Figure(1) illustrates how to connect ammeter in the circuit and measure the current.

Figure 1: Example of an ammeter connection

TITLE: Ohm's law

OBJECTIVE:- Verification of Ohm's Law

Ohm's law is the most important mathematical relationship between voltage, current and resistance in electricity.

$\mathbf{V} = \mathbf{I} \mathbf{X} \mathbf{R}$

It is important to know how to read the resistors' colour code and hence its ohmic value. In the following figure it shows a table of the meaning of each colour. For example, for the resistor in the figure(1),the value of the resistor is $200k\Omega$,since the band 1 is red i.e. equivalent to 2 in the table ,band 2 is black equivalent to zero in the table and he band 3 is yellow indicating of a multiplier of 10,000.see at the bottomic the figure.

The fourth band is the tolerance band is the percentage of error. It usually comes in two colors ,the silver indicates ± 0.6 and the gold indicates $\pm 0.0\%$.so for example, the value resistor will lie beine h ± 1.0 k Ω and 190k Ω .

Procedure

- 1. Select a number of different resistors
- 2. Use the table below to determine their values
- 3. Use ohmmeter to measure the same resistors you figured out
- 4. Compare your calculated values with the readings you obtained

Parallel Circuit Connections

Week 6

Capacitor

of a capacitor?

Q3) State 1 application for capacitors?

Q4) complete the following:

- If the ohmmeter reading move toward zero and then slowly returns to infinity means
- the ohmmeter move towards zero and remain at zero means

• If the reading doesn't change and remains at infinity means

.

Preview from Notesale.co.uk page 22 of 35

