Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: CHEMISTRY EDEXCEL UNIT 4
Description: EDEXCEL Board A2 Level Chemistry Unit 4 SECTION 1: HOW FAST? - RATES

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


CHEMISTRY  
 
Unit  4:  General  Principles  of  Chemistry  I  –  Rates,  Equilibria  and  Further  Organic  Chemistry  
1) How  fast?  –  Rates    
a) Demonstrate   an   understanding   of   the   terms   ‘rate   of   reaction’,   ‘rate   equation’,   ‘order   of  
reaction’,   ‘rate   constant’,   ‘half-­‐life’,   ‘rate-­‐determining   step’,   ‘activation   energy’,  
‘heterogeneous  and  homogenous  catalyst’    
i) Rate   of   (a   chemical)   reaction   –   the   rate   of   change   of   concentration   of   a   reactant   or  
product  with  time  /  moldm-­‐3s-­‐1  
(1) Rate   of   reaction   cannot   be   measured   directly   –   can   only   be   determined   from  
concentration  and  time  data  
∆  !"#!$#%&'%("#   !"!!"#$%#&%   !"#$"%&"&  !"#!  !"#$ !"!!"#$%&'

(2) Average  rate  of  reaction  =  

ii)

iii)

iv)

v)
vi)

∆  !"#$

 

(3) This  is  only  a  reasonable  assumption  if  the  concentration  of  a  reactant  has  fallen  by  
less  than  10%  during  the  time  elapsed  
(4) For   a   reaction   to   take   place,   reactant   molecules   must   collide   with   kinetic   energy  
greater  than  or  equal  to  the  activation  energy  and  with  the  correct  orientation  
Rate   equation   –   comes   from   experiments,   showing   us   how   rate   depends   on   the  
concentration  of  each  species  
(1) For  a  reaction:  aA  +  bB  à  cC  +  dD,  the  rate  equation  could  =  k  [A]a[B]b[E]e  
(2) The  subscripts  are  the  stoichiometries  in  the  chemical  equation  
(3) The  superscripts  are  the  partial  orders  of  reaction    
(4) E  could  be  a  catalyst  (to  be  involved  in  the  rate  equation  of  a  reaction,  the  species  
does  not  have  to  be  a  reactant  or  product  necessarily)  
Overall  order  of  reaction  –  sum  of  the  powers  to  which  the  concentrations  of  reactants  
are  raised  in  the  experimentally  determined  rate  equation  (the  total  of  the  superscripts)  
(1) Partial   order   of   one   reactant   –   the   power   to   which   the   concentration   of   that  
reactant/species  is  raised  in  the  experimentally  determined  rate  equation  
(2) Cannot   be   predicted   from   the   chemical   equation,   depending   on   both   the  
stoichiometry  and  the  mechanism  of  the  reaction  –  have  to  be  found  experimentally  
Rate  constant  –  ‘k’  is  the  rate  constant,  which  varies  with…  
(1) Orientation  factor  –  the  complexity  of  the  geometry  of  the  molecules  eg
...
1  
(2) The   activation   energy   of   the   reaction   –   a   large   activation   energy   results   in   a   large,  
negative  exponent  and  therefore  a  small  value  for  the  rate  constant  
(3) The   temperature   –   rise   in   temperature   increases   the   ‘RT’   so   the   value   for   the  
exponential  term  is  less  negative  and  k  gets  larger,  so  the  rate  of  reaction  increases  
(4) The   presence   of   any   catalyst   –   lowers   the   activation   energy   so   the   exponent  
becomes  less  negative  and  k  gets  larger,  so  the  rate  of  reaction  increases  
Half-­‐life  –  time  taken  for  the  concentration  of  a  reactant  to  halve  
Rate-­‐determining  step  –  the  slow  step  that  is  so  slow  compared  to  the  subsequent  fast  
step(s)  

vii) Activation   energy   -­‐   the   minimum   energy   required   before   a   reaction   can   occur   (a   certain  
minimum  energy  that  reactant  particles  collide  to  produce  a  reaction)  
viii) Homogenous  –  catalysts  in  the  same  phase  as  the  reactants,  usually  in  gas  phase  or  in  
aqueous  solution  
(1) Work  by  reacting  with  one  of  the  reactants  to  form  an  intermediate  compound  eg
...
 Rate  of  reaction  depends  on  the  catalyst  and  one  of  the  reactants  
ix) Heterogeneous  –  catalysts  in  a  different  phase  to  the  reactants  
(1) Where  gases  are  adsorbed  onto  active  sites  and  products  leave  (desorbed)    
(2) Eg
...
 Iron  catalyst  stays  in  the  reaction  chamber  as  products  pass  
x) Maxwell-­‐Boltzmann  distribution  of  energy  
(1) The  higher  the  temperature  of  a  solution,  the  faster  the  rate  of  reaction  
(2) If  we  increase  the  temperature  by  10˚C,  the  rate  of  reaction  doubles  (exponential)  
(3) As  the  temperature  of  the  solution  increases  the  reactant  particles  (can  be  molecules  
or  ions)  move  more  quickly  as  they  now  have  an  increased  amount  of  kinetic  energy  
(4) They  have  a  greater  range  of  energies  and  the  average  energy  is  increased  
(5) Greater  proportion  of  particles  have  sufficient  energy  to  overcome  activation  energy  
(6) Reactant   particles   also   come   into   contact   more   as   the   average   speed   of   the  
molecules   is   increased   so   there   are   more   collisions/sec   –   an   increased   collision  
frequency  (negligible  compared  to  the  increased  proportion  of  successful  collisions)  
(7) There   is   therefore   an   increased   number   of   successful   collisions   per   second   with  
energy  in  excess  of  the  activation  energy  thus  making  the  rate  of  reaction  higher  

(8) Total  number  of  molecules  with  energy  equal  to  or  greater  than  a  particular  energy  
value  is  given  by  the  area  under  the  graph  to  the  right  of  that  energy  
(9) The  shaded  area  to  the  right  of  the  activation  energy  is  the  fraction  of  molecules  that  
have   sufficient   energy   at   the   specified   temperature   to   react   on   collision,   providing  
that  the  orientation  of  collision  is  correct  
xi) Effect  of  pressure  on  the  rate  of  a  gaseous  reaction  
(1) The  higher  the  pressure  in  a  mixture  of  gasses,  the  faster  the  rate  of  reaction  
(2) As   the   pressure   is   increased   at   a   constant   temperature,   the   molecules   become  
packed  more  closely  together  
(3) There   is   no   change   in   their   speed   or   energy   so   the   proportion   of   successful   collisions  
that  result  in  a  reaction  remains  constant  
(4) There  are  more  reactant  particles  that  can  come  into  contact  with  one  another  per  
given  volume  (increased  concentration)  
(5) There  are  more  collisions  per  second  –  the  collision  frequency  increases  
(6) More   likely   to   be   an   increased   number   of   successful   collisions   per   second   with  
energy  in  excess  of  the  activation  energy  thus  making  the  rate  of  reaction  higher  
 
b) Select   and   describe   a   suitable   experimental   technique   to   obtain   rate   data   for   a   given  
reaction,  eg  colorimetry,  mass  change  and  volume  of  gas  evolved    
i) Initial  rate  –  the  rate  at  the  very  beginning  of  a  reaction  at  the  instant  that  the  chemicals  
are  mixed  and  before  much  of  the  reactant  is  used  up  
(1) Usually   found   by   measuring   the   time   taken   for   the   concentration   of   a   reactant   or  
product   to   change   by   a   known   amount,   which   must   be   less   than   10%   of   the   initial  
concentration  of  the  reactant  
(2) It  is  the  gradient  of  the  tangent  to  the  curve  at  t=0  
(3) The  initial  rate  is  a  useful  when  comparing  reaction  rates  when  a  variable  is  changed  
(4) The   experiment   is   repeated,   changing   the   concentration   of   only   one   of   the   reactants  
and  keeping  the  concentration  of  all  the  others  constant  to  calculate  partial  orders…  
(5) OR   excess   of   all   of   the   reagents   is   added   except   one   (at   least   ten   times   the  
concentration   of   the   other   reagent)   so   that   addition   of   these   reagents   is   negligible   –  
rate  of  reaction  is  now  only  dependent  on  one  reagent  and  its  order  can  be  found  
ii) Measuring  the  volume  of  gas  
(1) Counting  the  number  of  bubbles  at  regular  time  intervals  throughout  the  reaction  
(2) The   gas   could   be   collected   in   a   gas   syringe   or   bubbled   through   a   measuring   cylinder,  
displacing  water  –  measuring  the  volume  of  gas  produced  at  regular  time  intervals  
(3) Volume   of   gas   is   proportional   to   the   moles   of   gas   and   can   therefore   be   used   to  
measure  the  concentration  of  the  product  
(4) Eg
...
 every  15/30  seconds  
(2) Seeing  how  quickly  the  mass  decreases  as  the  gas  escapes  from  the  solution  
(3) Total  mass  of  gas  evolved  at  any  given  time  is  proportional  to  the  concentration  of  
the  reactant  when  timing  started  
(4) Record  masses  –  difference  is  mass  of  gas  
(5) The   end   amount   of   gas   evolved   =   the  concentration   of   reactant   at   the   start   until   the  
concentration  of  reactant  =  0    
(6) Eg
...
1g  at  room  temperature  and  pressure  
(b) 50cm3  of  H2  weighs  less  than  0
...
 by  adding  solution  to  ice-­‐cold  water  
(b) Eg
...
 CH3COCH3  (propanone)  +  I2  à  CH2ICOCH3  (1-­‐iodopropan-­‐2-­‐one)  +  HI  
v) Colorimetric  analysis  (colorimetry)  
(1) Can  be  used  when  one  of  the  reactants  or  products  of  the  reaction  is  coloured  
(2) Reactants  are  mixed  and  a  clock  started  
(3) The  light  absorbed  is  measured  at  set  time  intervals  
(4) Detecting  the  relative  amount  of  light  of  a  particular  frequency  absorbed  measured  
throughout  the  reaction  with  a  spectrophotometer/photoelectric  colorimeter  
(5) Colour   changes   ie
...
 Br2(aq)  +  HCOOH(aq)  (methanoic  acid)  à  2Br-­‐(aq)  +  CO2(g)  +  2H+(aq)  –  following  
the  absorption  of  light  by  bromine  
vi) Infrared  spectroscopy  
(1) Spectrometer  is  set  at  a  particular  frequency  
(2) The  amount  of  infrared  radiation  absorbed  at  that  frequency  is  measured  at  regular  
time  intervals  
(3) Eg
...
 A  sample  of  one  of  the  optical  isomers  of  2-­‐iodobutane  is  mixed  with  NaOH(aq)  –  
hydrolysis  to  produce  the  racemic  mixture  of  butan-­‐2-­‐ol  

(7) Angle   of   rotation   of   the   plane   of   polarisation   of   the   plane-­‐polarised   light   gradually  
decreases  as  the  single  chiral  isomer  of  2-­‐iodobutane  is  hydrolysed  
(8) Eg2
...
0moldm-­‐3,  the  pH  
only  changes  by  1  unit  (from  0  to  1)  when  90%  of  the  acid  has  reacted  
(4) The  pH  rises  to  2  when  99%  of  the  acid  has  reacted  
(5) This  method  requires  a  very  accurate,  and  hence  expensive,  pH  meter  to  monitor  the  
change  in  acid  concentration  –  unsuitable  for  school  laboratory  use  
 
c) Investigate   reactions,   which   produce   data   that   can   be   used   to   calculate   the   rate   of   the  
reaction,  its  half-­‐life  from  concentration  or  volume  against  time  graphs,  eg
...
 Comparing  A  and  B  –  concentration  of  HCl  is  halved,  concentration  of  everything  
else  is  constant,  therefore  the  rate  halves  and  the  order  with  respect  to  HCl  is  1  
 
f) Deduce  from  experimental  data  for  reactions  with  zero,  first  and  second  order  kinetics:    
i) Half-­‐life  (the  relationship  between  half-­‐life  and  rate  constant  will  be  given  if  required)    
(1) Zero  order  kinetics  –  half  life  =  [A]0/2k  where  k  is  the  rate  constant,  [A]0  is  the  initial  
concentration  
(a) ½  [A]0  =  [A]t1/2  
(b) kt1/2  =  ln(2)  
(c) t1/2  =  ln(2)  /  k  
(2) First   order   kinetics  –   half-­‐life   is   constant   at   a   fixed   temperature   eg
...
  If   it  
takes  25s  for  the  concentration  of  any  reactant  to  fall  from  8  to  4  units,  it  will  take  
50s  for  it  to  fall  from  4  to  2  units    
ii) Order  of  reaction    
(1) Zero  order  kinetics  –  change  in  concentration  does  not  change  rate  
(2) First  order  kinetics  –  doubling  concentration  doubles  rate  
(3) Second  order  kinetics  –  doubling  concentration  quadruples  rate  
iii) Rate  equation    
(1) Zero  order  kinetics  –  overall  order  of  0  
(2) First  order  kinetics  –  overall  order  of  1  
(3) Second  order  kinetics  –  overall  order  of  2  
iv) Activation   energy   (by   graphical   methods   only;   the   Arrhenius   equation   will   be   given   if  
needed)    
(1) Arrhenius  equation  –  to  calculate  the  activation  energy  ( 𝐸! )  for  a  particular  reaction  
(a) 𝑘 = 𝐴𝑒 !

!!
!"

(b) ln 𝑘 = −

 rearranged  as…  

!!

!

!

!

+ ln  (𝐶)  

(i) Where   𝑘  is  the  rate  constant  (1/k)  
(ii) 𝐴  is  the  pre-­‐exponential  factor  (negligible)  
(iii) 𝐶  is  the  Arrhenius  constant  
(iv) 𝑅  is  the  gas  constant  –  usually  has  a  value  of  8
...
 HUR  and  50%  ethanolic  solution  
 
 

(3) Step  1  –  slow  rate  determining  step    

(4) Step  2  –  fast  attack  of  nucleophile  on  carbocation    

 

(5) Rate  =  k  [(CH3)3CBr]  
(a) The  rate  no  longer  depends  on  [OH-­‐]  
(b) The  first  step  in  the  two  step  mechanism  is  the  slow,  rate  determining  step  

 
i) Demonstrate   that   the   mechanisms   proposed   for   the   hydrolysis  of   halogenoalkanes   are  
consistent   with   the   experimentally   determined   orders   of   reactions,   and   that   a   proposed  
mechanism   for   the   reaction   between   propanone   and   iodine   is   consistent   with   the   data   from  
the  experiment  in  4
Title: CHEMISTRY EDEXCEL UNIT 4
Description: EDEXCEL Board A2 Level Chemistry Unit 4 SECTION 1: HOW FAST? - RATES