Search for notes by fellow students, in your own course and all over the country.
Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.
Title: Techniques of Integration
Description: Techniques include a comprehensive step-by-step tutorial on + fast integral + integration by parts + using special powers of trigonometric functions + trigonometric substitution + integration by partial fractions + rationalizing substitution + half-angle substitution This is a powerpoint slides-type pdf with many examples that includes complete solution. Text is large enough not to bore the student ;) Have fun studying! p.s. there are a number of items at the end without solution for a challenge ;)
Description: Techniques include a comprehensive step-by-step tutorial on + fast integral + integration by parts + using special powers of trigonometric functions + trigonometric substitution + integration by partial fractions + rationalizing substitution + half-angle substitution This is a powerpoint slides-type pdf with many examples that includes complete solution. Text is large enough not to bore the student ;) Have fun studying! p.s. there are a number of items at the end without solution for a challenge ;)
Document Preview
Extracts from the notes are below, to see the PDF you'll receive please use the links above
Unit 2
Techniques of Integration
Unit 2
...
0
Evaluate the integral
...
cos 2 x dx sin 2 x C
2
1
2
...
2sec 5x dx tan 5x C
5
1
4
...
e dx e C
4
1 26 x
6
...
sech 8x tanh 8x dx sech 8x C
8
dx
1
8
...
ln 22 12 x C
22 12 x
12
End of Unit 2
...
1
Integration by Parts
If u and v are differentiable functions
of x then
uv ' uv ' vu '
uv ' dx uv ' dx vu ' dx
uv uv ' dx vu ' dx
uv uv ' dx vu ' dx
du u ' dx and dv v ' dx
uv u dv v du
u dv uv v du
Example 2
...
1
...
ln x dx
u dv
uv v du
x ln x dx
x ln x x C
Let u ln x
dx
du
x
dv dx
vx
3
...
e x cos x dx
Let u e
u dv
du e dx v sin x
x
uv v du
e sin x e sin x dx
x
dv cos x dx
x
x
For
e x sin x dx,
e sin x dx
u dv
uv v du
x
Let u e x
e x cos x e x cos x dx
du e x dx
dv sin x dx
v cos x
e
e
x
x
cos x dx e sin x e sin x dx
x
x
sin x dx e x cos x e x cos x dx
Therefore,
e x cos x dx e x sin x e x cos x e x cos x dx
2 e x cos x dx e x sin x e x cos x
e x sin x e x cos x
e x cos x dx
C
2
5
...
x
4
sin 2 x dx
u
4
x
4 x3
2
12 x
24 x
24
0
dv
sin 2 x
1 cos 2 x
2
1 sin 2 x
4
1
cos 2 x
8
1
sin 2 x
16
1
32 cos 2 x
x4 sin 2 x dx 1 x 4 cos 2 x x3 sin 2 x
2
x cos 2 x 3 x sin 2 x 3 cos 2 x C
2
4
3
2
2
7
...
Exercises 7
...
End of Unit 2
...
2
Integration of Special Powers
of Trigonometric Functions
Example 2
...
1
cos
Evaluate
3
x dx
...
If m is odd, save one sine factor and
express the remaining factors in terms of
cosine
...
If n is odd, save one cosine factor and
express the remaining factors in terms of
sine
...
If m and n are both even, use the halfangle identities
1 cos 2u
2
sin u
2
1 cos 2u
2
cos u
2
Example 2
...
2
Evaluate the integrals
...
Let u cos x
du sin x dx
du sin x dx
sin x cos x dx
sin x cos x sin x dx
sin x cos x sin x dx
1 cos x cos x sin x dx
1 u u du
5
2
4
2
2
2
2
2
2
2 2
2
2
1 u
u
2 2
2
du
1 2u 2 u 4 u 2 du
u 2u u du
2
4
6
u3 2u 5 u 7
C
5
7
3
3
5
7
cos x 2cos x cos x
C
3
5
7
2
...
If m is odd, save a factor of sec u tan u
and express the remaining factors in terms
of sec u
...
If n is even, save a factor of sec u and
express the remaining factors in terms of
tan u
...
If the power of secant is odd and the power
of tangent is even, then express all factors
in terms of sec u then use integration by
parts
...
2
...
1
...
tan 3 x dx
tan x sec x sec x tan x dx
1
2
sec x 1 sec x sec x tan x dx
2
1
u 2 1 u 1 du
1
u du
u
2
u
ln u C
2
2
sec x
ln sec x C
2
Let u sec x
du sec x tan x dx
3
...
1
...
Exercises 7
...
End of Unit 2
...
3
Trigonometric Substitution
Preliminary Exercise
Express the following in terms of
sin and cos
...
tan
cos
cos
2
...
sec
cos
1
4
...
1
1
...
cos
sec
tan
sin
3
...
csc
sec
tan
cos
Consider the integral a x dx where a
2
2
is a positive constant
...
2
2
For integrals involving a u where a 0,
if u a sin where then
2
2
2
2
a u a a sin
2
2
2
2
2
a 1 sin
2
2
a cos
a cos
2
2
Trigonometric Substitution
Expression
1
...
a u
2
2
2
u a tan
du a sec2 d
a u a sec
2
2
3
...
3
...
4 x2
1
...
dx
x2 25
3
Let x 5tan
2
dx
x 25
2
dx 5sec2 d
5sec2 d
3
5sec
1 d
25 sec
1
cos d
25
3
x2 25 5sec
1
cos d
25
1
sin C
25
1 tan
C
25 sec
1
x
C
25 x2 25
x 5tan
x 25 5sec
2
3
...
3
...
a 2 x2 dx
a cos a cos d
a cos d
2
2
1 cos2
a
d
2
2
a
1 cos2 d
2
2
Let x a sin
dx a cos d
a x a cos
2
2
2
a
1 cos2 d
2
2
a
1
sin 2 C
2
2
a2
sin cos C
2
a2
x x a2 x2
Arcsin
2
a a
a
x a sin
a 2 x2 a cos
sin 2 2sin cos
C
Required Exercises
Answer Exercises in TC7
...
3 (1-33) on page 600
Check your answers on A-160
...
3
Unit 2
...
x 1 x 2
x 2 3 x 1
1
3
x 1 x 2
x 1 x 2
x 2 3x 3
2
x x2
4x 1
2
x x2
1
3
4x 1
2
x 1 x 2 x x 2
4x 1
3
1
So, 2
dx
dx
x x2
x 1 x 2
ln x 1 3ln x 2 C
When to Use Partial Fractions
P
Consider dx
...
P and Q are polynomials
...
deg P deg Q
...
3
...
Otherwise, cancel common factors
...
4
...
2 x 3x 1
4x 3
A
B
x 1 2 x 1 x 1 2 x 1
A 2 x 1 B x 1
4x 3
x 1 2 x 1
x 1 2 x 1
4 x 3 A 2 x 1 B x 1
4 x 3 A 2 x 1 B x 1
if x 1 ,
2
4 1 3 B 1 1
2
2
1 1 B
2
B2
if x 1,
4 1 3 A 2 1 1
1 A
A 1
4x 3
A
B
2
2 x 3x 1 x 1 2 x 1
A 1 and B 2
4x 3
1
2
Therefore,
...
r
ax b
Example 2
...
2
Evaluate
Consider
3x 1
2
x x 1
3x 1
x3 2x2 x dx
...
3
2
x 2x x
A
B
C
2
x x 1 x 1
A x 1 Bx x 1 Cx
3x 1
2
2
x x 1
x x 1
2
3x 1 A x 1 Bx x 1 Cx
2
3x 1 A x 1 Bx x 1 Cx
2
if x 1,
3 1 1 C
2 C
C2
if x 0,
3 0 1 A 0 1
A 1
2
3x 1 A x 1 Bx x 1 Cx
2
A 1 and C 2
3x 1 1 x 1 Bx x 1 2 x
2
3x 1 x2 2 x 1 Bx 2 Bx 2 x
x2 :
x:
C:
0 1 B
B 1
32 B2
11
3x 1
A
B
C
2
3
2
x 2 x x x x 1 x 1
A 1, B 1, and C 2
3x 1
1
1
2
Therefore, 3
2
2
x 2 x x x x 1 x 1
1
3x 1
1
2
x3 2x2 x dx x x 1 x 12 dx
1
3x 1
1
2
x3 2x2 x dx x x 1 x 12 dx
2
For
dx,
2
x 1
Let
u x 1
du dx
2
x 12 dx
2
2 du
u
1
2 C
u
2
C
x 1
1
3x 1
1
2
x3 2x2 x dx x x 1 x 12 dx
2
2
x 12 dx x 1 C
Therefore,
3x 1
2
x3 2x2 x ln x ln x 1 x 1 C1
Case 3: Non Repeating
Quadratic Factors
If Q has quadratic factors that are non repeating,
for each quadratic factor, ax bx c where a
and one of b and c are not zero, write a partial
fraction of the form
2
Ax B
ax2 bx c
Example 2
...
3
x2 8
dx
...
Consider 4
2
x 4x
A B Cx D
x2 8
2 2
2
2
x 4
x x 4 x x
x 8
2
2
x x 4
2
Ax x2 4 B x 2 4 Cx D x 2
x x 4
2
2
x2 8 Ax x2 4 B x 2 4 Cx D x 2
x 8 Ax x 4 B x 4 Cx D x
2
2
2
2
if x 0,
8 4B
B2
x2 8 Ax x2 4 2 x 2 4 Cx D x 2
x2 8 Ax3 4 Ax 2 x 2 8 Cx3 Dx 2
x 8 Ax 4 Ax 2 x 8 Cx Dx
2
3
2
x3 :
0 AC
C A
x2 :
x:
C:
1 2 D
0 4A
88
D 1
A0
3
2
C 0
x 8
A B Cx D
2 2
4
2
x 4x
x x
x 4
A 0, B 2, C 0, and D 1
2
x2 8
2
1
Therefore, 4
2 2
...
Exercises 7
...
End of Unit 2
...
5
Rationalizing Substitution
Example 2
...
1
dx
Evaluate
...
Example 2
...
2
Evaluate the integrals
...
3
x x
6
u x
5
6u du
2 3
6u5 du dx
u u
1
1
5
6 3
2
3
3
6u du
x x u u
2
u 1 u
1
1
6 2
x x 2 u u3
3
u du
6
1 u
u u 1
u 1 u3
2
3
u du
6
1 u
1
2
6 u u 1
du
u 1
u u
3
2
u2
u 2 u
u
u 1
1
1
2
6 u u 1
du
u 1
u3 u 2
6 u ln u 1 C
3 2
2 x
1
3
6
3 x
1
6
2
1
1
x ln x 6 1 C
6
2 x 3 3 x 6 6 x 6ln 6 x 1 C
2
...
Exercises 7
...
End of Unit 2
...
6
Half-Angle Substitution
Half-Angle Substitution
If an integrand is a rational function of sin x
and cos x, then let
x
z tan 2
x
z tan 2
x
sec2 2
dz
dx
2
2
dx
dz
2 x
sec 2
2
dx
dz
2 x
1 tan 2
2 dz
dx
1 z2
x
z tan 2
x
sin x sin 2 2
x
x
2sin 2 cos 2
sin 2u 2sin u cos u
x
cos 2
x
x
2sin 2 cos 2
x
cos 2
x
2sin 2
2 x
cos 2
x
cos 2
x
2tan 2
2 x
sec 2
x
z tan 2
x
2tan 2
sin x
2 x
sec 2
sin x
x
2tan 2
1 tan
2z
sin x
1 z2
2
x
2
x
z tan 2
cos x cos 2
x
2cos2 2 1
x
2
2
1
2 x
sec 2
2
1
2 x
1 tan 2
2
1
2
1 z
cos 2u 2cos u 1
2
2
cos x
1
2
1 z
2
1 z
cos z
2
1 z
Theorem
x
If z tan 2 , then
2 dz
dx
2
1 z
2z
sin x
1 z2
1 z
cos x
2
1 z
2
Example 2
...
1
Evaluate the following integrals
...
1 sin x cos x
2dz
1 z2
2
2z
1 z
1
2
2
1 z 1 z
2dz
1 z2
2
2
1 z 2z 1 z
2
1 z
x
z tan 2
2dz
dx
1 z2
2z
sin x
2
1 z
2
1 z
cos x
2
1 z
2dz
2
1 z
2
2
1 z 2z 1 z
1 z2
dz
2
2z 2
dz
z 1
ln z 1 C
x
ln tan 2 1 C
dx
2
...
Exercises 7
...
End of Unit 2
...
dx
1
...
2
9x 4
2 x 3 dx
3
...
sin x 2cos x
5
...
x3 cos 2 x dx
4
3
Title: Techniques of Integration
Description: Techniques include a comprehensive step-by-step tutorial on + fast integral + integration by parts + using special powers of trigonometric functions + trigonometric substitution + integration by partial fractions + rationalizing substitution + half-angle substitution This is a powerpoint slides-type pdf with many examples that includes complete solution. Text is large enough not to bore the student ;) Have fun studying! p.s. there are a number of items at the end without solution for a challenge ;)
Description: Techniques include a comprehensive step-by-step tutorial on + fast integral + integration by parts + using special powers of trigonometric functions + trigonometric substitution + integration by partial fractions + rationalizing substitution + half-angle substitution This is a powerpoint slides-type pdf with many examples that includes complete solution. Text is large enough not to bore the student ;) Have fun studying! p.s. there are a number of items at the end without solution for a challenge ;)