we
may rewrite the log-likelihood function in Equation (10.58) as

log p(r|c) = dlog p + (N — d) log(1 — p)

p (10.60)
= - |+ -
d log(1 — p) N log(1 — p)
In general, the probability of an error occurring is low enough for us to assume p < 1/2.
We also recognize that N log(1 — p) is a constant for all c. Accordingly, we may restate
the maximum-likelihood decoding rule for the binary symmetric channel as follows:

Choose the estimate & that minimizes the Hamming distance (10.61)
between the received vector r and the transmitted vector c. ’

That is, for the binary symmetric channel, the maximum-likelihood decoder reduces to a
minimum distance decoder. In such a decoder, the received vector r is compared with each
possible transmitted code vector c, and the particular one closest to r is chosen as the
correct transmitted code vector. The term “closest” is used in the sense of minimum num-
ber of differing binary symbols (i.e., Hamming distance) between the code vectors under
investigation.

g THE VITERBI ALGORITHM’

The equivalence between maximum likelihood decoding and minimum distance decoding
for a binary symmetric channel implies that we may decode a convolutional code by choos-
ing a path in the code tree whose coded sequence differs from the received sequence in the
fewest number of places. Since a code tree is equivalent to a trellis, we may equally limit
our choice to the possible paths in the trellis representation of the code. The reason for
preferring the trellis over the tree is that the number of nodes at any level of the trellis
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Input : Flip-flop f ~ 8-PsK
o : : signal mapper Maost significant bit
: [ [ 00001111
j \> 0011001 1
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FIGURE 10.22 (a) Four-state Ungerboeck code for 8-PSK; the mapper follows Figure 10.20.
(b) Trellis of the code.

sponding trellis of the code is shown in Figure 10.225, which has four states. Note that
the most significant bit of the incoming binary word is left uncoded. Therefore, each branch
of the trellis may correspond to two different output values of the 8-PSK modulator or,
equivalently, to one of the four 2-point subsets shown in Figure 10.20, The trellis of Figure
10.22b also includes the minimum distance path.

The scheme of Figure 10.23a depicts another Ungerboeck 8-PSK code for trans-
mitting 2 bits/sample; it is next in the level of complexity. This second scheme uses a
rate-2/3 convolutional encoder. Therefore, the corresponding trellis of the code has eight
states, as shown in Figure 10.23b. In this case, both bits of the incoming binary word are
encoded. Hence, each branch of the trellis corresponds to a specific output value of the
8-PSK modulator. The trellis of Figure 10.235 also includes the minimum distance path.

Figures 10.22b and 10.23b also include the encoder states. In Figure 10.22, the state
of the encoder is defined by the contents of the two-stage shift register. On the other hand,
in Figure 10.23, it is defined by the content of the single-stage (top) shift register followed
by that of the two-stage (bottom) shift register.
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FiGURE 10.28 (a) Block diagram of turbo decoder. (b) Extrinsic form of turbo decoder, where I
stands for interleaver, D for de-interleaver, and BCJR for BCJR algorithm for log-MAP decoding.

Each of the two decoding stages uses a BCJR algorithm,"” which was originally
invented by Bahl, Cocke, Jelinek, and Raviv (hence the name) to solve a maximum a
posteriori probability (MAP) detection problem. The BCJR algorithm differs from the
Viterbi algorithm in two fundamental respects:

1. The BCJR algorithm is a soft input—soft output decoding algorithm with two recur-
sions, one forward and the other backward, both of which involve soft decisions. In
contrast, the Viterbi algorithm is a soft input—hard output decoding algorithm, with
a single forward recursion involving soft decisions; the recursion ends with a hard
decision, whereby a particular survivor path among several ones is retained. In com-
putational terms, the BCJR algorithm is therefore more complex than the Viterbi
algorithm because of the backward recursion.

2. The BCJR algorithm is a MAP decoder in that it minimizes the bit errors by esti-
mating the g posteriori probabilities of the individual bits in a code words to recon-
struct the original data sequence, the soft outputs of the BCJR algorithm are hard-
limited. On the other hand, the Viterbi algorithm is a maximum likelihood sequence
estimator in that it maximizes the likelihood function for the whole sequence, not
each bit. As such, the average bit error rate of the BCJR algorithm can be slightly
better than the Viterbi algorithm; it is never worse.

Most important, formulation of the BCJR algorithm rests on the fundamental assumptions
that (1) the channel encoding, namely, the convolutional encoding performed in the trans-
mitter, is modeled as a Markov process, and (2) the channel is memoryless. In the context
of our present discussion, the Markovian assumption means that if a code can be repre-
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where s(t) and A(z) are both M-by-1 vectors. Then, for a rate 1/x linear convolutional code
with feedback as in the RSC code, the probability that a symbol “1” was the message bit
is given by

Plx(t) = 1]y) = 2 Af®) (10.78)

SEFy

where %, is the set of transitions that correspond to a symbol “1” at the input, and A,(#)
is the s-component of A(t).
Define the forward estimation of state probabllmes as the M-by-1 vecto

= |Y(1z w
where the observation vector y; , is defined he ackward estmz
of state probabilities as the M-by-1 vectory /L
Geil o1 QL
~ preVtTo age
Yiek) =

The vectors «(z) and B(2) are estimates of the state probabilities at time ¢ based on the past
and future data, respectively. We may then formulate the separability theorem as follows:

The state probabilities at time # are related to the forward estimator a(#) and back-

ward estimator B(t) by the vector

%
[l extz) - B(2) Il

where a(t) - B(#) is the vector product of (z) and B(t), and | e(t) - B(#) || is the
L, norm of this vector product.

Al) = (10.81)

The vector product et} - B() (not to be confused with the inner product) is defined in
terms of the individual elements of «(¢) and B(z) by

o, (t)By(2)
a(t) - Ble) = aZ(t).BZ(t) (10.82)
a{t)Bu(t)
and the L, norm of a(t) - B(¢) is defined by
() - Ble) 1= 2 mlt)Bumlt) (10.83)

The separability theorem says that the state distribution at time ¢ given the past is
independent of the state distribution at time # given the future, which is intuitively satisfying
recalling the Markovian assumption for channel encoding, which is basic to the BCJR
algorithm. Moreover, this theorem provides the basis of a simple way of combining the
forward and backward estimates to obtain a complete description of the state probabilities.

To proceed further, let the state transition probability at time ¢ be defined by

Yo m(t) = Ps(t) = m, y(t)|s(t — 1) = m') (10.84)

a\‘
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In the vertical step, we may also update the pseudo-posterior probabilities:

P} = ap} H 0

ic,

ap} HQ

ey

I

P

where «; is chosen to make

. 1
P!+ P} = 53\
The quantities obtained in the vertical step are used to comp a'l

&. If the condition ¢AT = 0 is satisfied, the decodmg alg ist t erw1se,
the algorithm goes back to the horizontal step. nu_mber of iteral
(e.g., 100 or 200) there is no valid decodl LIure is declar Th -

e OBt

procedure described herem 15‘ a general lo, 1ex1 - uct
algorithm. T

Sim, % uct algorlth bllls c quantities between the
check nodpgd( le nodes of th y virtue of the fact that each
parity-check®constraint can be represen onvolunonal coder with one bit

of memory, we find that LDPC decoders are s1mpler to implement than turbo decoders,
as stated earlier.

In terms of performance, however, we may say the following in light of experimental
results reported in the literature: Regular LDPC codes do not appear to come as close to
Shannon’s limit as do their turbo code counterparts.

{ 10.11 Irregular Codes

The turbo codes discussed in Section 10.8 and the LDPC codes discussed in Section 10.10
are both regular codes, each in its own individual way. The error-correcting performance
of both of these codes over a noisy channel can be improved substantially by using their
respective irregular forms. .

In a standard turbo code with its encoder as shown in Figure 10.25, the interleaver
maps each systematic bit to a unique input bit of convolutional encoder 2. In contrast,
irregular turbo codes™ use a special design of interleaver that maps some systematic bits
to multiple input bits of the convolutional encoder. For example, each of 10 percent of
the systematic bits may be mapped to eight inputs of the convolutional encoder instead of

Systematic

bits x
Irregular Encoder Parity-check

interleaver 1 1 bits z;

Message
bits o—=>—e N Output
X

Irregular Encoder Parity-check

> interleaver 2 > 2 bits z,

Figure 10.32 Block diagram of irregular turbo encoder.
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is a nonnegative real number that is less than or equal to unity. Axiom (iii) states that the
probability of the union of two mutnally exclusive events is the sum of the probabilities
of the individual events. These three axioms are sufficient to deal with experiments with
finite sample spaces.

Although the axiomatic approach to probability theory is abstract in nature, all three
axioms have relative-frequency interpretations of their own. Axiom (ii) corresponds to
Equation (A1.1). Axiom (i) corresponds to the ]umtmg case of Equation (A1.1) when the \‘
event A occurs in all the # trials. To interpret axiom (iii), we note that if event A oc a
N.(A) times in # trials and event B occurs N,(B) times, then the unign e
occurs in N, (A) + N,,(B) trials (since A and B can never occur on nce
N.(A + B) = N,(A) + N,.(B), and so we have

N+ ) @\4 25 O’( ol

which has a lar to that of (ON)

Axio constltut $ én of probability. We may use
these axiom! to velop some other ba oFprobability, as described next.
Property 1

P@A) =1~ P(A) (A1.6)

where A (denoting “not A”) is the complement of event A.

The use of this property helps us investigate the nonoccurrence of an event. To prove
it, we express the sample space S as the union of two mutually exclusive events A and A4:
S=A+A4

Then, the use of axioms (i) and (iii) yields
1= P(A) + P(A)

from which Equation (A1.6) follows directly.

Property 2
If M mutually exclusive events Ai, A,, . . ., Ay bave the exbaustive property
Ay +Ar---+Ay=S (A1.7)
then
P(A)) + P(Ay) + -+ -+ P(Ay) =1 (A1.8)

To prove this property, we first use axiom (i) in Equation (A1.7), and so write
PlAy + Ay + -+ Ay) = 1
Next, we generalize axiom (iii) by writing

PA; + Ay + -+ + Ay) = P(A)) + P(A,) + - -+ + PlAy)



712

APPENDIX 1 2 PRORABILITY THEORY

We next consider 2 more general situation. Let X denote a random variable, and [et
g(X) denote a function of X defined on the real line. The quantity obtained by letting the
argument of the function g(X) be a random variable is also a random variable, which we
denote as

Y = g(X) (A1.31)

To find the expected value of the random variable Y, we could of course find the probability

density function fy(v) and then apply the standard formula t es
E[Y] = J'_m yfly) dy m NO

A simpler procedure, however, is to {:‘t\e} " 2 O
e\, \@)] = _Z g fx(p) e ’( 3 (A1.32)
Indeed, qun‘Aljl) may be viewe?g&g

an arbitrary function g{X) of a random variable X.

the concept of expected value to

2 MOMENTS

For the special case of g(X) = X", using Equation {A1.32) we obtain the nth moment of
the probability distribution of the random variable X; that is,

3

E[X" = ,L X7 fyelx) dx (A1.33)

By far the most important moments of X are the first two moments. Thus putting #n = 1
in Equation (A1.33) gives the mean of the random variable as shown in Eq. (A1.27),
whereas putting n = 2 gives the mean-square value of X:

o

E[X?] = L x*fy(x) dx (A1.34)

We may also define central moments, which are simply the moments of the difference
between a random variable X and its mean py. Thus, the #th central moment is

E[(X = px)"] = J'_m (x — wx)Vfx(x) dx (A1.35)

For # = 1, the central moment is, of course, zero, whereas for # = 2 the second central
moment is referred to as the variance of the random variable X, which is written as

var[X] = E[(X — pux)?] = J'_m (x — px)fxlx) dx (A1.36)

The variance of a random variable X is commonly denoted as o%. The square root of the
variance, namely, o, is called the standard deviation of the random variable X.

The variance o% of a random variable X in some sense is a measure of the variable’s
“randomness.” By specifying the variance 0%, we essentially constrain the effective width
of the probability density function fx{x) of the random variable X about the mean px-

a\

Q2
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(4

unaffected by transmission through the device. Such an ideal device is referred to as a
Hilbert transformer.

& PROPERTIES OF THE HILBERT TRANSFORM

The Hilbert transform differs from the Fourier transform in that it operates exclusively in

the time domain. It has a number of useful properties, some of which are listed next. The \‘
signal g(z) is assumed to be real valued, which is the usual domain of appllcatlo a
Hilbert transform. For this class of signals, we may state the followmi

1. A signal g{¢) and its Hilbert transform g t) have the s cr_rum Q
2. If §{z) is the Hilbert transform of g(z ﬂmsfo 'm of g(z) is ~g& 8 -~
i ti elyal

3. Asignal g(t)andits Hllbert transf gonal over tl re
(=, =), as shown by <

P eN\® eg*a@’e

Proofs of these properties are left as ex for the reader; the proofs follow from Equa-
tions (A2.31), (A2.32) and (A2.35).

A2.4 Complex Representation
of Signals and Systems

8 PRE-ENVELOPE

Consider a real-valued signal g(t). We define the pre-envelope, or analytic signal, of the
signal g(¢) as the complex-valued function

g+(t) = glt) + j&(t) (A2.36)
where 3(t) is the Hilbert transform of g(z). We note that the given signal g(t} is the real
part of the pre-envelope g.(¢), and the Hilbert transform of the signal is the imaginary
part of the pre-envelope. Just as the use of phasprs simplifies manipulations of alternating
currents and voltages, so we find that the pre-envelope is particularly useful in handling
band-pass signals and systems.

One of the important features of the pre-envelope g, () is the behavior of its Fourier
transform. Let G_.(f) denote the Fourier transform of g, (¢). Then we may write

G.(f) = Glf) + sgn(f)G(f)
from which we readily find that
\ 26G(f), f > 0

G.(f)=7Gl0), f=0 (A2.37)
0, f<0
where G(0) is the value of G(f) at frequency f = 0. This means that the pre-envelope of

a signal has no frequency content (i.e., its Fourier transform vanishes) for all negative
frequencies.
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Since both g;(¢) and go(z) are low-pass signals limited to the band ~W = f < W,
they may be derived from the band-pass signal g{z) using the scheme shown in Figure
A2.64. Both low-pass filters in this figure are identical, each of which has a bandwidth
equal to W. To reconstruct g(¢) from its in-phase and quadrature components, we may
use the scheme shown in Figure A2.6b.

The two schemes shown in Figure A2.6 are basic to the study of linear modulation
systems. The multiplication of the low-pass in-phase component gr{t) by cos(2wf.t) and
the multiplication of the low-pass quadrature component golt) by sin(2wfz) repre:
linear forms of modulation. Given that the carrier frequency . is sufficig
resulting band-pass function g(¢) defined in Equation (A2.45) is reﬁx @

<o\

signaling waveform. Correspondingly, the mapping from Nd gz Whto g (2} is kngwn

as passband modulation. Q r& 8
Equation {A2.44) is the Cartesi rm & sing the co

Alternatively, we may expre. s‘ r fofm 1 E

£(t) = a(t) exp[j (A2.46)
where a(t a;d ¢ (P are both real-valued ons. Based on this polar represen-

tation, the original band-pass 51gnal gt deﬁned by
£) cos[2mft + & (2) (A2.47)

We refer to a(t) as the natural envelope or simply the envelope of the band-pass signal g{z)
and to ¢(t) as the phase of the signal. Equation (A2.47) represents a bybrid form of
amplitude modulation and angle modulation; indeed, it includes amplitude modulation,
frequency modulation, and phase modulation as special cases.

From this discussion it is apparent that, whether we represent a band-pass (modu-
lated) signal g() in terms of its in-phase and quadrature components as in Equation
(A2.45) or in terms of its envelope and phase as in Equation (A2.47), the information
content of the signal g(z) is completely preserved in the complex envelope g(z).

<g> Low-pass — g (0
filter
= )
O
2 cos (2nf.1) ; cos (2mf.f}
Oscillator Oscillator
+
C): £
90°-phase —90°-phase -
shifter shifter
—2 sin (2mf,1) sin (2nf.0)

80
Low-pass @ Q
® filter > &0 ° C@

(a) (b)

FIGURE A2.6 (a) Scheme for deriving the in-phase and quadrature components of a band-pass
signal. (b) Scheme for reconstructing the band-pass signal from its in-phase and quadrature
components.
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shifting it to the origin and then scaling it by the factor 2. To determine the complex
impulse response k{t), we take the inverse Fourier transform of H(f), obtaining

= f H(f) exp(j2mft) df (A2.56)

The representations just described for band-pass signals and systems provide the basis
of an efficient method for determining the output of a band-pass system driven by a band-
pass signal. We assume that the spectrum of the input signal x(z) and the fr
sponse H(f) of the system are both centered around the same fr uefc K
there is no need to consider a situation in which the carrier N t Slgna]
is not aligned with the midband frequency of the bangdep nce we have co 1d-
erable freedom in choosing the carrier or ml% ﬁ}\us, ch

agging

frequency of the input signal by 8 y, simply cor t abs

removing) the factor exp(| @) e complex envelope o ignal or the
i d Z

complex i e -pass system. " eref 1fied in proceeding
on the assul f‘ and H{f e} o und f.. Suppose then we use
y(t) to denote the output 31gnal of the sy hat y(¢) is also a band-pass signal,
so that we may represent it in terms of it lo W-pass complex envelope §(t), as follows:
= Re[§(t) exp(j2nf.t)] (A2.57)
The output signal y(t) is related to the input signal x(f) and impulse response h(t) of
the system in the usual way by the convolution integral

= f:u h{nx(t — 7) dr (A2.58)

In terms of pre-envelopes, we have h(#) = Re[h_.(2)] and x(t) = Re[x.(#)]. We may therefore
rewrite Equation (A2.58) in terms of the pre-envelopes x+( yand b (¢) as follows:

= f Re[h.(7)] Relx.(t — 7] dr (A2.59)

To proceed further, we make use of a basic property of pre-envelopes that is described by
the following relation {presented here without proof):

f_ Re[b.(7)] Re[x.(7)] d7 = = Re|:ﬁ bo(Dxi(n) d7:| (A2.60)

where we have used 7 as the integration variable to be consistent with that in Equation
(A2.59). Next, we note that using x(—7) in place of x(7) has the effect of removing the
complex conjugation on the right-hand side of Equation (A2.60). Hence, bearing in mind
the algebralc difference between the argument of x.{7) in Equation {A2.60) and that of
x.{t — 7) in Equation {A2.59), and using the relationship between the pre-envelope and
complex envelope of a band-pass function, we get

y(t) = 1 Re[fj honx.(t— 7 dT]

e|:J“>° b{7) exp(i2afDE(t — 1) exp(j27mfi(t ~ 7)) dq-] (A2.61)

NI;—\ NI»—x

Re|:exp (j27f.t) f b{DiEE — 1) d ]

a\‘
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FIGURE A2. lt‘( éam illustrating t L&%@n the in-phase and quadrature
fier an s

components of the response of a band-pass the input signal.

and for the quadrature component yg(z) the relation
2yolt) = holt) K xi(t) + bi(t) * xot) (A2.68)

Thus, for the purpose of evaluating the in-phase and quadrature components of the com-
plex envelope §{t) of the system output, we may use the low-pass equivalent model shown
in Figure A2.8. All the signals and impulse responses shown in this model are real-valued
low-pass functions. Accordingly, this equivalent model provides a practical basis for the
efficient simulation of band-pass filters or communication channels on a digital computer.

To sum up, the procedure for evaluating the response of a band-pass system (with
mid-band frequency £} to an input band-pass signal (of carrier frequency f) is as follows:

1. The input band-pass signal x(#) is replaced by its complex envelope £(), which is
related to x(¢) by

x(t) = Re[&(z) exp(j27f.t)]
2. The band-pass system, with impulse response h(2), is replaced by a low-pass analog,
which is characterized by a complex impulse response b(z) related to h{t) by
hit) = Relh(t) exp(2mf.2)]
3. The complex envelope §(#) of the output band-pass signal y(t) is obtained by con-
volving &(z) with %(t), as shown by
25(8) = h(t) * &)

4, The desired output y(t) is finally derived from the complex envelope §(t) by using
the relation

y(t) = Re[§(t) exp(;27f.2)]



A5.2  Block and Stream Ciphers 745
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56-\'
FIGURE A5.4 Binary additive stream cipher. Ote
We thus see that in binary additive stream ciphers, j N ms cdn be used to m -
encryption and decryption, as shown in Ejg . e¥secret key js gBsen é ing
e chm s
ible.

to some probability distribution e s encryptio e dre-

semble a coin-tossing (i. y om) sequence ag closely

Blockget Qﬁa esigned in s @t a stall change in an input
block of p@xr ces a major chatfge g output. This error propagation
property of Block ciphers is valuable in 4fthen¥€ati®r’in that it makes it improbable for
an enemy cryptanalyst to modify encrypted data, unless knowledge of the key is available.
On the other hand, a binary additive stream cipher has #o error propagation; the decryp-
tion of a distorted bit in the ciphertext affects only the corresponding bit of the resulting
output.

Stream ciphers are generally better suited for the secure transmission of data over
error-prone communication channels; they are used in applications where high data rates
are a requirement (as in secure video, for example) or when a minimal transmission delay
is essential.®

# REQUIREMENT FOR SECRECY

In cryptography, a fundamental assumption is that an enemy cryptanalyst has knowledge
of the entire mechanism used to perform encryption, except for the secret key. We may
identify the following forms of attack that may be attempted by the enemy cryptanalyst,
depending on the availability of additional knowledge:

1. Ciphertext-only attack is a cryptanalytic attack in which the enemy cryptanalyst has
access to part or all of the ciphertext.

2. Known-plaintext attack is a cryptanalytic attack in which the enemy cryptanalyst
has knowledge of some ciphertext-plaintext pairs formed with the actual secret key.

3. Chosen-plaintext atack is a cryptanalytic attack in which the enemy cryptanalyst is
able to submit any chosen plaintext message and receive in return the correct
ciphertext for the actual secret key. ‘

4. Chosen-ciphertext attack is a cryptanalytic attack in which the enemy cryptanalyst
is able to choose an arbitrary ciphertext and find the correct result for its decryption.

A ciphertext-only attack occurs frequently in practice. In this form of attack, an
enemy cryptanalyst uses only knowledge of the statistical structure of the language in use
(e.g., in English the letter ¢ occurs with a probability of 13 percent, and the letter g is
always followed by «) and knowledge of some probable words (e.g., a letter probably
begins with “Dear Sir/Madam:”). A known-plaintext attack may take place by virtue of
the standard computer formats used in programming languages and data generation. In
any case, the ciphertext-only attack is viewed as the weakest threat to which a crypto-
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# ROLE OF DATA COMPRESSION IN CRYPTOGRAPHY

Lossless data compression or data compaction is a useful tool in cryptography We say
this because data compaction removes redundancy, thereby increasing the unicity distance
Nj in accordance with Equation (A5.11). To exploit this idea, data compaction is used
prior to encryption in the transmitter, and the redundant information is reinserted after
decryption in the receiver; the net result is that the authorized user at the receiver output
sees no difference, and yet the information transmission has been made more secur
would be tempting to consider the use of perfect data compaction to remov

dancy, thereby transforming a message source into a completely

sulting in Ny = o with any key size. Unfortunately, we capable of

performing perfect data compaction on realis notis it hkely that

will ever be such a device. It is therefore &% ata compact ta

security. Nevertheless, limitee ﬁ nds to mc s the
pression as a ﬁT

reason why cryptog@ﬂ

= DIFFUSEV X’D CONFUSION P g

In the Shannon model of cryptography, two methods suggest themselves as general prin-
ciples to guide the design of practical ciphers. The methods are called diffusion and con-
fusion, the aims of which (by themselves or together) are to frustrate a statistical analysis
of ciphertext by the enemy and therefore make it extremely difficult to break the cipher.

In the method of diffusion, the statistical structure of the plaintext is hidden by
spreading out the influence of a single bit in the plaintext over a large number of bits in
the ciphertext. This spreading has the effect of forcing the enemy to intercept a tremendous
amount of material for the determination of the statistical structure of the plaintext, since
the structure is evident only in many blocks, each one of which has a very small probability
of occurrence. In the method of confusion, the data transformations are designed to com-
plicate the determination of the way in which the statistics of the ciphertext depend on the
statistics of the plaintext. Thus, a good cipher uses a combination of diffusion and
confusion.

For a cipher to be of practical value, however, it must not only be difficult to break
the cipher by an enemy cryptanalyst, but also it should be easy to encrypt and decrypt
data given knowledge of the secret key. We may satisfy these two design objectives using
a product cipher, based on the notion of “divide and conquer.” Specifically, the imple-
mentation of a strong cipher is accomplished as a succession of simple component ciphers,
each of which contributes a modest amount of diffusion and confusion to the overall
makeup of the cipher. Product ciphers are often built using substitution ciphers and trans-
position ciphers as basic components; these simple ciphers are described next.

1. Substitution cipher.

In a substitution cipher each letter of the plaintext is replaced by a fixed substitute, usually
also a letter from the same alphabet, with the particular substitution rule being determined
by the secret key. Thus the plaintext

X = (xla X2y X35 X4y« « )
where x1, x5, %3, . . . are the successive letters, is transformed into the ciphertext

Y = (Y15 Y25 Y35 Yas + - 1)

= (flxa)s fla)s Fls)y )y ) (&5.15)

S50\
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FiGURE A5.8 Data encryption standard. (From Diffie and Hellman, 1979, with permission of

the IEEE.)
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APPENDIX 5 2 CRYPTOGRAPHY

The notion emerging from the description of a public-key cryptographic system pre-
sented herein is that the keys come in inverse pairs (i.e., public key and private key), and
that each pair of keys has two basic properties:

1. Whatever message is encrypted with one of the keys can be decrypted with the other
key. .
2. Given knowledge of the public key, it is computationally infeasible to find the secret

1st their

key.

The use of public-key cryptography as described herein malﬁpﬁ&%ﬁ
ic
a

message. T T es!

the sectecy problem as follows. Subscribers to a secure compagni {2

public keys in a “telephone directory” along wgth theg e§a esses. A subscfber 8

can then send a private message to anothe SL:% e@ y By lookin 6{? ;@C ey s
(i%.,

of the addressee and using tlt ypt
ciphertext) can only &dr‘t@p r'of that particulgy publif kel In¥e€t, should the
original me 525 ?@ xt¥ be lost, even its ge ‘éd find it extremely difficult to
recover the ¥f€ssa t the ciphertext a‘g

. The ke¥} management of public-kegp aphe? makes it well suited for the devel-
opment of large, secure communication networks. Indeed, it has evolved from a simple
concept to a mainstay of cryptographic technology.

# DIrFriF—HELLMAN PUBLIC KEY DISTRIBUTION

In a simple and yet elegant system known as the Diffie-Hellman public key-distribution
system, use is made of the fact that it is easy to calculate a discrete exponential but difficult
to calculate a discrete logarithm. To be more specific, consider the discrete exponential
function

Y=a¥modp forl=X=p-1 (A5.24)

where the arithmetic is performed modulo-p. The a is an integer that should be primitive
(ie., all powers of « generate all the elements mod p relatively prime to p — 1). Corre-
spondingly, X is referred to as the discrete logarithm of Y to the base &, mod p, as shown
by !

X = log,Ymodp forl=Y=p-1 (A5.25)

The calculation of Y from X is easy, using the trick of square-and-multiply. For example,
for X = 16 we have

Y = o = ([(o2PF
On the other hand, the problem of calculating X from Y is much more difficult.
In the Diffie—Hellman public key-distribution system, all users are presumed to know

both @ and p. A user , say, selects an independent random number X; uniformly from the
set of integers {1, 2, ..., p} that is kept as a private secret. But the discrete exponential

Y, = o mod p (AS.26)

is deposited in a public directory with the user’s name and address. Every other user of
the system does the same thing. Now, suppose that users and j wish to communicate
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§ Conventions and Notations

: 1
The symbol | | means the absolute value, or magnitude, of the complex n%a\

1.

contained within.
2. The symbol arg( ) means the phase angle of the complex quaﬁ within.
3. The symbol Re[ ] means the “real part of,’ and thé“imaginary par% ”
4

10.

11.

12.

13.

14.

. Unless stated otherwise, the natural log e by log. Loggrith
2 and 10 are denoted byl 105 ctlvely s
. The use of an s t denotes comply cor@ is the com-~

plex
. Thes 1n 1cates a Fourle e.g., glt G(f), where a low-
ercase letter denotes the time functl n and a co espondlng up percase letter denotes

the frequency function.

. The symbol F[ ] indicates the Fourier-transform operation, e.g., Flg(¢)] = G{f),

and the symbol F7'[ | indicates the inverse Fourier-transform operation, e.g.,

TG = gl#)

. The symbol % denotes convolution, e.g.,

x(t) * b(t) = '[" x(Dh(t — 1) dr

. The symbol @ denotes modulo-2 addition, except in Chapter 10 where binary arith-

metic is used and modulo-2 addition is denoted by an ordinary plus sign throughout
that chapter.

The use of subscript Ty indicates that the pertinent function g7,(¢), say, is a periodic
function of time # with period T.

The use of a hat over a function indicates one of two things:

(a) the Hilbert transform of a function, e.g., the function () is the Hilbert transform
of g(#), or

(b) the estimate of an unknown parameter, e.g., the quantity &(x) is an estimate of
the unknown parameter a, based on the observation vector x.

The use of a tilde over a function indicates the complex envelope of a narrowband

signal, e.g., the function g(z) is the complex envelope of the narrowband signal g(t).

The exception to this convention is in Section 10.8, where, in the description of turbo

decoding, the tilde is used to signify extrinsic information and thereby distinguish it

from log-likelihood ratio.

The use of subscript + indicates the pre-envelope of a signal, e.g., the function

g+{t) is the pre-envelope of the signal g(¢). We may thus write g.(f) = g(¢) + j&(#),

where g(2) is the Hilbert transform of g(f). The use of subscript — indicates that

g-(8) = g(t) ~ jg(t) = g (2).

The use of subscripts I and Q indicates the in-phase and quadrature components of

a narrowband signal, a narrowband random process, or the impulse response of a

narrow-band filter, with respect to the carrier cos(2mf.t).

771



772

GLOSSARY

15.

16.

17.

18.

19.
20.

21.

22.
23.

24.

25.

26.

For a low-pass message signal, the highest frequency component or message band-
width is denoted by W. The spectrum of this signal occupies the frequency interval
~W = f = W and is zero elsewhere. For a band-pass signal with carrier frequency
f., the spectrum occupies the frequency intervals, f; — W = f = f, + W and
—f - W=f=~f+ W, and so 2W denotes the bandwidth of the signal. The
(low-pass) complex envelope of this band-pass signal has a spectrum that occupies
the frequency interval ~W = f = W.

For a lowpass filter, the bandwidth is denoted by B. A common definition t
bandwidth is the frequency at which the magnitude response of he - es
3 dB below the zero-frequency value. For a band-pass ﬁ.lter ency
f. the bandwidth is denoted by 2B, centered on -pass equivy ent
of this band-pass filter has a bandw1dth ‘

The transmission bandw1dt ofa o 6on channel,

uife to
modulated wave, is ﬁ’ 9
Rand %& ectors are up , and their sample
value? e (e.g., X Or X
A vertkal bar in an expression m ? P* e.g., fx(x|Hp) is the probability

density function of the random varfble X, given that hypothesis Hy is true.

The symbol E[ ] means the expected value of the random variable enclosed within;
the E acts as an operator.

The symbol var| ] means the variance of the random variable enclosed within.

The symbol cov[ ] means the covariance of the two random variables enclosed
within.

The average probability of symbol error is denoted by P..

In the case of binary signaling techniques, p, denotes the conditional probability
of error given that symbol 0 was transmitted, and po; denotes the conditional prob-
ability of error given that symbol 1 was transmitted. The a priori probabilities of
symbols 0 and 1 are denoted by p, and p;, respectively.

The symbol { ) denotes the time average of the sample function enclosed within.
Boldface letter denotes a vector or matrix. The inverse of a square matrix R is denoted

by R~ The transpose of a vector w is denoted by w7. The Hermitian transpose of

a complex valued vector x is denoted by x*'; Hermitian transposition involves both

transposition and complex conjugation.

The length of a vector x is denoted by | x |. The Enclidean distance between the

vectors x; and x; is denoted by d; = | x; — x;|.

The inner product of two real-valued vectors x and y is denoted by x"y; their outer

product is denoted by xy”. If the vectors x and y are complex valued, their inner

product is x”'y, and their outer product is xy™.

The vector product of two M-by-1 vectors e and B is an M-by-1 vector defined by

1Py

apB;

mPBu
where @, and B, are the kth clements of & and B, respectively. The L; norm of the

vector product a + B is defined by
M

“(1'8”1: 2 amBm
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PCM:
PDM:
PG:
PLL:
PN:
POTS:
PPM:
PSK:
PSTN:
PWM:
QAM:
QoS:
QPSK:

rms:
RS:
RS-232
RSA:
RSC:
RZ:

SDH:
SDMA:
SDR:
SNR:

SONET:

STM:
TC:
TCM:

TDMA:

VCO:

VLSI:

WDM:

RISl poad®

pulse-code modulation
pulse-duration modulation
processing gain
phase-locked loop
pseudo-noise

plain old telephone service

pulse-position modulation a\‘
phase-shift keying “es

public switched telephone network NO Q
pulse-width modulation m 8
quadrature amplitude modulatio»‘( O O“ |
quality of services 7 96

a.drifh 2%11’1\@

Reed-Solomon

Recommended standard-232 (port;
Rivest-Shamir-Adelman

recursive systematic convolutional (code)
return-to-zero

second

synchronous digital hierarchy
space-division multiple access
signal-to-distortion ratio
signal-to-noise ratio

synchronous optical network
short-time Fourier transform
synchronous transfer mode

* time compression

trellis-coded modulation
time-division multiplexing
time-division multiple access
television

ultra high frequency

volt

voltage-controlled oscillator
very high frequency
very-large-scale integration
watt

wavelength division multiplexing
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