
Preview from Notesale.co.uk Preview Page 1 of 49 Plecture 2: Amino acids and Proteins

The aming and is protonated and the carboxylic end is deprotonated to form the zwitterion, the dipolar form of an amino acid

PEPTIDE BOND

- Bond which compared a mino acid residues
 Possesses double bond character
- Connects the carboxyl group of one amino acid to the amino end of the other amino acid
- Formed via a condensation reaction (formation of a new bond upon the removal of water)

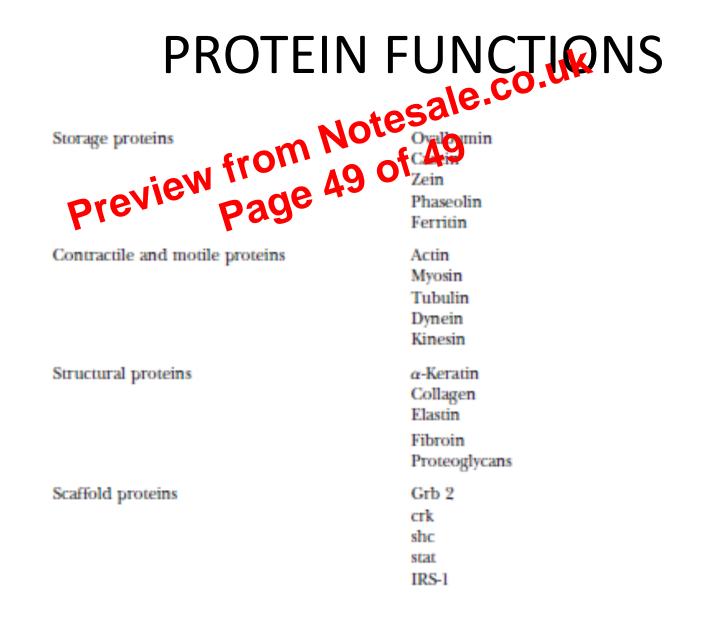
Table 5.1 Notesale. Size of Protein Molecules* Notesale. Protein A9 Insulin (beger eVice) Page 5,733 21 (A) aβ Size of Protein Subunit Organization Insulin (beger eVice) Page 5,733 21 (A) aβ Cytochrome c (equine) 12,500 104 α1 Ribonuclease A (bovine pancreas) 12,640 124 α1 Lysozyme (egg white) 13,930 129 α1			
5.1	Notesale		
f Protein Molecules*	N 2 19		
ion thou	23.01	Number of Residues per Chain	Subunit Organization
previe page	5,733	21 (A) 30 (B)	αβ
rome c (equine)	12,500	104	α_1
clease A (bovine pancreas)	12,640	124	α_1
ne (egg white)	13,930	129	α_1
bin (horse)	16,980	153	α_1
trypsin (bovine pancreas)	22,600	13 (α) 132 (β) 97 (γ)	αβγ
(human)	64,500	141 (α) 146 (β)	$\alpha_2\beta_2$
albumin (human)	68,500	550	α_1
nase (yeast)	96,000	200	α_4
ulin (horse)	149,900	214 (α) 446 (β)	$\alpha_2 \beta_2$
ate dehydrogenase (liver)	332,694	500	α_6
(rabbit)	470,000	1800 (heavy, h) 190 (α) 149 (α') 160 (β)	$h_2 \alpha_1 \alpha'_2 \beta_2$
se bisphosphate carboxylase (spinach)	560,000	475 (α) 123 (β)	$\alpha_8\beta_8$
ine synthetase (E. coli)	600,000	468	α_{12}
		149 (α') 160 (β) 475 (α) 123 (β)	

TERTIARY STRUCTURE Notesale Notesale Once it but there of folding the protein eventually tightens into a specific three-dimensional shape, called its tertiary structure. Just like humans have unique sets of fingerprints, every protein has a unique tertiary structure, which is responsible for its properties and function. The tertiary structure is held together by bonds between the R groups of the amino acids in the protein, and so depends on the amino acid sequence. There are three kinds of bonds involved in tertiary protein structure:

- H bonds, which are weak. Since they are easy to break and reform, they make a protein flexible.
- Ionic bonds between R groups with positive or negative charges, which are quite strong.

PROTEIN FUNCTIONS Biological Functions of Otherins and SemA Spresentative Examples Functional Circle Dage Examples

Regulatory proteins


Enzyme

Transport proteins

Ribonuclease Trypsin Phosphofructokinase Alcohol dehydrogenase Catalase "Malic" enzyme

Insulin Somatotropin Thyrotropin lac repressor NF1 (nuclear factor 1) Catabolite activator protein (CAP) AP1

Hemoglobin Serum albumin Glucose transporter

