Identifier

Identifiers refer to the names of variables, functions and arrays. They are user-defined names and
consist of a sequence of letters and digits, with a letter as a first character. Both uppercase and
lowercase letters are permitted. The underscore character is also permitted in identifiers.

Constants

Constants in C refer to fixed values that do not change during the execution of a program.

Types of C Constants

C constants can be divided into two major categories:
(a) Primary Constants
(b) Secondary Constants

These constants are further categorized as shown in Figure.

Constants
|
Numeric Character
constant constant
| |
Integer Refl t hSlnng String
constant constan character constant
constant u

ca\e

Integer Constants

An integer constant refers to a seque m ere ar%hx—e types integers, namely, decimal,

octal, and hexa- decimal. _‘(O
Decimal Consta e\l\l 2

A dec@ ‘@xonstant con% &gcombmatlon of digits from the set 0 through 9. Eg: 123, -

321etc.
Note: Embedded spaces, commas and non-digit characters are not permitted between digits. Eg: (1) 15
750 (2) $1000

Octal Constant

An octal integer constant consists of any combination of digits from the set 0 through 7, with a leading
0.Eg: 1) 037 2) 0435

Hexadecimal Constant

A sequence of digits preceded by 0x or 0X is considered as hexadecimal integer. They may also include
0-9 and alphabets A through F or a through f. Eg: 1) 0X2 2) 0x9F 3) 0Xbcd

Real Constants

Certain quantities that vary continuously, such as distances, heights etc., are represented by numbers
containing functional parts like 17.548. Such numbers are called real (or floating point) constants. Eg:
0.0083, -0.75 etc., A real number may also be expressed in exponential or scientific notation. Eg:
215.65 may be written as 2.1565e2

Single Character Constants

A single character constant contains a single character enclosed within a pair of single quote marks.
Eg:lsl_lX’_l_;_’_’

Page | 2

Rules for Constructing Variable Names

(a) A variable name is any combination of 1 to 31 alphabets, digits or underscores. Some
compilers allow variable names whose length could be up to 247 characters. Still, it would be
safer to stick to the rule of 31 characters. Do not create unnecessarily long variable names as it
adds to your typing effort.

(b) The first character in the variable name must be an alphabet or underscore.

(c) No commas or blanks are allowed within a variable name.

(d) No special symbol other than an underscore (as in gross_sal) can be used in a variable name.
Ex.:si_int , m_hra, pop_e_89

Syntax of data type declaration

Data_Type varl,var2,....... ;

These rules remain same for all the types of primary and secondary variables.

Rules for C Program

Before we begin with our first C program do remember the following rules that are applicable to all C
programs:

(a) Each instruction in a C program is written as a separate statement. Therefore a complete C
program would comprise of a series of statements.

(b) The statements in a program must appear in the same order in which we wish them to be
executed; unless of course the logic of the problem demands a deliberate ‘jump’ or transfer of
control to a statement, which is out of sequence.

(c) Blank spaces may be inserted between two words to improve the readability of the statement.
However, no blank spaces are allowed within a variable, constant or keyword.

(d) All statements are entered in small case letters.

(e) C has no specific rules for the position at which a statement is to b, M] t's why it is

often called a free-form language. e
(f) Every C statement must end with a ; Thus ac %&- terminator.
C Instructions
Now that we have writt Qg‘r}s let g&ata Instructions that we used in these
programs. There q Q&l/athree typ t iols’in C
(a) Ty? tidn InstructlonP é
1t

(b) Ari

(c) Control Instruction

etic Instruction

The purpose of each of these instructions is given below:

(a) Type declaration instruction - To declare the type of variables used in a C program.

(b) Arithmetic instruction - To perform arithmetic operations between constants and
variables.

(c) Control instruction - To control the sequence of execution of various statements in a C
program

Data Types

C language provides various data types for holding different kinds of values. There are several integral
data types, a character data type, floating point data types for holding real numbers and more. In
addition you can define your own data types using aggregations of the native types.

C supports the four classes of data types

1. Primary (or fundamental) data types

2. User-defined data types

3. Derived data types

4. Empty data set
All ¢ compiler support four fundamental data types, namely integer (int), character (char), floating
point (float), and double — precision floating point (double).

Page | 4

Initializing Pointers

It is always good practice to initialize pointers as soon as it is declared. Since a pointer is just an
address, if it is not initialized, it may randomly point to some location in memory. The ampersand (&)
symbol, also called address operator, is applied to a variable to refer the address of that variable.
[nitializing pointers can be made to point to a variable using an assignment statement. The syntax is:

ptr_variable = &variable ;

Here, the address of the variable is assigned to ptr_variable as its value. For example:
ptr = &price ;

Will cause ptr to point to price i.e., ptr now contain the address of price. A pointer variable can be
initialized in its declaration itself. For example:

int price, *ptr = &price ;

Is also valid.

Accessing a Variable through Its Pointer
Accessing the value of the variable using pointer is done by using unary operator * (asterisk), usually
known as indirection operator. Consider the following statements:

int price, *ptr, n ;
price =100 ;
ptr = &price ;

= *ptr;

The first line declares the price and n as integer variables and ptr as a pointer variable pointing to an
integer. The second line assigns the value 100 to price and third line assigns the addr sypof price to the
pointer variable ptr. The fourth line contains the indirection operator * Whe r * is placed
before a pointer variable in an expression (on the right hand dg él sign), the pointer
returns the value of the variable of which the pomter Valuéﬁ

In this case, *ptr returns the value of the vari]gl e ptr is the address of price. The * can
be remembered as value at address. Th would %}&—

Array \|\| "(O 2

An arrgvy }JA related %@share a common name. Arrays are the contiguous

memo tlon used to store ¥fmi a type or in other terms we can say Arrays are a data
structure Wthh holds multiple variables of the same data type.

One Dimensional Array

An array with a single subscript is known as one dimensional array. Consider the case where a
programmer needs to keep track of a number of people within an organization. So far, our initial
attempt will be to create a specific variable for each user.
This might look like:

intnamel = 101;

intname2 = 232;

int name3 = 231;

It becomes increasingly more difficult to keep track of this as the number of variables increases.
Arrays offer a solution to this problem. An array is a multi-element box, a bit like a filing cabinet, and
uses an indexing system to find each variable stored within it. In C, indexing starts at zero. Arrays, like
other variables in C, must be declared before they can be used. The replacement of the above example
using arrays looks like:

num

int num[5];
int num[5];

Page | 23

Multi-Dimensional Array

Arrays of three or more dimension are called Multi-Dimensional Array.

General form Multi-Dimensional Array:
data_type array_name[s1][s2][s3]......[sn];
Example: int survey[3][5][12]
Here survey is a 3-dimensionalarray declared to contain 180 integer_type elements. (3x5x12=180)
Initialization of 4-Dimensional Array
static int arr[3] [4] [2]={{{2,4}, {7,3}, (3,4}, {5,1}, }, {{3,4}, {3,4}, {3,2}, {4,5}}, {{2,3}, {2,7}, {2,3}, {4,3}}}

In this example, the outer array has three element, each of which is a two dimensional array of four
rows, each other of which is a one dimensional array of two elements.

String

A string is an array of characters. Strings in C are represented by arrays of characters. The end of the
string is marked with a special character, the null character (‘\0’), which is simply the character with
the value 0.

Because C has no built-in facilities for manipulating entire arrays (copying them, comparing them,
etc.), it also has very few built-in facilities for manipulating strings.

The operations that are performed on character strings are:
1. Reading and writing strings.
2. Combining strings together. \L
3. Copying one string to another.
4. Comparing strings for equality.

5. Extracting a portion of a string. tesa\e .

Decraring and Initializing String Varia

A string variable is any valid rl @m and gweﬁecagis an array.
Char na

The general form of* strlng vari

ThereﬂEz S‘)e size should be e 1 to the maximum number of characters in the string plus one. Eg:

char city[7] = “DELHI"; or
char city[7] ={'D’,‘E",'L’,'H", T, \0'};

char city[7] = “DELHI";
or D E L H | | \O
char city[7] = {'D’, ‘E’, ‘L, 'H %, 'F', \0'};

0 1 2 3 4 5 6

Reading Words

The familiar input function scanf() can be used with %s format specification to read in a
string of characters.

Reading a Line of Text

It is not possible to use scanf() function to read a line containing more than one word. This is because
the scanf() terminates reading as soon as a space is encountered in the input. We can use the getchar()
function repeatedly to read single character from the terminal, using the function getchar(). Thus an
entire line of text can be read and stored in an array.

Page | 25

Writing String To Screen

We have used extensively the printf{) function with %s format to print strings to the screen. The
format %s can be used to display an array of characters that is terminated by the null character. For

example printf(“%s”, name); can be used to display the entire contents of the array name.

Arithmetic Operations on Characters

C allows us to manipulate characters the same way we do with numbers. Whenever a character
constant or character variable is used in an expression, it is automatically converted into integer value
by the system. Eg: if the machine uses the ASCII representation, then,

x="a;
printf(“%d \n” x);

will display the number 97 on the screen.

The C library supports a function that converts a string of digits into their integer values.

Standard Library String Functions

With every C compiler a large set of useful string handling library functions are provided. Figure lists
he more commonly used functions along with their purpose.

Prk

Function Use

strlen Finds length of a string

strlwr Converts a string to lowercase

strupr Converts a string to uppercase

streat Appends one string at the end of ano \e

strmcat Appends first n character: a the end of
another Q\‘

strepy Copies a strj to 5’}‘

strnepy oﬁ '@ aractersef 0@"111 nother

trempi
stricmp
strnicmp

strdup
strehr
strrchr
strstr
strset
strnset
strrev

Siey:

(M1

ares two str1 nﬁz
@ haffcters of two strings

51 strings without regard to case ("1
lhat this function ignores case)
Compares two strings without regard to case (identical to
strempi)
Compares first n characters of two strings without regard
to case

denotes

Duplicates a string

Finds first occurrence of a given character in a string
Finds last occurrence of a given character in a string
Finds first occurrence of a given string i another string
Sets all characters of string to a given character

Sets first n characters of a string to a given character
Reverses strin

Putting String Together

Just as we cannot assign one string to another directly, we cannot join two strings together by the
simple arithmetic addition. That is, the statements such as

string3 = stringl + string?2;
string2 = string1 + “hello”;

Page | 26

Pointer and Array

When an array is declared, the compiler allocates a base address and sufficicient amout of storage to
contain all the elemements of the array in contiguous memory locations. The base address is the
location of the first element (index 0) of the array. Suppose we declare an array x as follows:

static int x[5] = {1,2,3,4,5};

Suppose the base address of x is 1000 and assuming that each integer requierd two bytes, the five
elements will be stored as follows:

Elements——y X0 x1] 2] x3] x4

Value —p 1 2 3 4 5

Address ———> 1000 2000 3000 4000 5000
Base Address

If we declare p as integer pointer, then we can make the pointer p to point to the array x by the
following assignment:

pP=x;

P = &x[0]; \)\A

Now, we can access every value of x using p++ to move from one E ther. You can also use
p --, p++ is used to jump to the next memory location é séd to jump previous memory

locatlon of array. NO
Pointer and Character Stri " 6&
InCa constant ‘@an always re@s@%omter to that string. And therefore the following

S eI o3

char *name;
name="Delhi”;

This is equivalent to

These statements will declare name as a pointer to character and assign to name the constant
character string “Delhi”. You might remember that this type of assignment does not apply to character
array. The statement like

char name[20];
name="Delhi”;
do not work

Structure

A structure is a convenient tool for handling a group of logically related data items, we can say, A
structure contains a number of data types grouped together. These data types may or may not be of
the same type.

For example, it can be used to represent a set of attributes, such as student _ name, roll _number and
marks. The concept of a structure is analogous to that of a ‘record’ in many other languages. More
examples of such structures are:

time: seconds, minutes, hours
data: day, month, year

book: author, title, price, year
city: name, country, population

Page | 28

Defining a Structure

Unlike arrays, structure must be defined first for their format that may be used later to declare
structure variables.

The keyword struct declares a structure to hold the details of four data fields, namely title, author,
pages, and price. These fields are called structure elements or members. Format of a structure
definition is as follows:

struct tag_name(Structure_Name)

{

data _ type member1;
data _ type member2;

b
Array VS Structure

1) An array is a collection of related data elements of same type. Structure can have elements of
different types.
2) An array is derived data type whereas structure is a programmer-defined one.

3) Any array behaves like a built-in data type. All we have to do is to declare an array variable and use
it. But in the case of a structure, first we have to design and declare a data structure before the
variables of that type are declared and used.

Structure Initialization

Like primary variables and arrays, structure variables can also be 1n1t1allzed er\&l\éﬁre declared.
The format used is quite similar to that used to initiate arrays \

struct book t

char name 1%“\ N 6&
ke of

P(struct book b1 &9130 00,550}%;

struct book b2 ={ "Physics", 150.80, 800 } ;
Note the following points while declaring a structure type:

a) The closing brace in the structure type declaration must be followed by a semicolon.

b) It is important to understand that a structure type declaration does not tell the compiler to
reserve any space in memory. All a structure declaration does is, it defines the ‘form’ of the
structure.

c) Usually structure type declaration appears at the top of the source code file, before any
variables or functions are defined. In very large programs they are usually put in a separate
header file, and the file is included (using the preprocessor directive #include) in whichever
program we want to use this structure type.

Accessing Structure Elements

Having declared the structure type and the structure variables, let us see how the elements of the
structure can be accessed.

In arrays we can access individual elements of an array using a subscript. Structures use a different
scheme. They use a dot (.) operator. So to refer to pages of the structure defined in our sample
program we have to use,

bl.pages
Similarly, to refer to price we would use,

b1.price

Page | 29

Note that before the dot there must always be a structure variable and after the dot there must always
be a structure element.

How Structure Elements are Stored

Whatever be the elements of a structure, they are always stored in contiguous memory locations. The
following example would illustrate this:

struct book

{
char name;
float price ;
int pages ;
3

struct book b1 ={'B’, 130.00, 550 } ;

Structure elements are stored in memory as shown in the Figure.

bl.name bl price bl.pages
‘B’ 130.00 550
65518 65519 65523

Coparision of Structure Variables

Two variables of the same structure type can be compared the same way as ordinary variables. If
personl and person2 belong to the same structure, then the following operations are xw

Operation Meaning CO .
personl = person2 - Assign personZ to per e
§ sonl and personZ and return 1

personl = =person2 - Compare
ifth
personl != person2 _‘(d‘ﬁ fa l the m b%lnot equal, 0 otherwise.
Array of Stru

We us XCture to describe t g‘ a number of related variables. For example, in analyzing the
marks obtained by a class of students we may use a template to describe student name and marks
obtained in various subjects and then declare all the students as structure variables. In such cases, we
may declare an array of structure, each elements of the array representing a structure variable.

struct class student[100];

It defines an array called student, that consists of 100 elements. Each element is defined to be of the
type struct class. Consider the following declaration:

struct marks

{
int subject1;
int subject?2;
int subject3;

b

main()

{

static struct marks student[3] = { {45, 68, 81}, {75, 53, 69}, {57,36,71}};
//This declares the student as an array of three elements students[0], student[1], and student[2] and
initializes their members as follows:

student[0].subject1=45;

student[0].subject2=68;

student[2].subject3=71;
}

An array of structures is stored inside the memory in the same way as a multidimensional array.
Page | 30

