Search for notes by fellow students, in your own course and all over the country.

Browse our notes for titles which look like what you need, you can preview any of the notes via a sample of the contents. After you're happy these are the notes you're after simply pop them into your shopping cart.

My Basket

You have nothing in your shopping cart yet.

Title: Integration basics: notes for mastering!
Description: Applicable for A-level school students & first year engineering/maths students; these notes will assist you with tackling all types of integration problems. The Four Laws of Integration are highlighted, and mastering each of them will make integration problem solving more enjoyable.

Document Preview

Extracts from the notes are below, to see the PDF you'll receive please use the links above


Compiled by: D
...
van der Berg

Understanding Integration
Introduction
What is integration?
β€’

Reverse differentiation (anti-differentiation)

Why use it?
β€’

Used to find volumes, area and central points
...


∫ (2π‘₯π‘₯ (3+1) + 1π‘₯π‘₯ (2+1) + 7π‘₯π‘₯ (1+1) )𝑑𝑑𝑑𝑑
∫ οΏ½(2 Γ· 4)π‘₯π‘₯ 4 + (1 Γ· 3)π‘₯π‘₯ 3 + (7 Γ· 2)π‘₯π‘₯ 2 �𝑑𝑑𝑑𝑑
1

IMPORTANT NOTE:

1

7

= ∴ 𝑓𝑓 β€² (π‘₯π‘₯) = π‘₯π‘₯ 4 + π‘₯π‘₯ 3 + π‘₯π‘₯ 2
2

3

2

You can check your answer by finding its derivative!

Compiled by: D
...
van der Berg

Rules of integration
Includes 4 major rules (ISTP)
1
...

3
...


οƒ  depends on the given functions

Inspection
Substitution
Trigonometric substitution
Parts

1
...
By Substitution:
2
...
When a function and its derivative appear in the integral:

Let 𝑒𝑒 = 𝑓𝑓(π‘₯π‘₯)

∫ 𝑓𝑓(π‘₯π‘₯)
...
2
...
J
...
By Trigonometric Substitution:
3
...
Compound-angle formulae
Integrating a product of trigonometric functions:

∫ sin 4π‘₯π‘₯ cos 3π‘₯π‘₯ 𝑑𝑑𝑑𝑑
and

(1) sin(4π‘₯π‘₯ + 3π‘₯π‘₯) = sin 4π‘₯π‘₯ cos 3π‘₯π‘₯ + cos 4π‘₯π‘₯ sin 3π‘₯π‘₯
(2) sin(4π‘₯π‘₯ βˆ’ 3π‘₯π‘₯) = sin 4π‘₯π‘₯ cos 3π‘₯π‘₯ βˆ’ cos 4π‘₯π‘₯ sin 3π‘₯π‘₯
Add these two expansions (1) and (2):

∴ sin 7π‘₯π‘₯ + sin π‘₯π‘₯ = 2 sin 4π‘₯π‘₯ cos 3π‘₯π‘₯
1

(our substitution)

∴ sin 4π‘₯π‘₯ cos 3π‘₯π‘₯ = 2 (sin 7π‘₯π‘₯ + sin π‘₯π‘₯)
So,

∫ sin 4π‘₯π‘₯ cos 3π‘₯π‘₯ 𝑑𝑑𝑑𝑑
1

= 2 ∫ (sin 7π‘₯π‘₯ + sin π‘₯π‘₯) 𝑑𝑑𝑑𝑑

=

βˆ’ cos 7π‘₯π‘₯
14

βˆ’

cos π‘₯π‘₯
2

+ 𝑐𝑐

Shortcut rules to study:
1

(a) sin 𝐴𝐴 cos 𝐡𝐡 = 2 [sin(𝐴𝐴 + 𝐡𝐡) + sin(𝐴𝐴 βˆ’ 𝐡𝐡) ]
1

(b) sin 𝐴𝐴 sin 𝐡𝐡 = 2 [cos(𝐴𝐴 βˆ’ 𝐡𝐡) βˆ’ cos(𝐴𝐴 + 𝐡𝐡) ]
1

(c) cos 𝐴𝐴 cos 𝐡𝐡 = 2 [cos(𝐴𝐴 βˆ’ 𝐡𝐡) + cos(𝐴𝐴 + 𝐡𝐡) ]
3
...
Double-angle formulae
Useful for squared trigonometric functions:

∫ sin2 π‘₯π‘₯ 𝑑𝑑𝑑𝑑

or

∫ cos 2 π‘₯π‘₯ 𝑑𝑑𝑑𝑑

We use the following rules:
1

(a) sin2 π‘₯π‘₯ = 2 (1 βˆ’ cos 2π‘₯π‘₯)
1

(b) cos2 π‘₯π‘₯ = 2 (1 + cos 2π‘₯π‘₯)

Derivation from
and from

cos 2π‘₯π‘₯ = 2 cos2 π‘₯π‘₯ βˆ’ 1
sin2 π‘₯π‘₯ + cos2 π‘₯π‘₯ = 1

Compiled by: D
...
van der Berg

4
...
That is, the one is NOT the
derivative of the other:
∫ 𝑓𝑓(π‘₯π‘₯)𝑔𝑔(π‘₯π‘₯)𝑑𝑑𝑑𝑑
Developed from the reverse product rule for differentiation
...
Carefully consider this:
Option (1):

if we make our choices as below:
then 𝑑𝑑𝑑𝑑 = cos π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯

𝑒𝑒 = sin π‘₯π‘₯,

And 𝑑𝑑𝑑𝑑 = π‘₯π‘₯π‘₯π‘₯π‘₯π‘₯,

then 𝑣𝑣 =

Substitute our choices into
∴ ∫ π‘₯π‘₯ sin π‘₯π‘₯ 𝑑𝑑𝑑𝑑 =
Option (2):

π‘₯π‘₯ 2
2

π‘₯π‘₯ 2

π‘₯π‘₯ 2
2

(we integrate dv)

∫ 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑒𝑒𝑒𝑒 βˆ’ ∫ 𝑣𝑣𝑣𝑣𝑣𝑣:

sin π‘₯π‘₯ βˆ’ ∫ οΏ½ 2 cos π‘₯π‘₯οΏ½ 𝑑𝑑𝑑𝑑

οƒ  this is complicated!! Try Option (2)

if we make our choices as below:

𝑒𝑒 = π‘₯π‘₯, then 𝑑𝑑𝑑𝑑 = 1𝑑𝑑𝑑𝑑
And 𝑑𝑑𝑑𝑑 = sin π‘₯π‘₯ 𝑑𝑑𝑑𝑑,

then 𝑣𝑣 = βˆ’ cos π‘₯π‘₯

∴ ∫ π‘₯π‘₯ sin π‘₯π‘₯ 𝑑𝑑𝑑𝑑 = βˆ’π‘₯π‘₯ cos π‘₯π‘₯ βˆ’ ∫ (βˆ’ cos π‘₯π‘₯)𝑑𝑑𝑑𝑑

=

βˆ’π‘₯π‘₯ cos π‘₯π‘₯ βˆ’ sin π‘₯π‘₯ + 𝑐𝑐

Compiled by: D
...
van der Berg

Another useful rule – Reverse Chain Rule:
Used for expressions with difficult exponent-based brackets:
1

∫ (π‘₯π‘₯ 2 βˆ’ 1)2 𝑑𝑑𝑑𝑑

Example

1
...
Divide entire expression by new exponent

3
2

3
...
sin 5πœƒπœƒ 𝑑𝑑𝑑𝑑

(d) ∫ �𝑦𝑦�𝑦𝑦 + 3οΏ½ 𝑑𝑑𝑑𝑑
(e) ∫ π‘₯π‘₯ 2 sinπ‘₯π‘₯ 𝑑𝑑𝑑𝑑
(f) ∫ �

π‘₯π‘₯+1

οΏ½ 𝑑𝑑𝑑𝑑

√2π‘₯π‘₯βˆ’1

(g) ∫ π‘₯π‘₯ 2 (π‘₯π‘₯ 3 βˆ’ 1)5 𝑑𝑑𝑑𝑑

Check your answers by finding its derivative


Title: Integration basics: notes for mastering!
Description: Applicable for A-level school students & first year engineering/maths students; these notes will assist you with tackling all types of integration problems. The Four Laws of Integration are highlighted, and mastering each of them will make integration problem solving more enjoyable.