Let R be a ring with identity, and let U denote the set of units in R. The set U with multiplication in R is a group.

A ring R has two operations: multiplication and addition. It is only a group with respect to addition. Since the group of units in R is a group with respect to the multiplication operation in R and not the addition operation, it does not form a subgroup of R.

The conjugacy class $[a]_m$ in Z/mZ is a unit if and only if (a, m) = 1.

Let R be a ring. A nonzero element a in R is a *zero divisor* if there is a nonzero $b \in R$ such that ab = 0

If R is a unital ring with finitely many elements, then every nonzero element is either a unit or a zero divisor.

Let R be a ring and suppose a = 0 in R is not a zero divisor. Then if b, $c \in R$ are elements for which ab = ac, then we must have b = c.

For R a commutative ring with identity and $a \in R$ nonzero and not a tero divisor, and $b \in R$ any element, the equation ax = b has either a unique solution or no solutions.

An element a of a ring R with identity cannot be both a zero divisor and a unit.

A field has no zero deisers.

The ring Z/mZ is a field if and only if m is prime

Homomorphisms:

Let R and S be two rings, and f: $R \rightarrow S$ a function. The function f is a (ring) homomorphism if

(1) f(r + r') = f(r) + f(r') for any $r, r' \in R$.

(2) $f(r \cdot r') = f(r) \cdot f(r')$ for any $r, r' \in R$.

(3) If R and S are unital, then $f(1_R) = 1_S$, where 1_R is the identity in R, and 1_S is the identity in S.

Properties of Homomorphisms:

Let $f : R \rightarrow S$ be a homomorphism. Then,

(1) f(0) = 0

(2) f(-r) = -f(r)

(3) If $a \in R$ is a zero divisor, then f(a) is a zero divisor in S. (Or f(a) = 0.)

(4) If $a \in R$ is a unit, then f(a) is a unit in S and $f(a^{-1}) = f(a)^{-1}$.

Let f: $R \rightarrow S$ be a homomorphism.

(1) If whenever f(r) = f(r'), we must have r = r', then f is injective

(2) If for any $s \in S$, there is an $r \in R$ such that f(r) = s, then f is surjective

Euclid's Algorithm:

 $g(x) = f(x)q_{1}(x) + r_{1}(x) \quad \deg r_{1}(x) < \deg f(x)$ $f(x) = r_{1}(x)q_{2}(x) + r_{2}(x)$ $r_{1}(x) = r_{2}(x)q_{3}(x) + r_{3}(x)$ \vdots $r_{n-2}(x) = r_{n-1}(x)q_{n}(x) + r_{n}(x) \text{ where } r_{n}(x) \text{ is the last nonzero remainder}$ $r_{n}(x) \text{ is a gcd of } f(x) \text{ and } g(x)$

If r(x)|f(x) and r(x)|g(x) and if $k \in f(x)$ is nonzero then $k \in F[x]$ is a unit, so kr(x)|f(x) and kr(x)|g(x)

If r(x) and s(x) are gcds of f(x) and g(x) in F[x] then there is a scale k such that s(x) = kr(x)

The gcd of f(x) and g(x) in F[x] is the monic gcd of Euclid's Algorithm (monic gcd r (f, g))

Bezout's Identity:
Let $f(x), g(x) \in F[x]$ and let d(x) be any gcd of f are getteen there are polynomials
 $r(x), s(x) \in F[x]$ such that d(x) = r(x)f(x) - t(x)g(x)A polynomial p(x) in F[x] is inclusione if p(x) is non-aunit (i.e. not a nonzero constant
polynomial) and if p(x) $H^i(x)g(x)$, then either or g must be a unit.

For polynomials $p(x) \in F[x]$ of legree 2 or 3, p(x) irreducible if and only if p(x) has no roots in F.

If p(x) = f(x)g(x) with neither f nor g a unit, then $0 < \deg f$ and $0 < \deg g$ and $\deg f + \deg g = \deg p = 2$ or 3

Every monic polynomial of positive degree in F[x] is irreducible or factors uniquely into a product of monic irreducibles. If $f \in F[x]$ has leading coefficient a, then f factors into a product of irreducible polynomials, or f(x) = ag(x), where g(x) is monic, and therefore factors uniquely into irreducibles.

Every polynomial of deg ≥ 1 is irreducible or factors into a product of irreducibles of lower degree

If $f(x) = p_1(x)p_2(x) \dots p_s(x) = q_1(x)q_2(x) \dots q_t(x)$ with all p_i and q_j irreducible then there is a bijection between the p'_i s and the q'_i s. There is a scalar k such that $q_i = kp_i$.

Alternatively...