MATH20802: Statistical Methods Semester 2 Formulas to remember for the final exam

The moment generating function of a random variable X is $M_X(t) = E [\exp(tX)]$. The fact that $E(X^n) = M_X^{('n)}(0)$. The moment generating function of a $\Gamma(a, \lambda)$ random variable (where a is the shape parameter and λ is the scale parameter) is $M_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^a$. The moment generating function of an $Exp(\lambda)$ random variable is $M_X(t) = \frac{\lambda}{\lambda - t}$. $\widehat{\theta}$ is an unbiased estimator of θ if $E\left(\widehat{\theta}\right) = \theta$. $\widehat{\theta}$ is an asymptotically unbiased estimator of θ if $\lim_{n \to \infty} E\left(\widehat{\theta}\right) = \theta$. The bias of $\hat{\theta}$ is $E(\hat{\theta}) - \theta$. The mean squared error of $\hat{\theta}$ is $E\left|\left(\hat{\theta}-\theta\right)^2\right|$. $\widehat{\theta}$ is a consistent estimator of θ if $\lim_{n \to \infty} E\left[\left(\widehat{\theta} - \theta\right)^2\right] = 0.$ The beta function is defined by $B(a,b) = \int_{0}^{1} t^{a-1}(1-t)^{b-1} dt$. The fact that $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. The probability density function of $X \sim Exp(\lambda)$ is $f_X(x) = \lambda \exp(-\lambda x)$. The cumulative distribution function of $X \sim Exp(\lambda)$ is $F_X(x) = 1 - \exp(-\lambda x)$. The cumulative distribution function of $X \sim N(0,1)$ is $\Phi(x)$.

The Type I error of $H_0: \mu = \mu_0$ versus $H_0: \mu \neq \mu_0$ occurs if H_0 is rejected when in fact $\mu = \mu_0$.

The Type II error of $H_0: \mu = \mu_0$ versus $H_0: \mu \neq \mu_0$ occurs if H_0 is accepted when in fact $\mu \neq \mu_0$.

The significance level of $H_0: \mu = \mu_0$ versus $H_0: \mu \neq \mu_0$ is the probability of type I error. The power function of $H_0: \mu = \mu_0$ versus $H_0: \mu \neq \mu_0$ is $\Pi(\mu) = \Pr(\operatorname{Reject} H_0 \mid \mu)$.

Let X_1, X_2, \ldots, X_m be a random sample from a normal population with mean μ_X and variance σ_X^2 assumed known. Let Y_1, Y_2, \ldots, Y_n be a random sample from a normal population with mean μ_Y and variance σ_Y^2 assumed known. Assume independence of