Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Techniques of Integration
Description: Techniques include a comprehensive step-by-step tutorial on + fast integral + integration by parts + using special powers of trigonometric functions + trigonometric substitution + integration by partial fractions + rationalizing substitution + half-angle substitution This is a powerpoint slides-type pdf with many examples that includes complete solution. Text is large enough not to bore the student ;) Have fun studying! p.s. there are a number of items at the end without solution for a challenge ;)

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Unit 2
Techniques of Integration

Unit 2
...
0
Evaluate the integral
...
 cos  2 x  dx  sin  2 x   C
2
1
2
...
 2sec  5x  dx  tan  5x   C
5
1
4
...
 e dx  e  C
4
1 26 x
6
...
 sech 8x  tanh 8x  dx   sech 8x   C
8
dx
1
8
...

  ln 22  12 x  C
22  12 x
12

End of Unit 2
...
1
Integration by Parts

If u and v are differentiable functions
of x then

 uv  '  uv ' vu '

 uv  ' dx   uv ' dx   vu ' dx
uv   uv ' dx   vu ' dx

uv   uv ' dx   vu ' dx
du  u ' dx and dv  v ' dx
uv   u dv   v du

 u dv  uv   v du

Example 2
...

1
...


 ln x dx
  u dv
 uv   v du
 x ln x   dx
 x ln x  x  C

Let u  ln x
dx
du 
x

dv  dx
vx

3
...


e x cos x dx


Let u  e

  u dv

du  e dx v  sin x
x

 uv   v du
 e sin x   e sin x dx
x

dv  cos x dx

x

x

For

e x sin x dx,


 e sin x dx
  u dv
 uv   v du
x

Let u  e x

 e x cos x   e x cos x dx

du  e x dx

dv  sin x dx
v   cos x

e
e

x
x

cos x dx  e sin x   e sin x dx
x

x

sin x dx  e x cos x   e x cos x dx

Therefore,
e x cos x dx  e x sin x  e x cos x   e x cos x dx

2 e x cos x dx  e x sin x  e x cos x
e x sin x  e x cos x
e x cos x dx 
C

2

5
...


x

4

sin  2 x  dx
u
4
x
4 x3
2
12 x
24 x
24
0








dv
sin  2 x 
 1 cos  2 x 
2
 1 sin  2 x 
4
1
cos  2 x 
8
1
sin  2 x 
16
1
 32 cos  2 x 

x4 sin  2 x  dx   1 x 4 cos  2 x   x3 sin  2 x 
2


 x cos  2 x   3 x sin  2 x   3 cos  2 x   C
2
4
3
2

2

7
...

Exercises 7
...


End of Unit 2
...
2
Integration of Special Powers
of Trigonometric Functions

Example 2
...
1

 cos

Evaluate

3

x dx
...
If m is odd, save one sine factor and
express the remaining factors in terms of
cosine
...
If n is odd, save one cosine factor and
express the remaining factors in terms of
sine
...
If m and n are both even, use the halfangle identities
1  cos 2u
2
sin u 
2
1  cos 2u
2
cos u 
2

Example 2
...
2
Evaluate the integrals
...


Let u  cos x
du   sin x dx
du  sin x dx

 sin x cos x dx
  sin x cos x sin x dx
   sin x  cos x sin x dx
  1  cos x  cos x sin x dx
  1  u  u du
5

2

4

2

2

2

2

2

2

2 2

2

2

  1  u

u

2 2

2

du

  1  2u 2  u 4  u 2 du
   u  2u  u  du
2

4

6

 u3 2u 5 u 7 
  
 C
5
7
3
3
5
7
cos x 2cos x cos x



C
3
5
7

2
...
If m is odd, save a factor of sec u tan u
and express the remaining factors in terms
of sec u
...
If n is even, save a factor of sec u and
express the remaining factors in terms of
tan u
...
If the power of secant is odd and the power
of tangent is even, then express all factors
in terms of sec u then use integration by
parts
...
2
...

1
...


tan 3 x dx

  tan x  sec x  sec x tan x dx
1

2

   sec x  1  sec x  sec x tan x dx
2

1

   u 2  1 u 1 du

1

   u   du
u

2
u
  ln u  C
2
2
sec x

 ln sec x  C
2

Let u  sec x
du  sec x tan x dx

3
...
1
...

Exercises 7
...


End of Unit 2
...
3
Trigonometric Substitution

Preliminary Exercise
Express the following in terms of
sin  and cos
...
tan 
cos
cos
2
...
sec 
cos
1
4
...

1
1
...
cos 
sec
tan 
sin 
3
...
csc 
sec 
tan 
cos

Consider the integral  a  x dx where a
2

2

is a positive constant
...

2

2

For integrals involving a  u where a  0,
if u  a sin  where       then
2
2
2

2

a  u  a  a sin 
2

2

2

2

2

 a 1  sin  
2

2

 a cos 
 a cos
2

2

Trigonometric Substitution
Expression
1
...


a u
2

2

2

u  a tan 
du  a sec2  d
a  u  a sec
2

2

3
...
3
...

4  x2
1
...




dx
x2  25






3

Let x  5tan 
2

dx
x  25
2

dx  5sec2  d



5sec2  d

3
 5sec 
1 d
 
25 sec
1
  cos d
25

3

x2  25  5sec

1
  cos d
25
1
 sin   C
25
1 tan 
 
C
25 sec
1
x
 
C
25 x2  25

x  5tan 
x  25  5sec
2

3
...
3
...




a 2  x2 dx

  a cos  a cos d
 a  cos  d
2

2

1  cos2
a 
d
2
2
a
  1  cos2  d
2
2

Let x  a sin 
dx  a cos d
a  x  a cos
2

2

2

a
  1  cos2  d
2
2
a 
1

   sin 2   C
2
2

a2
   sin  cos   C
2
a2 
x x a2  x2
  Arcsin  
2
a a
a


x  a sin 
a 2  x2  a cos
sin 2  2sin  cos


C



Required Exercises

Answer Exercises in TC7
...
3 (1-33) on page 600
Check your answers on A-160
...
3

Unit 2
...

x 1 x  2
x  2  3 x  1
1
3


x 1 x  2
 x  1 x  2
x  2  3x  3
 2
x x2
4x  1
 2
x x2

1
3
4x  1

 2
x 1 x  2 x  x  2
4x  1
3 
 1
So,  2
dx   

 dx
x x2
 x 1 x  2 
 ln x  1  3ln x  2  C

When to Use Partial Fractions
P
Consider  dx
...
P and Q are polynomials
...
deg P  deg Q
...

3
...

Otherwise, cancel common factors
...
4
...

2 x  3x  1
4x  3
A
B


 x  1 2 x  1 x  1 2 x  1
A 2 x  1  B  x  1
4x  3

 x  1 2 x  1
 x  1 2 x  1
4 x  3  A  2 x  1  B  x  1

4 x  3  A 2 x  1  B  x  1
if x   1 ,
2

4   1   3  B   1  1
2
2

1 1 B
2
B2
if x  1,

4  1  3  A 2  1  1
1   A
A 1

4x  3
A
B


2
2 x  3x  1 x  1 2 x  1
A  1 and B  2
4x  3
1
2
Therefore,



...

r
 ax  b 

Example 2
...
2
Evaluate
Consider
3x  1
2
x  x  1

3x  1
 x3  2x2  x dx
...

3
2
x  2x  x
A
B
C
 

2
x x  1  x  1

A x  1  Bx  x  1  Cx
3x  1

2
2
x  x  1
x  x  1
2

3x  1  A x  1  Bx  x  1  Cx
2

3x  1  A x  1  Bx  x  1  Cx
2

if x  1,
3 1  1  C
2  C
C2
if x  0,
3 0   1  A 0  1
A 1

2

3x  1  A x  1  Bx  x  1  Cx
2

A  1 and C  2
3x  1  1 x  1  Bx  x  1  2 x
2

3x  1  x2  2 x  1  Bx 2  Bx  2 x
x2 :
x:
C:

0 1 B
 B  1
32 B2
11

3x  1
A
B
C
 

2
3
2
x  2 x  x x x  1  x  1
A  1, B  1, and C  2
3x  1
1
1
2
Therefore, 3
 

2
2
x  2 x  x x x  1  x  1
1
3x  1
1
2 
 x3  2x2  x dx    x  x  1   x  12  dx





1
3x  1
1
2 
 x3  2x2  x dx    x  x  1   x  12  dx




2
For 
dx,
2
 x  1

Let

u  x 1
du  dx

2
  x  12 dx
2
  2 du
u
1
 2  C
u
2

C
x 1

1
3x  1
1
2 
 x3  2x2  x dx    x  x  1   x  12  dx




2
2
  x  12 dx   x  1  C
Therefore,
3x  1
2
 x3  2x2  x  ln x  ln x  1  x  1  C1

Case 3: Non Repeating
Quadratic Factors
If Q has quadratic factors that are non repeating,
for each quadratic factor, ax  bx  c where a
and one of b and c are not zero, write a partial
fraction of the form
2

Ax  B
ax2  bx  c

Example 2
...
3
x2  8
dx
...

Consider 4
2
x  4x
A B Cx  D
x2  8
  2 2
2
2
x 4
x  x  4 x x
x 8

2
2
x  x  4
2

Ax  x2  4  B  x 2  4   Cx  D  x 2
x  x  4
2

2

x2  8  Ax  x2  4   B  x 2  4    Cx  D  x 2

x  8  Ax  x  4   B  x  4    Cx  D  x
2

2

2

2

if x  0,
8  4B
B2
x2  8  Ax  x2  4   2  x 2  4    Cx  D  x 2
x2  8  Ax3  4 Ax  2 x 2  8  Cx3  Dx 2

x  8  Ax  4 Ax  2 x  8  Cx  Dx
2

3

2

x3 :

0  AC

 C  A

x2 :
x:
C:

1 2 D
0  4A
88

 D  1
 A0

3

2

C  0

x 8
A B Cx  D
  2 2
4
2
x  4x
x x
x 4
A  0, B  2, C  0, and D  1
2

x2  8
2
1
Therefore, 4
 2 2

...

Exercises 7
...


End of Unit 2
...
5
Rationalizing Substitution

Example 2
...
1
dx
Evaluate 

...


Example 2
...
2
Evaluate the integrals
...
 3
x x
6
u x
5
6u du
 2 3
6u5 du  dx
u u
1
1
5
6 3
2
3
3
6u du
x  x  u   u
 2
u 1  u 
1
1
6 2
x  x 2  u   u3
3
u du
 6
1 u

u  u 1
u  1 u3
2

3

u du
 6
1 u
1 
 2
 6  u  u  1 
 du
u 1


u u
3

2

 u2
u 2  u
u
u 1
1

1 
 2
 6  u  u  1 
 du
u 1

 u3 u 2

 6    u  ln u  1   C
3 2


   

2 x

1

3

6

3 x

1

6

2

1

1

 x  ln x 6  1  C
6

 2 x  3 3 x  6 6 x  6ln 6 x  1  C

2
...

Exercises 7
...


End of Unit 2
...
6
Half-Angle Substitution

Half-Angle Substitution

If an integrand is a rational function of sin x
and cos x, then let
x
z  tan  2 

x
z  tan  2 

x
sec2  2 
dz 
dx
2
2
dx 
dz
2 x
sec  2 

2
dx 
dz
2 x
1  tan  2 
2 dz
dx 
1  z2

x
z  tan  2 

x
sin x  sin  2  2 

x
x
 2sin  2  cos  2 

sin  2u   2sin u cos u

x
cos  2 
x
x
 2sin  2  cos  2  
x
cos  2 
x
2sin  2 
2 x

 cos  2 
x
cos  2 
x
2tan  2 

2 x
sec  2 

x
z  tan  2 

x
2tan  2 
sin x 
2 x
sec  2 

sin x 

x
2tan  2 

1  tan

2z
sin x 
1  z2

2

 
x
2

x
z  tan  2 

cos x  cos  2 


x
 2cos2  2   1
x
2

2

1
2 x
sec  2 
2

1
2 x
1  tan  2 
2

1
2
1 z

cos  2u   2cos u  1
2

2
cos x 
1
2
1 z
2
1 z
cos z 
2
1 z

Theorem
x
If z  tan  2  , then

2 dz
dx 
2
1 z
2z
sin x 
1  z2
1 z
cos x 
2
1 z
2

Example 2
...
1
Evaluate the following integrals
...

1  sin x  cos x
2dz
1  z2

2
2z
1 z
1

2
2
1 z 1 z
2dz
1  z2

2
2
1  z  2z  1  z
2
1 z

x
z  tan  2 

2dz
dx 
1  z2
2z
sin x 
2
1 z
2
1 z
cos x 
2
1 z

2dz
2
1 z

2
2
1  z  2z  1  z
1  z2
dz
 2
2z  2
dz

z 1
 ln z  1  C
x
 ln tan  2   1  C

dx
2
...

Exercises 7
...


End of Unit 2
...

dx
1
...

2
9x  4
 2 x  3 dx
3
...

sin x  2cos x
5
...


x3 cos  2 x  dx


4

3


Title: Techniques of Integration
Description: Techniques include a comprehensive step-by-step tutorial on + fast integral + integration by parts + using special powers of trigonometric functions + trigonometric substitution + integration by partial fractions + rationalizing substitution + half-angle substitution This is a powerpoint slides-type pdf with many examples that includes complete solution. Text is large enough not to bore the student ;) Have fun studying! p.s. there are a number of items at the end without solution for a challenge ;)