www.ncrtsolutions.in

The *x*-coordinate, *y*-coordinate, and *z*-coordinate of point (-3, -1, 6) are negative, negative, and positive respectively. Therefore, this point lies in octant **III**.

The *x*-coordinate, *y*-coordinate, and *z*-coordinate of point (2, -4, -7) are positive, negative, and negative respectively. Therefore, this point lies in octant **VIII**.

Q4 :

Fill in the blanks:

Answer :

(i) The x-axis and y-axis taken together determine a plane known as $\frac{XY - plane}{2}$.
(ii) The coordinates of points in the XY-plane are of the form $\frac{(x, y, 0)}{x}$.
(iii) Coordinate planes divide the space into <u>eight</u> octants.
co.uk
Exercise 12.2 : Solutions of Questions on Page Number : 273
NOLO
Find the distance between the following puts of points:
(i) (2, 3, 5) and (4, 3, 1) (ii) (4, 14, 2) and (2, 4, -1)
(iii) Coordinate planes divide the space into -3 octants. Exercise 12.2 : Solutions of Questions on Page Number : 273 Q1 : Find the distance between the following puls provide provide 15 (i) (2, 3, 5) and (4, 3, 1) (ii) (4, 14, 2) and (2, 4, -1) (iii) (-1, 4, 3, 4) (iv) (2, -1, 1) n(3, -2, 5) Answer :
Answer :
The distance between points $P(x_1, y_1, z_1)$ and $P(x_2, y_2, z_2)$ is given

by PQ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

(i) Distance between points (2, 3, 5) and (4, 3, 1)

$$= \sqrt{(4-2)^{2} + (3-3)^{2} + (1-5)^{2}}$$

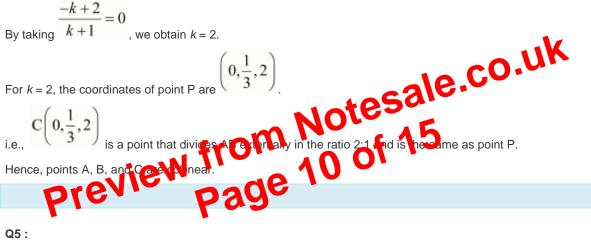
= $\sqrt{(2)^{2} + (0)^{2} + (-4)^{2}}$
= $\sqrt{4+16}$
= $\sqrt{20}$
= $2\sqrt{5}$

(ii) Distance between points ($\hat{a} \in 3, 7, 2$) and (2, 4, $\hat{a} \in 1$)

www.ncrtsolutions.in

 $C\left(0,\frac{1}{3},2\right)$ Using section formula, show that the points A (2, â€"3, 4), B (â€"1, 2, 1) and are collinear.

Answer:


The given points are A (2,
$$\hat{a} \in 3, 4$$
), B ($\hat{a} \in 1, 2, 1$), and $C\left(0, \frac{1}{3}, 2\right)$

Let P be a point that divides AB in the ratio k:1.

Hence, by section formula, the coordinates of P are given by

$$\left(\frac{k(-1)+2}{k+1}, \frac{k(2)-3}{k+1}, \frac{k(1)+4}{k+1}\right)$$

Now, we find the value of *k* at which point P coincides with point C.

Q5 :

Find the coordinates of the points which trisect the line segment joining the points P (4, 2, -6) and Q (10, -16, 6).

Answer:

Let A and B be the points that trisect the line segment joining points P (4, 2, â€"6) and Q (10, â€"16, 6)

$$\begin{array}{c|c} P & A & B \\ \hline (4, 2, -6) & (10, -16, 6) \end{array}$$

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by

$$\left(\frac{1(10)+2(4)}{1+2},\frac{1(-16)+2(2)}{1+2},\frac{1(6)+2(-6)}{1+2}\right) = (6,-4,-2)$$

Point B divides PQ in the ratio 2:1. Therefore, by section formula, the coordinates of point B are given by

www.ncrtsolutions.in